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ABSTRACT 

This paper presents a Hardanger fiddle dataset “HF1” with 
polyphonic performances spanning five different emo-
tional expressions: normal, angry, sad, happy, and tender. 
The performances thus cover the four quadrants of the ac-
tivity/valence-space. The onsets and offsets, together with 
an associated pitch, were human-annotated for each note 
in each performance by the fiddle players themselves. 
First, they annotated the normal version. These annota-
tions were then transferred to the expressive performances 
using music alignment and finally human-verified. Two 
separate music alignment methods based on image regis-
tration were developed for this purpose; a B-spline imple-
mentation that produces a continuous temporal transfor-
mation curve and a Demons algorithm that produces dis-
placement matrices for time and pitch that also account for 
local timing variations across the pitch range. Both meth-
ods start from an “Onsetgram” of onset salience across 
pitch and time and perform the alignment task accurately. 
Various settings of the Demons algorithm were further 
evaluated in an ablation study. The final dataset is around 
43 minutes long and consists of 19 734 notes of Hardanger 
fiddle music, recorded in stereo. The dataset and source 
code are available online. The dataset will be used in MIR 
research for tasks involving polyphonic transcription, 
score alignment, beat tracking, downbeat tracking, tempo 
estimation, and classification of emotional expressions. 

1. INTRODUCTION 

1.1 Hardanger Fiddle Music 

The Hardanger fiddle is a traditional stringed solo instru-
ment played in the southern parts of Norway. It features 
resonance strings producing a characteristic resonating 
sound. The flat fingerboard and bridge enable the per-
former to play several strings simultaneously and the po-
lyphony level of the music is generally 2. Fast trills are 
frequently used as ornaments. Lack of annotated audio ex-
cerpts makes data-driven research on Hardanger fiddle 
music hard and this study is an attempt to remedy the situ-
ation. Our vision is to create a dataset with annotated 

pitched onsets and offsets so that accurate polyphonic tran-
scription systems can be trained in future studies, enabling 
researchers to transcribe vast existing libraries of historical 
audio recordings.   

1.2 Transcription Datasets in MIR  

Researchers have used many different techniques to create 
annotated datasets for polyphonic transcription in the past. 
One method is to record individual voices in isolation to 
facilitate easier annotation. Examples include the four-
voiced Bach10 dataset [1], the TRIOS dataset [2] consist-
ing of musical trios, a five-voiced woodwind recording [3], 
the audio-visual URMP dataset [4], and the MedleyDB 

multitracks dataset [5]. For polyphonic instruments, the 
annotation of many simultaneous notes can be cumber-
some and time-consuming. Another method for those 
kinds of instruments has therefore been to generate the 
sounds and annotations directly from MIDI. The technique 
has been used for piano datasets [6-8], but has also been 
applied across the full range of the general MIDI instru-
ment specification [9]. To increase the variability and the 
size of the dataset, researchers can use data augmentation, 
varying tempo, pitch, dynamics, and timbre during synthe-
tization [9]. 

Although the MIDI generation strategy is appealing be-
cause of its efficiency, synthesized MIDI often lacks the 
full range of variation and complexities found in real per-
formances. Researchers can in this case instead create da-
tasets by synchronizing sheet music with an associated re-
cording. This approach was adopted by Thickstun, et al. 
[10] who used dynamic time warping (DTW) applied to 
log-frequency spectrograms focused on lower frequencies.  

1.3 Mood Datasets in MIR  

Datasets spanning different moods/emotions are devel-
oped to enable researchers to train and test music emotion 
recognition (MER) systems. Many MER datasets use the 
valence-arousal model [11], with the valence and arousal 
variables annotated by human listeners. Examples include 
the MoodSwings [12], Emotion in Music [13], AMG1608 
[14], DEAM [15], and PMEmo [16] datasets.  

For a few datasets, performers have been asked to play 
the same piece of music with different emotional expres-
sions. Li, et al. [17] asked violinists to perform classical 
compositions according to different expressive musical 
terms (e.g., tranquillo) and used the resulting dataset for 
modeling. Gabrielsson and Juslin [18] asked performers to 
play with the emotional expressions “happy”, “sad”, 
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“angry”, “fearful”, “tender”, “solemn”, and “no expres-
sion”, analyzing the recordings both quantitatively and 
through listening tests. Performers control the musical ex-
pression by varying, e.g., phrasing, tempo, timing, articu-
lation, and dynamics [19-24] and the perceptual aspect of 
such features has also been modeled extensively [25-27]. 
Note that these types of features are among those varied 
for data augmentation applied to MIDI (or audio files), but 
when they are introduced by real musicians, they will be 
richer in scope and better capture the variability that can 
be expected in other real performances. It is therefore ap-
pealing to create a dataset where each song is performed 
with several musical expressions, using music alignment 
to transfer annotations between the different perfor-
mances. Not only will this bootstrap the annotation effort 
while retaining variation in the annotated notes, it will also 
introduce a new dataset for emotional expression, where 
researchers can, in extension to analyzing the audio files, 
utilize the annotations as a symbolic representation for 
MER. This strategy is therefore explored in this study. 

1.4 Score Alignment 

The task of aligning a musical score with an associated au-
dio file has been fairly widely studied, with researchers of-
ten opting for various flavors of DTW. Implementations 
differ regarding how they compute a similarity metric/fea-
ture space for alignment. Researchers can either synthesize 
or add harmonics to the score [10, 28-30], convert both 
score and audio to a chroma-space [31], or alternatively 
learn the feature space for alignment [32-35], casting the 
task as an optimization problem. 

The aforementioned strategies are aligning across full 
note lengths, but it is mainly the onsets that provide infor-
mation about timing [36]. It has therefore been suggested 
that they can be improved by detecting onsets in the audio 
[30]. One strategy in this direction is to apply DTW to a 
half-wave rectified spectral flux (SF) [36]. Ewert, et al. 
[37] instead start from a chroma before computing the flux. 
Kwon, et al. [38] used a polyphonic pitch tracker to com-
pute the feature space and found that the best results were 
achieved when including pitched onsets across the full 88-
note range. This strategy concerning the feature space is 
the closest to our implementation, but we decided to forego 
DTW. Our motivation for, and implementation of, image 
registration techniques for music alignment are described 
in Section 3. 

2. OVERVIEW AND MOTIVATION 

Our primary objective with this study was to create a da-
taset of Hardanger fiddle music with annotated onsets and 
offsets. In particular, our focus was on the annotated on-
sets. Annotating Hardanger fiddle music is non-trivial. It 
is polyphonic and contains ornaments with very fast tone 
sequences. In our preliminary studies, we learned that it is 
rather time-consuming for Hardanger fiddle musicians to 
produce annotations for tunes that they are unfamiliar with, 
and accuracy may sometimes be lacking. Furthermore, our 
overarching project also strives to collect additional data 
on expressive Hardanger fiddle performances. These cir-
cumstances led to the following design: 

1. Hardanger fiddle performers are tasked to record five 
versions of songs they are familiar with, using the ex-
pressions: normal, sad, angry, happy, and tender. 

2. They annotate notes in the normal recording from 
scratch, using computer assistance tools as aid. 

3. The normal recording is aligned with the expressive 
recordings using music alignment, so that the normal 
annotations can be automatically transferred to them. 

4. Performers go through the aligned annotations and 
make adjustments to ensure that they are correct. 

The strategy gives us a few advantages: 

• Does not introduce bias concerning timing. Since the 
normal recording is annotated from scratch, and the 
score alignment only used for aligning the two audio 
recordings, we do not impose priors regarding the ex-
act location of, e.g., onsets in the music, which would 
have been the case if an algorithm produces the initial 
annotations.  

• Ensures that annotators annotate songs they are fa-

miliar with. It is easier to be accurate and efficient 
when annotating a song that you are familiar with, and 
note sheets are not exhaustive since they do not cover 
the rich ornamentation in Hardanger fiddle music. 

• Provides five times the training and testing data for 

polyphonic transcription. With real performances of 
bowed instruments, the sound characteristics will vary 
each time a phrase is played. Thus, repeated se-
quences, particularly of ornaments, still provide train-
ing and testing data with high “entropy”.  

• Creates a dataset that can be used for additional tasks 

in future studies. Our experimental design provides us 
with both audio and symbolic data of performances 
with varying emotional expressions. This data can be 
used to study how mood is expressed on the Hardan-
ger fiddle and to develop music alignment systems.  

• Enables us to scale future annotation tasks within the 

same framework. The method will connect each note 
in the expressive performances with the notes in the 
normal performance. Thus, if we assign higher-level 
features to these notes, such as their metrical position, 
we can automatically transfer that information to the 
expressive performances. 

3. MUSIC ALIGNMENT ALGORITHMS 

Tempo variations in music are often observed and modeled 
as gradual changes developing over several successive 
notes. Friberg [39] fitted ”phrase arches” to piano perfor-
mances, with accelerando in the start and ritardando in the 
end of the phrases. Other researchers fit their observations 
using spline-shaped profiles [40] or fit the final ritardando 
using a quadratic polynomial [41]. 

The DTW algorithm is “local” in scope and will not 
model differences in tempo and gradual tempo variations 
observed across longer sections. This means that it can, 
e.g., fail to accurately stretch matched notes of different 
lengths or, when the feature space is focused on onsets, fail 
to produce convincing tempo curves for sections where the 
feature space is empty. The resulting warping path can 
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therefore become rather irregular and is also discrete, not 
fitting to a finer scale than the time frame hop length. Var-
ious remedies have been proposed to alleviate these issues, 
for example introducing special silence frames to “stretch 
out” pauses between notes [28] or trying to smooth the 
warping path in post-processing [29]. This study explores 
if techniques developed for image registration can be use-
ful as an alternative approach. Through a free form defor-
mation with a B-spline grid [42] (Section 3.2), we optimize 
across multiple frames, utilizing a smoothness penalty to 
constrain neighboring grid points from moving inde-
pendently while achieving sub-frame resolution. By adopt-
ing the Demons algorithm to music alignment (Section 
3.3), we instead also test a 2-dimensional alignment ap-
proach, where individual pitch bins are allowed to diverge 
somewhat from the warping path in order to account for 
natural variations in timing between concurrent notes. 

3.1 Onsetgram and Preprocessing 

The temporal alignment is performed on a 2-dimensional 
“Onsetgram,” consisting of onset activations distributed 
across pitch and time. The onset activations are first com-
puted using the polyphonic transcription system developed 
by Elowsson [9], trained on a wide variety of music. In that 
system, an initial network detects framewise f0 activations, 
which are used to identify the contours of the music. An 
additional network then operates across each detected con-
tour, computing an onset activation at each time frame of 
the contour. The smoothed thresholded onset activation 
function was used (cf. [Eqs. A8-A11, 9]). The onset acti-
vations were inserted at the corresponding pitch bin and 
time frame of the Onsetgram, which had a pitch resolution 
of 1 cent/bin. A Hann window of width 151 bins (cents) 
was then used to smooth the Onsetgram across pitch. Fig-
ure 1 shows the smoothed Onsetgram in green overlaying 
the f0 activations in blue. 

The pitch range of the Onsetgram was set to 2 semitones 
below the lowest annotated pitch to 2 semitones above the 
highest annotated pitch. The pitch resolution was also 
scaled down to 4 bins/semitone. To speed up processing, 
the hop size was set to 23.2 ms by keeping only every 
fourth time frame of the original Onsetgram.   

Figure 1. The Onsetgram used for music alignment in 
green overlaying f0 activations in blue across which the on-
set activations were computed. The excerpt is from the 
song Haslebuskane, also featured in Figures 2 and 3. 

Before applying the image registration algorithms, a 
start- and endpoint was computed for both audio files by 
finding the first and last time frame with a signal level 
within 10 dB of the average signal level of the audio file, 
as described by Elowsson and Friberg [43]. The normal 
Onsetgram was then re-scaled to have the same length as 
the Onsetgram of the emotional expression using linear in-
terpolation. The annotations were also re-scaled using the 
same transformation. 

3.2 B-spline Algorithm 

The B-spline music alignment implementation uses low-
level MATLAB functions for B-spline image registration 
from Kroon [44, 45]. The particular non-rigid B-spline 
alignment method was first introduced by Rueckert, et al. 
[42]. It is a free-form deformation with a B-spline grid, 
typically performed at multiple image scales (pyramid 
levels). For a precise mathematical formalization of the 
process, cf. [41, p. 64-65]. A multi-scale approach can be 
beneficial for two reasons – iterations performed at a 
coarser scale will converge fast, and the risk of reaching 
local minima is reduced. Since music may contain closely 
spaced repetitions, it seems reasonable to first align the 
coarser overall structure, ensuring that repetitions are not 
misaligned, and to then adjust notes at finer scales.  

The temporal grid spacing for the first iteration was 256 
frames (5.9 seconds), and at each subsequent iteration, this 
spacing was halved, ending with a grid spacing of 4 frames 
(93 ms) at the finest level. To avoid a too local scope with 
abrupt changes in the tempo curve at the finest level, the 
smoothness penalty of the B-spline implementation was 
used [44, 45]. This smoothness penalty constrains neigh-
boring grid points from moving independently, simulating 
the bending energy of a thin plate of metal [42, 46]. We set 
the penalty to 0.3 at the finest pyramid level, halving it at 
each level such that it was 0.005 at the coarsest scale. 

The pitch spacing was set such that the whole pitch di-
mension of the image was contained between two grid 
points at all pyramid levels, and the pitch dimension of 
these grid points reset after optimizing at each level. 

After fitting the normal Onsetgram to the Onsetgram of 
the emotional expression, the resulting forward transfor-
mation field was applied to the annotations, changing their  

 

Figure 2. The forward transformation field at each pyra-
mid level for aligning the sad and normal recordings of the 
tune Haslebuskane.  
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timing using linear interpolation. The aligned annotations 
were finally “tuned” as described in Section 3.4. Figure 2 
shows the transformation field for all seven pyramid levels 
when aligning the sad and normal recording of the tune 
Haslebuskane. 

3.3 Accelerated “Demons” Algorithm 

The diffusion model known as the Demons algorithm for 
non-rigid image registration was introduced by Thirion 
[47]. It uses the gradient ∇⃗⃗ 𝑓 from the fixed image f to com-
pute a “demons” force for deforming a moving image m. 
Wang, et al. [48] modified the algorithm by also including 
the gradient of the moving image ∇⃗⃗ 𝑚, using bi-directional 
forces,  𝑢⃗ = (𝑚 − 𝑓) × ( ∇⃗⃗ 𝑓|∇⃗⃗ 𝑓|2+𝛼2(𝑓−𝑚)2 + ∇⃗⃗ 𝑚|∇⃗⃗ 𝑚|2+𝛼2(𝑓−𝑚)2).     (1) 

The normalization factor 𝛼 introduced by Cachier, et al. 
[49] allows the force strength to be adjusted adaptively in 
each iteration. The displacement field 𝑢⃗  is computed for 
both time (𝑢⃗ 𝑥) and pitch (𝑢⃗ 𝑦) deformations in each itera-

tion and added to the corresponding overall displacement 
fields Tx (time) and Ty (pitch). We used this “accelerated 
Demons” algorithm, operating over 7 pyramid-levels with 
70 iterations at each level, setting 𝛼 to 0.4 as proposed by 
Wang, et al. [48], using the basic demon example code 
from Kroon and Slump [50] as a starting point but adapting 
the registration to the music alignment task. The Onset-
gram of the recording with an emotional expression was 
used as the moving image and the Onsetgram of the normal 
recording used as the fixed image. The computed displace-
ment field could then be used as a backward transfor-
mation to transfer the annotations to the recordings with 
emotional expressions. 

In its original formulation, the computed displacements 𝑢⃗ 𝑥  and 𝑢⃗ 𝑦  for each iteration is smoothed before being 

added to the overall displacement fields Tx and Ty. We in-
stead opted to smooth Tx and Ty directly in each iteration. 
To understand why this improves performance, recall that 
the Onsetgram is sparse and that we must be able to accu-
rately move annotations between locations in the moving 
and fixed image that contain no salience information (e.g., 
offsets). By applying the smoothing operator directly to Tx 
and Ty, we iteratively “saturate” the displacement field 
with deformations also at locations where no gradients can 
be found in the Onsetgrams. This process also helps us 
smooth out irregular displacements resulting from errone-
ous transcriptions. The smoothing was done using Hann 
windows of length 33 across time and length 3 across pitch 
for Tx and length 17 and 3 for Ty. The reader is further re-
ferred to Cachier, et al. [49] for a discussion concerning 
the benefits of smoothing operations applied at various 
stages of the process. 

Restrictions were set on Tx and Ty to ensure that the de-
formations were not bigger than desirable from a music-
theoretical standpoint. For Tx, during each iteration before 
smoothing, we thresholded the displacement at each bin to 
not diverge more than 100 ms from the average displace-
ment in each time frame. This means that annotations at 
different pitches can be moved freely but not diverge rela-
tive to each other too much. Thus, an annotation of a bass 

note and a note in the treble where the bass note is played 
slightly before the treble note in the fixed image, but where 
circumstances are reversed in the moving image, can be 
transferred receiving correct timing, but never to such an 
extent that the interpretation of the score would be vastly 
different (>100 ms). For Ty, a fixed threshold of 70 cents 
was instead used, such that the pitch could not be displaced 
more than this. 

The displacements fields (backward transformations) 
were applied to the annotations, changing their timing us-
ing linear interpolation. Since the incorporation of a 
threshold on Tx could hinder the algorithm from displacing 
time globally, the mean displacement for 𝑢⃗ 𝑥  across all 
pitch bins is also added to Tx before thresholding and 
smoothing. Furthermore, since the Onsetgram only acti-
vates at onsets, Ty may not be particularly suitable for tun-
ing the annotations. As a default, the post-processing step 
for tuning (Section 3.4) was instead applied. However, ap-
plying Ty directly for tuning was tested in the ablation 

 

Figure 3. The Onsetgrams of both the normal and sad re-
cordings of the tune Haslebuskane (pane 1), the backward 
transformation (displacement) fields Tx and Ty (panes 2 
and 3), and the aligned Onsetgrams (pane 4). 
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study in Section 5.2. Figure 3 shows the Onsetgrams of 
both the normal and sad recordings of the tune Hasle-
buskane (pane 1), the displacement fields Tx and Ty (panes 
2 and 3), and the aligned Onsetgrams (pane 4). 

3.4 Tuning 

A method for adjusting the pitch of each note was added 
as a post-processing step, motivated by the fact that the 
fiddle does not have fixed frets and the pitch of individual 
notes can vary relatively much. For each annotation to be 
tuned, a rectangular area was first extracted from the f0 ac-
tivations (blue in Figure 1), bounded by the onset and off-
set and extending 100 cents in both pitch directions from 
the annotated pitch. The average across time was com-
puted and the resulting pitch vector smoothed with a Hann 
filter 41 cents wide. Only smoothed parts computed with-
out zero-padded edges were kept, making the length 80 
cents in both pitch directions. Peaks were detected and 
weighted based on how close they were to the annotated 
pitch as well as their pitch salience magnitude, opting to 
select the peak with the highest computed weight, and 
moving the annotation to its pitch. 

Performances may drift “locally” in pitch through into-
nation on the fingerboard, such that the pitch of notes in 
short phrases with no open strings all are a bit higher or 
lower than in another recording of the same song. The tun-
ing algorithm adapts to this by not allowing one note to be 
changed more than 45 cents in relation to the weighted av-
erage tuning change of other notes close in time and pitch. 
Due to space constraints, the reader is referred to the 
MATLAB implementation and its corresponding help text 
for precise details on all settings for the tuning algorithm. 

4. DATASET 

4.1 Recording and Annotation 

The recordings were done by two Hardanger fiddle musi-
cians, Henrik Nordtun Gjertsen (HNG) and Astrid Garmo 
(AG), who were students at the Norwegian Academy of 
Music. They recorded well-known Hardanger fiddle tunes 
in a relatively dry room in stereo using a Zoom H6 recorder. 

The annotations were done by the same musicians using 
the software Annotemus1  developed in MATLAB. An-
notemus has a graphical user interface and provides func-
tionality for creating annotations on top of a graphical rep-
resentation of the audio file. We used the f0 activations 
shown in blue in Figure 1 for this purpose. The aligned 
annotations were all initially created using the B-spline 
method which was being developed in conjunction with 
the annotation process.  

The performers could use various key commands as an 
aid during annotation. This includes audio playback of the 
current window, playback between the start and end of one 
or several selected notes, playback that starts prior to a se-
lected annotated note and ends at the annotated onset posi-
tion, playback with a click at each annotated onset position, 
and playback with a synthesized version of the annotated 
score played in one of the stereo channels. The performers 
were instructed to first try the playback that ends at the 

 
1 https://www.uio.no/ritmo/english/projects/mirage/software/ 
2 https://www.uio.no/ritmo/english/projects/mirage/databases/ 

annotated onset position for locating the exact onset times 
for the normal recording and the click and synthesized 
functionality for verifying annotations, but were free to use 
whichever method they felt most comfortable with. 

All playback functionality is offered with the option of 
slowing it down to an arbitrary speed selected by the an-
notator. Since Hardanger fiddle music contains frequent 
sequences of very fast note successions, the slowdown 
functionality was used extensively during the annotation 
process. The onset timing evaluation condition for poly-
phonic transcription is usually set to 50 ms. This means 
that we can only allow a very narrow margin of error for 
the annotations to ensure that they can be reliably used for 
evaluation. We encouraged performers to be very careful 
regarding onsets, and try to keep errors within 20 ms. Lis-
teners notice time-displacements of just 10 ms on average 
[51], but since fiddle music has rather undefined transients 
at onsets, a narrower margin than 20 ms is very hard to 
achieve. For both annotators, their first annotations were 
rejected, and they were encouraged to improve the quality 
regarding aspects that did not meet our high standards.  

4.2 Dataset Overview 

The final dataset consists of 19 734 annotated notes across 
40 stereo recordings of 8 tunes. The audio recordings and 
annotations are available online,2  as well as MATLAB 
source code.3 The dataset is summarized in Table 1.  

Title Notes Length ID 

Haslebuskane 2 828 4:35 HNG 

Havbrusen 4 114 8:50 HNG 

Ivar Jorde 1 665 3:52 AG 

Låtten som bed om noko 1 819 4:51 AG 

Signe Uladalen 2 177 4:30 AG 

Silkjegulen 2 906 5:38 HNG 

Valdresspringar 1 692 3:49 AG 

Vossarull 2 533 6:34 HNG 

Total 19 734 42:38  

Table 1. The eight tunes of the dataset, each performed 
with five different emotional expressions. The number of 
notes and the length of the recordings are computed as the 
total across the five variations. The ID identifies the musi-
cian. The last row provides totals across the dataset. 

5. MUSIC ALIGNMENT EVALUATION 

5.1 Main Results 

The performance of the two methods was evaluated by 
matching onsets aligned from the normal version with the 
human-verified onset of the expressive version and meas-
uring their distance. The two aligned recordings frequently 
vary, e.g., in ornaments, which means that many notes will 
not have a counterpart in the other recording. To account 
for this, we used weighted bipartite matching to first 

3 https://github.com/aelowsson/music-alignment 

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

178



  

 
connect onsets of the two recordings, where the weight for 
how well a pair matches falls using a half Hann window 
up to a distance of 5 seconds and 70 cents respectively. 
Regular unweighted bipartite matching is not ideal in this 
circumstance since it can create incorrectly matched pairs 
containing ornaments with no counterparts, whenever two 
such ornaments, one in each recording, are within 5 sec-
onds of a real correct pair of onsets with a similar pitch. 
The F-measure ℱ  was measured for the matched onset 
pairs only, leaving out the around 3 % of onsets with no 
counterpart that were unmatched.  

Table 2 shows the results, with the F-measure for onsets 
within 80 ms (ℱ80) highlighted in bold. We note that the 
Demons algorithm was more accurate even though the B-
spline method was used as a starting point for the aligned 
expressive performances. Since this algorithm is also 
faster (the full dataset aligned in 2.5 minutes on an i7-
6700K processor), it was our focus in the ablation study. 

 𝓕𝟓𝟎 𝓕𝟖𝟎 𝓕𝟏𝟓𝟎 𝓕𝟑𝟎𝟎 Avg 

B-spline 91.1 95.9 98.2 99.2 28.9 ms 

Demons 95.4 98.3 99.1 99.5 23.0 ms 

Table 2. F-measures at different distance metrics as well 
as the average distance (Avg) between matched onsets for 
the B-spline and Demons music alignment methods. 

5.2 Ablation Study 

Various settings of the Demons algorithm were tested in 
an ablation study: 

• Tx Thresh: Instead of a 100 ms threshold we tested a 
strict zero threshold (0) or used no threshold (None). 

• Ty: Foregoing the use of Ty completely (No Ty), also 
skipping the tuning stage (No TT), applying Ty to the 
annotations instead of using the tuning algorithm (Ap-

ply), or using the default setting but without threshold-
ing (No Th). 

• Tx Mean: Testing to not add the mean displacement 
for 𝑢⃗  to Tx before thresholding and smoothing (None). 

• 𝒖⃗⃗ 𝒙 : Smoothing 𝑢⃗ 𝑥  instead of smoothing Tx, tested 
across time (𝑢⃗ 𝑥 Ti), time and pitch (𝑢⃗ 𝑥 TP), or across 
pitch only (𝑢⃗ 𝑥 Pi). 

• Tx Smooth: Smoothing Tx across time with shorter or 
longer Hann windows (15 or 45). 

Figure 4 shows the results of the ablation study as the dif-
ference in performance at ℱ80. The 95 % confidence inter-
vals (CIs) illustrated with black bars were derived from the 
difference in ℱ80 for individual tunes between the default 
setting and the tested setting. This difference was sampled 
with replacement from the tunes 8 × 4 = 32 times to com-
pute a single overall outcome, and the procedure repeated 
106 times to compute a distribution of possible outcomes, 
from which the 5th and 95th percentile could be extracted.  

6. CONCLUSIONS 

We have created an annotated Hardanger fiddle dataset 
with performances spanning five emotional expressions. 

 
Figure 4. The results of the ablation study for the Demons 
method, showing the change in F-measure relative to the 
default setting. Black bars indicate 95 % CIs. Note that the 
x-axis has been spliced to accommodate the lower result 
for the 𝑢⃗ 𝑥 TP setting.  

The process of creating accurate note annotations for real 
polyphonic instrument recordings can be cumbersome, 
and we hope that the developed techniques and source 
code can be useful to other researchers in the field. 

Two music alignment algorithms based on image regis-
tration were created and analyzed. The Demons algorithm 
is faster and easier to adapt to music and it also produces 
the best alignments. It can be noted that the alignment is 
evaluated using two separate annotations, so if a matched 
pair of notes have annotations that are 40 ms off each, they 
may just fail on the ℱ80 evaluation metric even if the align-
ment is performed perfectly. Furthermore, ornaments with 
no counterpart (see Section 5.1) may still be erroneously 
matched if they are within 5 seconds of each other. Thus, 
even with a few missed notes on the ℱ80 metric, we can 
still suspect that the alignment is very accurate overall. In-
formal closer analysis of the alignments also indicates that 
this is the case. 

The ablation study indicates that the proposed default 
settings for the Demons algorithm are well-adjusted. We 
note that smoothing across Tx instead of 𝑢⃗ 𝑥 is an important 
ingredient for successful Demons music alignment. The 
100 ms threshold for individual pitch bin displacements in 
Tx relative to the mean displacement is an important addi-
tion (Tx Thresh), and should be combined with adding the 
mean displacement for 𝑢⃗  to Tx before thresholding and 
smoothing (Tx Mean). 

We intend to expand the annotations to also contain 
higher-level metrical information. Furthermore, we intend 
to develop models for polyphonic transcription and MER 
based on the dataset, something that we hope other re-
search groups will do as well. 
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