A SEMI-AUTOMATED WORKFLOW PARADIGM FOR THE
DISTRIBUTED CREATION AND CURATION OF EXPERT ANNOTATIONS

Johannes Hentschel', Fabian C. Moss', Markus Neuwirth?, Martin Rohrmeier!
! Ecole Polytechnique Fédérale de Lausanne, Switzerland
2 Anton Bruckner University Linz, Austria
johannes.hentschel@epfl.ch

ABSTRACT

The creation and curation of labeled datasets can be an
arduous, expensive, and time-consuming task. We intro-
duce a workflow paradigm for remote consensus-building
between expert annotators, while considerably reducing
the associated administrative overhead through automa-
tion. Most music annotation tasks rely heavily on human
interpretation and therefore defy the concept of an objec-
tive and indisputable ground truth. Thus, our paradigm in-
vites and documents inter-annotator controversy based on
a transparent set of analytical criteria, and aims at putting
forth the consensual solutions emerging from such deliber-
ations. The workflow that we suggest traces the entire gen-
esis of annotation data, including the relevant discussions
between annotators, reviewers, and curators. It adopts a
well-proven pattern from collaborative software develop-
ment, namely distributed version control, and allows for
the automation of repetitive maintenance tasks, such as
validity checks, message dispatch, or updates of meta-
and paradata. To demonstrate the workflow’s effective-
ness, we introduce one possible implementation through
GitHub Actions and showcase its success in creating ca-
dence, phrase, and harmony annotations for a corpus of 36
trio sonatas by Arcangelo Corelli. Both code and anno-
tated scores are freely available, and the implementation
can be readily used in and adapted for other MIR projects.

1. INTRODUCTION

Labeled datasets are an essential prerequisite for many
tasks in Music Information Retrieval (MIR) and Digital
Musicology, and those tasks are directly dependent on the
quality of the labels. Thus, great care needs to be taken
during data creation and curation processes in order to pro-
vide reliable data for algorithmic evaluation and other pur-
poses. However, the procedures underlying data creation
processes as well as how data quality is assessed and as-
sured are not always made explicit and well-documented,

© J. Hentschel, F. C. Moss, M. Neuwirth, and M.

Rohrmeier. Licensed under a Creative Commons Attribution 4.0 Inter-
national License (CC BY 4.0). Attribution: J. Hentschel, F. C. Moss,
M. Neuwirth, and M. Rohrmeier, “A semi-automated workflow paradigm
for the distributed creation and curation of expert annotations”, in Proc.
of the 22nd Int. Society for Music Information Retrieval Conf., Online,
2021.

262

a fact which consequently impedes post hoc quality control
and reproducibility.

The literature on annotation workflows is sparse and
widely dispersed, and the description of data, their meta-
data, and creation processes is commonly tailored to spe-
cific datasets and research questions. Generic procedures
that emphasize common aspects and steps in labeling
pipelines are rare. Fortunately, recent years have seen
an increasing number of publications directly addressing
these issues for MIR contexts, and researchers are more
and more actively describing and documenting the pro-
cedures that lead to the creation of datasets, along with
discussions of the challenges faced and proposed solu-
tions [1-6]. In particular, publications presenting dedi-
cated datasets [7-13] or workflows [14, 15] discuss these
aspects in more detail and present the solutions adopted
for the specific research purposes. Standardized solutions
for the wider community, however, do not yet exist, both
due to the diverse and specific requirements for different
data and to the relatively high workload and generally low
recognition associated with documentation. The ability
to rely on established workflows thus would liberate re-
searchers from this arduous resource- and time-consuming
responsibilities.

We propose a viable solution that addresses these is-
sues by introducing a novel workflow paradigm for the
distributed production of expert or crowd-sourced anno-
tations that is easy to adopt and adapt. It has the over-
arching aim to streamline the annotation procedure by re-
ducing the associated administrative overhead. Our work-
flow is designed to optimize the trade-off between work-
ing hours spent and data quality achieved, with the goal to
maximize trustworthiness and usability of the resulting an-
notation labels. We demonstrate its effectiveness through
an example implementation ' by means of GitHub Actions
which we use to create cadence, phrase, and harmony an-
notations for a corpus of scores of 36 trio sonatas by Ar-
cangelo Corelli 2.

Our proposal may serve as a starting point for a wider
discussion in the MIR community about how to optimize
annotation tasks on a larger scale according to a set of
agreed-upon criteria.

1 github.com/DCMLab/dcml_annotation_workflow
2 github.com/DCMLab/corelli

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

2. SETTING

This paper addresses distributed settings in which mu-
sic experts generate symbolic research data by annotating
given music representations such as scores, recordings, or
timelines. In this section we describe (1) the different roles
of individuals involved, (2) some requirements for the an-
notations that are to be produced, and (3) common steps
in an annotation workflow. Finally, we (4) highlight some
concrete problems pertinent to these aspects, motivating
our novel workflow paradigm.

2.1 Roles

Individuals involved in the annotation of datasets for MIR
tasks can assume one or several of the following roles:
Annotators: experts who provide labels after having fa-
miliarized themselves with a set of annotation guidelines.
Reviewers: experts who proof-read the provided annota-
tions and provide feedback, criticism, or corrections.
Curators: individuals who are responsible for the ini-
tiation, planning, coordination, and/or financing of the
project and whose tasks might also involve the creation
and maintenance of annotation guidelines and standards
(e.g. through the use of ontologies, vocabularies, or syntax
specifications).

Annotators, reviewers, and curators all benefit from the
workflow we propose, since it aims to streamline their in-
teraction and to reduce their workload.

2.2 Labels

We use the words annotations and labels interchangeably
and in their widest sense, meaning that they could, for in-
stance, follow a pre-defined syntax, pertain to a closed vo-
cabulary, or represent score reductions, graphs, trees etc.
Our workflow paradigm is applicable in projects for which
the following general assumptions hold: (a) annotation la-
bels are encoded and stored as plain text in order to allow
for transparent version control; (b) each label thus pro-
vided uniquely refers to a specific segment in the music,
such as a range of bars, a set of events, or a time-span;
(c) each label corresponds to a precisely formalized en-
coding scheme, structured vocabulary, or other annotation
standard that can be algorithmically validated; (d) annota-
tors and reviewers share the goal to bring forth a final ver-
sion of labels that reconciles their particular musical exper-
tise with the analytical guidelines underlying the project;
(e) the creation and curation of annotated datasets is an
inherently open-ended process and one must be able to
potentially subject the data to future changes, in particu-
lar when the curators introduce changes in the annotation
guidelines or syntactic specifications; (f) access to the full
history of each label makes a dataset’s provenance trans-
parent and increases its trustworthiness.

2.3 Annotation process

Usually, it is the curators’ responsibility to clearly define
the annotation task(s), to assemble and organize the mu-
sic representations to be annotated (‘original data’), to set

up the project infrastructure, and to engage a pool of ex-
perts in the endeavor. Depending on the setting, annotators
and reviewers need to be familiarized with the tasks, pro-
cesses, tools, and specific guidelines, often supported by
tutorials, training videos, trial phases, or individual coach-
ing. The original data needs to be made available and as-
signed to (or self-assigned by) annotators, and annotation
data to reviewers. The latter assess the quality of the pro-
vided labels, e.g. on a case-by-case basis or by applying
specific sampling criteria. Finally, curators may check fur-
ther samples to ensure highest possible quality, and admit
the proof-read and validated labels to the final stage, which
might coincide with publication.

2.4 Problem statement

The problem we address with this publication is the opti-
mization of the portrayed annotation process in terms of
human resources and data quality. We consider this pro-
cess complete as soon as all envisaged annotations have
been created, validated, and verified at least once (for de-
tails, see Section 3). At any given moment, the latest val-
idated version of the dataset should be retrievable and the
full history of the data genesis, including the provenance
of every label, must be stored for maximum transparency.

Most music annotation tasks rely heavily on human
judgement and are thus to a large extent subject to inter-
pretation [5, 16-21]. MIR as well as other domains in
need of great amounts of subjective annotation data have
long since turned to crowd-sourcing as a means of leverag-
ing a massive inexpensive labor force, a paradigm that en-
tails a whole range of well-known problems with respect
to quality control, amongst others [22-25]. By valuating
quality over quantity, however, our approach favors solic-
iting fewer and appropriately remunerated experts. This
requires diligence and careful organization to ensure out-
comes that are effective regarding the tasks to be accom-
plished as well as economically feasible.

Annotation tasks moreover require appropriate techno-
logical infrastructure that allows annotators and reviewers
to debate their interpretations within the scope set forth
by the annotation guidelines, and to subsequently incor-
porate the consensual labels in the dataset. This process
of consensus-building between experts, proposed in [17],
needs to be recorded for future reference.

Finally, curating such an endeavor ‘manually’, i.e., by
exchanging commissions, files, and arguments (e.g. via
e-mail), creates a strong desire for a workflow paradigm
that easily automates repetitive maintenance tasks. These
laborious tasks include the dispatch of notification mes-
sages, data validation, and updates of metadata, paradata,
and data facets. Not only are these tasks time-consuming
for annotators, reviewers, and curators alike, they also bear
the danger of being oblivious of issues that require crucial
attention. Thus, a system must be put in place that prevents
important production steps from being forgotten.

263

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

main

%
.\/oQ w
2 @
o @
& & i~

Q$ s () Contributor
O_‘ —O Maintainer
—¢@ Bot

n Update

'N| X Notify

Figure 1. Basic branching scheme. The main branch of the repository exposes the latest version of the dataset that has been
approved by a maintainer, whereas contributors can commit only to child branches. Circles represent commits by humans,
red diamonds commits by bots, and red squares with a white letter represent triggered scripts.

3. A NOVEL ANNOTATION WORKFLOW
PARADIGM

The problems and characterizations of the annotation pro-
cess stated in the preceding section exhibit a large over-
lap with the domain of collaborative software engineer-
ing [26]. Both describe distributed settings in which a po-
tentially great number of contributors collaborate on creat-
ing a possibly large collection of texts: a codebase in the
case of software, a dataset of annotations in the present
case. Both scenarios can be regarded as open-ended tasks
since there is commonly no clearly defined final state; con-
tinuous development, possibly based on user feedback, is
the norm rather than the exception [27]. Quality control
plays a crucial role for the creation of both software and
annotations, and is often aided by guidelines, mutual re-
views, and automated tests. Moreover, keeping a version
history is required for compatibility in software and for re-
producibility in data evaluation. Consequently, adopting
best practices from distributed version control presents it-
self as a naturally viable solution. Throughout this section
we use terminology that has partly been coined and popu-
larized through the version control system Git [28,29], but
our proposed workflow paradigm can equally well be im-
plemented with similar systems such as Mercurial or Sub-
version.

3.1 Distributed version control

Our workflow paradigm builds on a well-proven pattern
from distributed version control, namely parallel branch-
ing [26,30]. The patterns that we describe in this section
are generic in the sense that the involved concepts can be
understood as abstract classes which can manifest and be
implemented in many different ways.

The basic principle is shown in Figure 1 that displays
the version history of a data ‘repository’ along a timeline.
Each new version is created by a ‘commit’, that is, a set
of changes applied to the previous version by an ‘author’
and summarized in a ‘commit message’. In the sketch,
commits by human authors are shown as circles and those
made by bots as diamonds. Each of the two horizontal lev-
els represents a ‘branch’, of which, in principle, there can
be infinitely many in parallel. Every child branch branches
off directly or indirectly of the repository’s main branch,

264

or ‘trunk’, and the commits it contains can be merged back
into it anytime. We refer to individuals with the permis-
sion to merge, or ‘pull‘, changes into the main branch as
‘maintainers’.

All other human authors, or ‘contributors’, do not have
permission to merge into main and therefore need to is-
sue a ‘pull request’ that may or may not be accepted by
a maintainer based on their review of the commits on the
child branch. Maintainers therefore keep full control over
the trunk which exposes at all times the latest version of
the repository in which all commits have been made, or
approved by them. This is a design choice for a scenario
where one entity (person or institution) guarantees the in-
tegrity of the repository’s main branch (e.g., with respect to
a stipulated set of guidelines) while allowing for external
contributions in a controlled manner.

3.2 Data maintenance

The red elements in Figure 1 express automation. Specifi-
cally, squares represent scripts that are triggered by certain
events, and which may result in a bot pushing a commit.
For instance, the script Not i fy simply dispatches auto-
mated messages to the relevant persons to inform them
about a newly issued pull request, so that it does not go
unnoticed. The Update script is triggered upon push
to the main branch and uses a bot to commit its outputs.
In the case of an annotation workflow such updates most
typically comprise (a) metadata, e.g., amount, type, and
format of annotation labels, information on the annotated
pieces, free text descriptions; (b) paradata, e.g., annotator
identities, name and version of the employed annotation
software, review status, time stamp; or (c) data facets, e.g.,
extraction/separation of particular features for increased
accessibility, or summary statistics for individual pieces or
the entire dataset. For a concrete example, see Section 4.4.
Including an Update routine immensely facilitates the
project coordination—e.g. through an always up-to-date
dashboard or README file—and allows one to use the
dataset in its current state at any point in time.

3.3 Data validation

Figure 2 exemplifies the workflow paradigm for the com-
pletion of one (partial or comprehensive) set of annota-

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

@
\/OQ
Y @
A
é? d& d? S
v @ @ K2
< & ~y
& & > 2
< S R <

main

N R
> >
o4 & @

.N@O ®o® K/@O &o?’ b,g" === () Annotator
Q'Z’(/ @@Q &szf’ ¥ & m= () Reviewer

& CJoQ 9 — 4@ Bot

@ ---------------- O—‘ Update
5] Notify

@ ‘ B Test

TINIC] Compare

Figure 2. Example for a complete annotation cycle. In a parallel branch, an annotator pushes new annotations that don’t
pass the automatic validation (Test), corrects the errors, and issues a pull request. As soon as a reviewed version is pushed,
Compare adds files to aid the annotator with the process of going through the changes and deliberating with the reviewer.

tions, including data verification (see the follow subsec-
tion) and validation. Since we established in Section 2.2
that the annotation labels may be automatically validated,
we included the script Test which is triggered upon ev-
ery commit to any child branch (except if performed by a
bot). This way we ensure that syntactic and orthographic
errors in the annotations can be corrected right away and
we disallow merging into the main branch in cases where
the validity test did not pass. This way we ensure that in-
valid data cannot make its way into the main branch.

3.4 Data verification through expert consensus

As a consequence of the subjective nature of annotations,
data verification can not completely be delegated to al-
gorithmic evaluation. Conceptually, we substitute for the
concept of an objective and indisputable ground truth the
idea of consensual solutions based on transparent delib-
eration. The data verification procedure begins with the
annotator issuing a pull request (see Figure 2) for merging
a set of new annotations into the main branch, thus set-
ting off the Notify script (see Section 3.2). From here
on, every additional commit is included in the open pull
request and triggers (except if performed by a bot) an ad-
ditional third script, here called Compare. In the example,
the reviewer updates the proposed annotations, correcting
obvious errors and substituting diverging musical interpre-
tations. Pushing these changes causes (a) Test to validate
the reviewer’s changes, (b) Not i fy to inform the annota-
tor about the completed review, and (c) Compare to create
one or several files that may aid the annotator to retrace the
reviewer’s changes easily, for instance through a diff file,
a revision report, or a compilation of reviewer comments.
In case the annotator agrees with all changes, the new set
of annotations is considered to represent a consensus be-
tween the two experts. Otherwise, this consensus is to be
reached through transparent deliberation, i.e., a recorded
exchange of arguments (symbolized in Fig. 2 by the dis-
cussion table), at the end of which the annotator pushes
the consensual solution, whereupon the reviewer or anyone
with the relevant permissions may merge the thus verified
data, completing this subset. Consequently, every verified
label represents a consensus between at least two experts.

265

4. GITHUB ACTIONS IN ACTION: THE GENESIS
OF A NOVEL DATASET

To demonstrate our paradigm’s effectiveness we imple-
mented one possible instance ! of the proposed workflow
paradigm and showcase its success in creating cadence,
phrase, and harmony annotations for a corpus of 36 trio
sonatas (opp. 1, 3, and 4) by Arcangelo Corelli.? The
implementation was created using the code hosting service
github.com because (a) it is frequently used in music
research projects for storing research data; (b) it is well—
known and chances are that users and new annotators are
already familiar with it; (c) it offers a free plan that in-
cludes server run time for automating tasks; and because
(d) of its easy-to-use automation capacities which include
predefined code patterns (called Actions) as well as cus-
tom scripts. Since the automation is defined in configura-
tion files contained in the repository, reusing our proposed
implementation can be easily achieved by simply starting
from the corresponding template repository. It makes use
of the Python library ms33 to perform tasks on the an-
notated scores, such as extracting and processing the con-
tained labels, and storing them as tabular TSV files.

4.1 Score annotation: harmony, phrases, and
cadences

To create the annotated dataset we commissioned trained
music theorists to enter the corresponding labels directly
into the provided digital scores, using the latest version of
the DCML harmonic annotation standard. * It has a prede-
fined syntax that can be automatically validated, and a set
of annotation guidelines> on the basis of which our con-
tractors were able to put forth consensual solutions. The
annotation task was performed using the free and open-
source notation software MuseScore because it is well-
known to many musicians and theorists and offers one
of the most convenient interfaces for digitally annotating
scores. Thus, the annotation labels are stored within the
original data and can be viewed by opening the MuseScore
files or the corresponding annotation tables in TSV format.

3 pypi.org/project/ms3/
4github.com/DCMLab/standards/
Sdemlab.github.io/standards/tutorial

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

4.2 Validation: Automated syntax checks

Putting into practice what was introduced in Section 3, an-
notators create new annotations by committing changes
made in the MuseScore files to side branches of the cen-
tral repository on GitHub, called ‘origin’. Every time a set
of such commits is pushed to the origin, a virtual machine
is initialized on GitHub’s server infrastructure in order to
run the above-mentioned Test script. It is defined in the
configuration file check.yml and uses ms3 to parse the
newly annotated files and validate the syntactic correctness
of the contained labels. If the validation fails the annota-
tors will be informed instantly and see a list of all syntac-
tically wrong labels together with their exact positions in
the score.

4.3 Verification: Automated comparison files

As soon as the new labels have been validated, the an-
notator issues a pull request, causing GitHub to dispatch
notifications to reviewers and curators, and the data veri-
fication by a reviewer ensues, as described in Section 3.4.
The main problem that our workflow solves at this stage
is tracking changes to the proposed set of new annotations
individually and in conjunction with the respective justi-
fications. Reviewers are requested to combine modifica-
tions into individual commits such that the commit mes-
sages include a measure number and the reasoning behind
the changes. That way, the original annotators are able to
go through these commit messages one by one in order to
decide whether they consent to the change or not. In the
latter case, they object by engaging in a written exchange
of arguments with the respective reviewer. The pull request
functionality on code hosting sites such as GitHub ide-
ally supports the subsequent consensus-building process
by providing and storing practical and interactive sum-
maries of the comments and commits added in the pro-
cess as well as by notifying the involved parties about such
events.

Although GitHub lets users conveniently visualize the
changes made with every commit, a difficulty arises from
the fact that, in most cases, it is not sufficient to inspect
the source code excerpts from the modified MuseScore
files to appraise a changed label. Therefore, our automa-
tion script Compare adds or updates an additional Muse-
Score file upon every commit into an open pull request, in
which the modifications pertaining to the current verifica-
tion phase are highlighted with different colors. These files
immensely facilitate the discussions about the proposed so-
lutions and may also serve at a later point for documenta-
tion purposes or evaluations (see Section 4.5).

As soon as consensus is reached and the new annota-
tions have thus been verified, the corresponding branch is
merged into main and the pull request is archived, storing
and documenting the verification process for the future.

4.4 Maintaining metadata, paradata, and data facets

In our implementation, the Update script (see Section 3)
is called extract because it automatically commits in-

266

formation extracted from the source code of the modi-
fied MuseScore files upon every push to the origin’s main
branch. Further, meta- and paradata are obtained for and
copied from the changed MuseScore files and then in-
cluded in a tabular metadata file summarizing the dataset
as well as in the repository’s README file. Moreover,
annotation labels, notes, and other score elements are ex-
tracted and stored as individual tabular files. This mecha-
nism ensures that those facets of the dataset that users will
generally be most interested in stay updated and may be
loaded, transformed, and evaluated with greater ease, thus
maximizing the dataset’s accessibility and reusability.

4.5 Workflow evaluation

changes count % \ # syntax errors count

0 5333 626 | 0 5333
1 2511 295 0 2466
1 45
2 574 67 0 534
1 40
3 89 1.0 ()
1 15
2 2
4 14 02 0 12
1 1
3 1
5 300 0 1
1 1
3 1

Table 1. For 8542 verified labels in the Corelli dataset,
we report the label count for the number of changes that
they underwent, and how many of these changes addressed
syntactic errors rather than inter-expert disagreement. For
example, 3 labels were changed 5 times and throughout 6
versions, they saw 0, 1, and 3 syntactic errors respectively.

Our workflow implementation allows for multiple ways
of evaluating the annotation procedure, of which we will
showcase two examples. First, for every annotated Muse-
Score file in the Corelli dataset, we extracted all versions
from the Git history and tallied the labels and their po-
sitions from each. Tracking all occurring positions over
the file’s entire history allowed us to count the number of
changes that the label at each position was subjected to
and whether they were required due to syntactic errors or
otherwise. The results in Table 1 show that roughly 63 %
of labels were considered correct from the start and did
not change over the course of a file’s history, whereas only
1.2 % needed to be modified more than twice until a con-
sensus was reached. Note that this approach does not re-
veal whether changes were effected by annotators or re-
viewers. However, since after a full workflow cycle all
labels eventually represent consensual solutions between
at least two experts, we can deduce that our workflow is
highly efficient in putting forth validated and trustworthy
annotation data. The overall rate of labels that has been
syntactically wrong at one point is extremely low (1.2 %),

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

757 0,0,
R R R R e o

Figure 3. This plot shows for 85 movements how many of the labels have been added, replaced, or left unchanged during
the most recent consensus-building phase, and how many have been removed that were previously included. Files showing
very few modifications might originate from later minor revisions of verified labels.

suggesting that the guidelines the annotators received were
comprehensible and easy to implement. Nonetheless, de-
tecting these kinds of errors automatically constitutes an
invaluable advantage, since syntactic validity is the mini-
mal requirement for usable annotations.

For our second evaluation we exploited the annotated
MuseScore files that were automatically generated during
every verification procedure. They show the difference be-
tween exactly two versions, namely between the one that
the reviewer started off with and the verified version that
represents a consensus between reviewer and annotator.
These files maintain the labels from the previous version
and show the differences through a color coding, namely
red for deleted labels and green for substituted or added
labels. This color coding is indepentend of who commit-
ted the modifications, since the most recent version always
represents the consensus.

Figure 3 shows an evaluation of the changes made to
the 8524 labels of 85 movements from the trio sonatas. We
interpreted co-occurences of a green and a red label at the
same position as replacements, which we show in blue and
subtract from the green and red bars. Labels that were re-
moved during the verification are shown in the negative
range so that the positive range reflects the status quo.

A closer analysis of the changed content of the labels
by substitution or replacement shows that these often en-
tail music-theoretically fine distinctions, such as whether a
chord should be interpreted as V7/IV or I7. Both have
the identical absolute surface realizations (e.g. a C7 triad
in the key of C major) but their relative, hierarchical in-
terpretations differ. Another example would be V (6) ver-
sus 1116, i.e. a dominant triad with a suspension of its
fifth or a minor triad on the third scale degree in first in-
version. Again, both chords are identical in terms of their
pitch-class content but differ with respect to their harmonic
function. A full and detailed analysis of these changes is
beyond the current scope and left for future research.

While one could have assumed that annotations of
harmony, phrases, and cadences is a relatively straight-
forward task for music theory experts, our evaluation re-
veals that in many cases considerable modifications are
necessary to arrive at an agreed-upon solution. This result

emphasizes the need for broader studies on inter-annotator
(dis-)agreement [3, 13,20] and moreover corroborates the
weak status of ‘ground truth data’ for annotations with a
high degree of interpretability [5,10-12,14,16-19].

5. CONCLUSIONS

In this contribution we proposed a semi-automated work-
flow paradigm for streamlining the creation of annotated
datasets by experts, and introduced, demonstrated, and
evaluated one possible implementation. It bridges a gap
between two by and large distinct skill sets: on the one
hand researchers with expertise in computational methods
and paradigms, and on the other hand expert music theo-
rists and musicologists who contribute their considerable
domain knowledge but may lack technical prowess.

Our proposal overcomes this ‘communicative barrier’
by providing a clearly defined workflow for the creation of
annotated data that requires on behalf of the domain ex-
perts only the comprehension of the branching model out-
lined above and the usage of graphical user interfaces for
label entry and revisions. Whereas our proposal greatly re-
duces the workload of annotators and reviewers, too, the
automated notifications and validations, as well as the ease
of communication and discussion, renders the curators its
main beneficiaries, who usually bear the responsibility for
a project’s coordination and success. As a proof of concept
we have provided with this publication a GitHub reposi-
tory with a new annotated dataset for which our workflow
implementation was used. Future discussions within the
MIR community may illuminate the repercussions of and
alternatives to using proprietary hosting services in terms
of cost, functional range, and data longevity/security.

Although our case study (building, providing, and eval-
uating corpora of annotated scores) is somewhat specific,
we believe that a wide range of research projects will bene-
fit from adopting or adapting it. We welcome alterations or
alternative proposals, trusting that an active and construc-
tive discussion around the topics laid out in this paper is
valuable for the consolidation of data creation and annota-
tion practices in the MIR community.

267

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

6. ACKNOWLEDGEMENTS

This research was supported by the Swiss National Sci-
ence Foundation within the project “Distant Listening
— The Development of Harmony over Three Centuries
(1700-2000)” (Grant no. 182811). This project is being
conducted at the Latour Chair in Digital and Cognitive
Musicology, generously funded by Mr. Claude Latour.

7. REFERENCES

[1] C. McKay, I. Fujinaga, M. Miiller, and F. Wier-
ing, “Building an Infrastructure for a 21st-Century
Global Music Library,” in Proceedings of the 16th In-
ternational Music Information Retrieval Conference,
Malaga, Spain, 2015, pp. 1-2.

[2] J. Yaolong, S. Howes, C. McKay, N. Condit-Schultz,
J. Calvo-Zaragoza, and I. Fujinaga, “An Interac-
tive Workflow for Generating Chord Labels for Ho-
morhythmic Music in Symbolic Formats,” in Proceed-
ings of the 20th International Society for Music Infor-
mation Retrieval Conference, Delft, The Netherlands,
Nov. 2019, pp. 862-869.

[3] J. Degroot-Maggetti, T. de Reuse, L. Feisthauer,
S. Howles, Y. Ju, S. Kokubu, S. Margot, N. N. Lopez,
and F. Upham, “Data Quality Matters: Iterative Cor-
rections on a Corpus of Mendelssohn String Quartets
and Implications for MIR Analysis,” in Proceedings of
the 21st International Society for Music Information

Retrieval Conference, Online, 2020, pp. 432-438.

[4] M. Gotham, P. Jonas, B. Bower, W. Bosworth,
D. Rootham, and L. VanHandel, “Scores of scores: An
openscore project to encode and share sheet music,”
in Proceedings of the 5th International Conference on
Digital Libraries for Musicology - DLfM 18, Paris,
France, 2018, pp. 87-95.

[5] J. Devaney, “Using Note-Level Music Encodings to Fa-
cilitate Interdisciplinary Research on Human Engage-
ment with Music,” Transactions of the International
Society for Music Information Retrieval, vol. 3, no. 1,
pp. 205-217, Oct. 2020.

[6] D. Lewis, D. Weigl, and K. Page, “Musicological
Observations During Rehearsal and Performance: A
Linked Data Digital Library for Annotations,” in 6th
International Conference on Digital Libraries for Mu-
sicology, ser. DLfM *19. New York, NY, USA: Asso-
ciation for Computing Machinery, Nov. 2019, pp. 1-8.

[7] H. Schaffrath, The Essen Folksong Collection,
D. Huron, Ed., Stanford, CA: Center for Computer As-
sisted Research in the Humanities.

[8] M. Kemal Karaosmanoglu, “A Turkish makam mu-
sic symbolic database for music information retrieval:
SymbTr,” in Proceedings of the 13th International
Society for Music Information Retrieval Conference,
Porto, Portugal, 2012, pp. 223-228.

268

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

R. M. Bittner, M. Fuentes, D. Rubinstein, A. Jansson,
K. Choi, and T. Kell, “Mirdata: Software for Repro-
ducible Usage of Datasets,” in Proceedings of the 20th
International Society for Music Information Retrieval
Conference, Delft, The Netherlands, 2019.

M. Neuwirth, D. Harasim, F. C. Moss, and
M. Rohrmeier, “The Annotated Beethoven Corpus
(ABC): A Dataset of Harmonic Analyses of All
Beethoven String Quartets,” Frontiers in Digital Hu-
manities, vol. 5, no. July, pp. 1-5, 2018.

C. WeibB, F. Zalkow, V. Arifi-Miiller, M. Miiller, H. V.
Koops, A. Volk, and H. G. Grohganz, “Schubert Win-
terreise Dataset: A Multimodal Scenario for Music

Analysis,” Journal on Computing and Cultural Her-
itage, vol. 14, no. 2, pp. 25:1-25:18, May 2021.

J. Albrecht and D. Shanahan, “Can I Have the Keys?:
Key Validation Using a MIDI Database,” in Proceed-
ings of the 14th International Conference for Music

Perception and Cognition, San Fransico, California,
2016, pp. 752-755.

J. B. L. Smith, J. Ashley Burgoyne, I. Fujinaga,
D. De Roure, and J. S. Downie, “Design and Cre-
ation of a Large-Scale Database of Structural Anno-
tations,” in Proceedings of the 12th International So-
ciety for Music Information Retrieval Conference (IS-
MIR 2011), 2011, pp. 555-650.

M. Mauch, C. Cannam, M. Davies, S. Dixon, C. Harte,
S. Kolozali, and D. Tidhar, “OMRAS2 metadata
project 2009,” in Late-Breaking Session at the 10th
International Conference on Music Information Re-
trieval, Kobe, Japan, 2009.

F. Simonetta, S. Ntalampiras, and F. Avanzini,
“ASMD: An automatic framework for compiling mul-
timodal datasets with audio and scores,” in Proceed-
ings of the 17th Sound and Music Computing Confer-
ence, Turin, Italy, Apr. 2020, pp. 40—46.

D. Harasim, C. Finkensiep, P. Ericson, T. J. O’Donnell,
and M. Rohrmeier, “The Jazz Harmony Treebank,” in
Proceedings of the 21st International Society for Music
Information Retrieval Conference, Montreal, Canada,
2020, pp. 207-215.

J. Hentschel, M. Neuwirth, and M. Rohrmeier, “The
Annotated Mozart Sonatas: Score, Harmony, and Ca-
dence,” Transactions of the International Society for
Music Information Retrieval, vol. 4, no. 1, pp. 67—380,
2021.

H. V. Koops, W. B. de Haas, J. A. Burgoyne,
J. Bransen, A. Kent-Muller, and A. Volk, “Annotator
subjectivity in harmony annotations of popular music,”
Journal of New Music Research, vol. 48, no. 3, pp.
232-252,2019.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

[19] C. Raffel and D. P. W. Ellis, “Extracting Ground Truth
Information from MIDI Files: A Midifesto,” in Pro-
ceedings of the 17th International Society for Music
Information Retrieval Conference, New York City, NY,
2016, pp. 796—-802.

[20] A. Selway, H. V. Koops, A. Volk, D. Bretherton,
N. Gibbins, and R. Polfreman, “Explaining harmonic
inter-annotator disagreement using Hugo Riemann’s

theory of ‘harmonic function’,” Journal of New Music
Research, vol. 49, no. 2, pp. 136-150, 2020.

[21] J. A. Burgoyne, J. Wild, and I. Fujinaga, “An Expert
Ground-Truth Set for Audio Chord Recognition and
Music Analysis,” in Proceedings of the 12th Interna-
tional Society for Music Information Retrieval Confer-

ence, Miami, Florida, 2011, pp. 633-638.

[22] M. Buhrmester, T. Kwang, and S. D. Gosling, “Ama-
zon’s Mechanical Turk: A New Source of Inexpensive,
Yet High-Quality, Data?” Perspectives on Psychologi-
cal Science, vol. 6, no. 1, pp. 3-5, Jan. 2011.

[23] A. T. Nguyen, M. Halpern, B. C. Wallace, and
M. Lease, ‘“Probabilistic Modeling for Crowdsourcing
Partially-Subjective Ratings,” 4th AAAI Conference on
Human Computation and Crowdsourcing (HCOMP),
pp. 149-158, 2016.

[24] A. Dumitrache, “Truth in Disagreement: Crowdsourc-
ing Labeled Data for Natural Language Processing,”
Ph.D. dissertation, Amsterdam University, 2019.

[25] M. Kutlu, T. McDonnell, M. Lease, and T. Elsayed,
“Annotator Rationales for Labeling Tasks in Crowd-
sourcing,” Journal of Artificial Intelligence Research,
vol. 69, pp. 143-189, Sep. 2020.

[26] A. Leon, Software Configuration Management Hand-
book, 3rd ed. Boston & London: Artech House, 2015.

[27] J. Humble, Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automa-
tion, ser. The Addison-Wesley Signature Series. Up-
per Saddle River, NJ: Addison-Wesley, 2011.

[28] T. Swicegood, Pragmatic Version Control Using Git,
ser. The Pragmatic Starter Kit, S. Davidson Pfalzer,
Ed. Raleigh, North Carolina: The Pragmatic Book-
shelf, 2008, no. 1.

[29] E. J. Hogbin Westby, Git for Teams: A User-Centered
Approach to Creating Efficient Workflows in Git. Bei-
jing: O’Reilly, 2015.

[30] B. Appleton, S. P. Berczuk, R. Cabrera, and R. Oren-
stein, “Streamed Lines: Branching Patterns for Paral-
lel Software Development,” in Proceedings of the 1998
Pattern Languages of Programs Conference, Monti-
cello, Illinois, USA, 1998, pp. 1-67.

269

