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ABSTRACT

High variability of singing voice and insufficiency of note
event annotation present a huge bottleneck in singing
voice transcription (SVT). In this paper, we present VO-
CANO, an open-source VOCAl NOte transcription frame-
work built upon robust neural networks with multi-task
and semi-supervised learning. Based on a state-of-the-art
SVT method, we further consider virtual adversarial train-
ing (VAT), a semi-supervised learning (SSL) method for
SVT on both clean and accompanied singing voice data,
the latter being pre-processed using the singing voice sep-
aration (SVS) technique. The proposed framework outper-
forms the state of the arts on public benchmarks over a
wide variety of evaluation metrics. The effects of the types
of training models and the sizes of the unlabeled datasets
on the performance of SVT are also discussed.

1. INTRODUCTION

Singing voice transcription (SVT), the task to map singing
voice to common music notation of note events, is a criti-
cal step to drive novel applications in music retrieval, con-
tent creation, musicology, education, and human-computer
interaction [1]. Similar to many of the automatic music
transcription (AMT) tasks, the SVT task typically encom-
passes several sub-tasks of AMT, which are pitch detec-
tion, onset detection, offset detection, as well as sequence-
level modeling [2, 3]. In the literature of music infor-
mation retrieval (MIR), one of the most extensively in-
vestigated sub-tasks of SVT might be vocal melody ex-
traction, the task to transcribe the frame-level instanta-
neous pitch (i.e., fundamental frequency (F0)) contours of
singing voice in either monophonic (no accompaniment)
or polyphonic (mixed with accompaniment) audio signals.
Specifically, recent endeavours mostly focus on leverag-
ing deep learning techniques to transcribe the singing voice
which serves as a predominant melody in polyphonic mu-
sic [4–7]. Though achieving breakthrough performance,
vocal melody extraction is however not yet a complete so-
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lution of SVT, as it does not specify note-level events dis-
tinct from its outputs rendered in time frames.

The challenges of note-level SVT are multi-fold. Vo-
cal signals are highly variable in singing timbre, articula-
tion, intonation, discernible patterns such as vibrato, glis-
sando, note transitions and ornaments, and even lyrics.
These variables blurs the boundaries between notes and
notes, and make the note-level data annotation of singing
voice an extremely challenging job. It seems to be impossi-
ble to compile large-scale, accurate and consistent human-
annotated datasets, especially on note transition (e.g., onset
and offset) time. Such variability also challenges a model
to discriminate local time-frequency patterns. For exam-
ple, an offset event can be overlapped with another onset
event to a flexible overlapping ratio, making the transition
a non-Markovian process [8]. This issue is even worsen in
polyphonic music in which the note transitions in accom-
paniments are much denser than in the vocal melody.

In this paper, we propose a novel SVT framework to ad-
dress these issues. We notice that, as the annotated datasets
are limited, using advanced regularized neural networks
against overfitting, and semi-supervised learning (SSL) to
leverage massive amounts of unlabeled data emerge as an
efficient solution. Based on the hierarchical classification
approach of transcription [8], we utilize the PyramidNet
with ShakeDrop regularization to reduce overfitting [9],
and also incorporate it with virtual adversarial training
(VAT) [10] for SSL. These techniques have been found
useful in the fields of computer vision, while their potential
on MIR tasks has not been thoroughly discussed.

The major technical novelty and contribution of this pa-
per are as follows. First, to the best of our knowledge,
this paper represents one of the first implementations of
note-level SVT considering mixture audio inputs. Sec-
ond, the proposed SVT method outperforms state-of-the-
art methods. Also, the effect of SSL mechanism together
with the model choice on SVT performance are discussed.
Section 2 will give an overview and paper survey on the
SVT problem scenario that will be discussed in this paper.
Method and experiment results will be given in Section 3
and 4, respectively. Conclusion will be made in Section 5.

2. PROBLEM SCENARIOS AND BACKGROUND

The problem scenario of SVT is not consistently defined in
the literature. First, the transcription results can be in either
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frame-level (e.g., vocal melody extraction) or note-level.
Second, the input data can be either monophonic singing
or with accompaniment. Third, the target of transcription
can be either solo voice or multiple concurrent voices (e.g.,
choir). In this work, we consider SVT of a single voice
without or with instrument accompaniment, which will be
referred to as the monophonic or polyphonic SVT later on.
There are two approaches to deal with the case when the
accompaniment is present: 1) train a general SVT model
using the singing voice data mixed with accompaniment,
and 2) train a specialized SVT model using clean singing
voice data, and use singing voice separation (SVS) tools
to remove accompaniments of the input before inference.
In the second approach, monophonic and polyphonic SVT
can be regarded as the same task, based on the fact that
SVS is a relatively well developed technology. For sim-
plicity, we will focus on the second approach in this paper.
A pilot study comparing the two approaches will also be
reported in Section 4.3.

Previous note segmentation works on SVT usually em-
ploy state-space machines such as Bayesian models or hid-
den Markov models (HMM), which consistently detect on-
set and offset by characterizing the temporal dynamics
among the states (attack, sustain, and silence, etc.) of note
events [11–14]. Tony [13], a widely-used note transcrip-
tion software, is also based on this approach. In the deep
learning approach, the connectionnist temporal classifica-
tion (CTC) loss [15], self-attention mechanism [3] also
play similar roles in temporal decoding of note-level SVT.
However, it has been pointed out that the state space in
note transition can be ambiguous in several cases when
onset and offset events are overlapped or when note pitch
are repeated, and this issues can be solved by extending
the output dimension of the network to describe the differ-
ent classes of transition states [8]. Similar ideas such as
multi-state note models have also been discussed recently
in piano AMT tasks [16].

To our knowledge, a note-level SVT tool specifically for
the singing voice signals mixed with accompaniment has
rarely been implemented. It is not until 2020 that the task
of “Singing Transcription from Polyphonic Music” was
proposed in Music Information Retrieval Evaluation eX-
change (MIREX), while there was only one submission to
this campaign. 1 Related tasks include singing voice sepa-
ration (SVS) [6,17] and automatic transcription of multiple
concurrent singing voices such as a cappella [18,19], most
of which are restricted to frame-level transcription.

3. METHOD

The proposed SVT framework is shown in Figure 1. In the
training stage, data representations are extracted for each
frame, and are then fed into two neural network models,
one for pitch contour extraction and the other for note seg-
mentation. SSL is performed on the note segmentation net-
work. Note-level transcription results are obtained through

1 https://www.music-ir.org/mirex/wiki/2020:
Singing_Transcription_from_Polyphonic_Music_
Results

Figure 1. The proposed SVT framework. Dl, Dul, x, and
ŷ represent labeled dataset, unlabeled dataset, input sample
and predicted label, respectively.

a temporal decoding process over the frame-level outputs.

3.1 Data representation

All the input audio signals are sampled at 16 kHz. For all
the polyphonic data (e.g., singing plus accompaniment), an
SVS algorithm, Demucs [17], is employed to separate out
singing voice for use before the feature extraction stage.

Following the previous state-of-the-art method [8], the
input of the SVT network is a multi-channel feature con-
sisting in spectrum, generalized cepstrum and the general-
ized cepstrum of spectrum (GCoS) [20]. Such a combina-
tion has been shown effective in enhancing F0 components
while suppressing unwanted harmonic components [20].
All channels of feature are mapped into the log-frequency
scale with a filterbank containing 174 overlapped triangu-
lar filters allocated from 80 Hz to 1 kHz with 48 bins per
octave. To adapt to signal-level attributes in different res-
olution, three windows with different sizes are employed
to compute these data representations. As a result, the in-
put feature has 9 channels. For every time step at t, the
input x(t) contains the data representations at frame t and
also at its previous and future 9 frames, totaling 19 frames.
In other word, the shape of x(t) is: (number of channel,
height, width) := (9, 174, 19).

3.2 Note segmentation networks

We decompose the SVT process into two parts: frame-
level pitch extraction and note segmentation. For pitch
extraction, we directly use a vocal melody extraction net-
work, Patch-CNN [21], to obtain frame-level pitch con-
tours. Since the frame-level pitch extraction has been
a widely investigated technique (see discussion on vocal
melody extraction in Section 1), the proposed network
therefore focuses on note segmentation.

The note segment network can be regarded as an re-
implementation and extension of [8]. First, while the
model in [8] concatenates the 9 data representations as a
single-channel inputs, in this work we reshape them into
9 individual channels, as shown in Section 3.1. Second,
while [8] was based on the ResNet-18 network [22], we in-
stead consider the PyramidNet with ShakeDrop regulariza-
tion [23] to reduce overfitting. The PyramidNet improves
the performance by gradually increasing the numbers of
feature maps through the layers such as to effectively in-
crease the diversity of high-level attributes [9]. ShakeDrop
regularization further diversifies the feature maps by as-
signing different random weights in forward and backward
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stages at each residual layer [23]. In this work, we adopt
the PyramidNet-110 architecture, which has 28.49M pa-
rameters, a size larger than ResNet-18 by 2.5 times.

Following [8], the output of the note segmentation net-
work is optimized with multiple sub-tasks to capture the
complex dynamics of music note transition. For each time
step, the network outputs a 6-dimensional vector ŷ :=[
s, a, o, ō, f, f̄

]
, where s represents the silence state, a rep-

resents the activation (i.e. a note is on) state, o represents
the onset state, and f represents the offset state. ō and f̄
are the non-onset and non-offset states, respectively. The
output at time t is denoted as ŷ(t), in which the states are
denoted as s(t), a(t), and so on. Each state in ŷ represents
a probability value between zero and one, and we simply
set ō := 1− o, f̄ := 1− f , and s = 1− a. We also define
the transition state t := max(o, f) to describe the state that
either an onset of an offset occur. Defining the subspaces
ŷtri := [s, a, t], ŷact := [s, a], ŷon := [o, ō], ŷoff := [f, f̄ ],
then the total objective function for note segmentation is

LSEG(y, ŷ) := BCE(ytri, ŷtri) + BCE(yact, ŷact)

+ BCE(yon, ŷon) + BCE(yoff , ŷoff), (1)

where y, ytri, yact, yon, and yoff are the ground truth, and
BCE is binary cross-entropy. In brief, the note segmen-
tation mechanism here is not merely to classify onset and
offset individually, but is a combination of four classifi-
cation sub-tasks over the subspaces in the output space
y: one sub-task of multi-class classification over transi-
tion, activation, and silence, and three sub-tasks of binary
classification (i.e. activation/silence, onset/non-onset, and
offset/non-offset). Such design facilitates the discrimina-
tion between possibly overlapped events, such as onset and
offset (when the offset of a note followed by the onset of
its next note) and smooth note transition.

3.3 Semi-supervised learning

The Virtual Adversarial Training (VAT) technique is used
for semi-supervised learning on both the labeled and un-
labeled training data. VAT can be regarded as an effective
data/ label augmentation technique without the needs of
prior domain knowledge. Let xl and xul be labeled and
unlabeled samples sampled from a labeled dataset Dl and
and unlabeled dataset Dul, respectively. Given a sample
x∗ which is either xl or xul, the output distribution can be
represented as p(y|x, θ), in which θ represents the param-
eters of the note segmentation model. In our case, VAT
aims at minimizing the below local distributional smooth-
ness (LDS) function for every x∗:

LDS(x∗, θ) =BCE (p(y|x∗, θ), p(y|x∗ + radv, θ)) , (2)

radv := arg max
r;‖r‖2<ε

BCE (p(y|x∗, θ), p(y|x∗ + r)) .

Let Nl and Nul are the number of samples in Dl
and Dul, respectively, we have the total VAT loss being
LVAT := 1/(Nl + Nul)

∑
x∈Dl∪Dul

LDS(x∗, θ). Com-
bined with the supervised loss function (Equation (1)), the
total loss function is represented as L := LSEG + λLVAT,

and we set λ = 1 throughout this work. The note segmen-
tation network is implemented with PyTorch v1.5, and is
obtained after 20 epochs of training on an Nvidia TITAN
RTX GPU, using the AdamW optimizer with a learning
rate of 10−4. Typically, it takes around 8 hours to accom-
plish training a model.

3.4 Temporal decoding

Post-processing is needed to derive temporally consistent
onset/ offset/ activation timestamps from the 6-D distribu-
tion (i.e. ŷ(t)) outputted from the network. We call this
process temporal decoding. First, we employ a linear fil-
ter with impulse response as a 5-tap triangular window to
smooth each dimension in ŷ(t) in the time axis. Then, we
perform peak picking on ô(t) and x̂(t) with a threshold
at 0.5 to determine possible onset and offset positions, re-
spectively. At this stage, there are inevitable mismatches
between the predicted onset and offset positions. To en-
sure that every onset is followed by exactly one offset, ad-
ditional procedures are used: 1) if there are two onsets hav-
ing no offset between them, we insert an offset specified to
the time when s firstly surpasses a with that interval; 2)
similarly, if there are two offsets having no onset between
them, the inserted onset is specified to the time when a
firstly surpasses s in that interval; and 3) any predicted re-
sult violating rules 1) and 2) is removed and is not recog-
nized as an onset or an offset.

After having the onset-offset interval of every predicted
note, the pitch of every note is determined by the median
value of the pitch contour within that onset-offset interval.

4. EXPERIMENT

4.1 Data

To test the robustness of our model, a cross-dataset sce-
nario (i.e. the training and testing datasets are compiled
independently) is employed for the experiments. The
dataset used for supervised learning (denoted as Dl) is
the TONAS dataset, which contains 71 flamenco a cap-
pella sung melody, each of which has high-quality note-
level annotation [24]. We consider three datasets for semi-
supervised learning (denoted as Dul), which are MIR-
1K, 2 MedleyDB [25] and DALI [26]. MIR1K contains
1,000 excerpts of Chinese karaoke songs sung by amateur
singers. MedleyDB is a multi-track dataset, and we select
the tracks labeled as ‘female singer’ or ‘male singer’ (76
tracks in total) as our unlabeled training data. The DALI
dataset contains a large-scale polyphonic music (mostly
Western pop music). In this dataset We select 65 songs
from this dataset as unlabeled training data, and this subset
is denoted as DALI-train hereafter.

For evaluation, we consider three testing datasets (de-
noted as Dtest), which are ISMIR2014, DALI-test, and
Cmedia. ISMIR2014 [27] is a monophonic vocal singing
dataset containing singing data from 11 female adults, 13

2 https://sites.google.com/site/unvoicedsoundseparation/mir-1k
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male adults and 14 children. The DALI-test set, also se-
lected from DALI, contains 20 songs with automated an-
notation of notes. Finally, the Cmedia dataset [28] is used
in the MIREX campaign on polyphonic SVT (see footnote
1), and on the list we retrieve 99 pop songs (mostly Chi-
nese songs) with vocal annotation publicly available. The
list of the songs selected from DALI and Cmedia are pro-
vided on the project website (see Section 5).

4.2 Evaluation metrics

We use the metrics of note transcription in the mir_eval
library for evaluation [29]. In the evaluation rules, a pre-
dicted note is considered as correct (i.e., true positive) for
a ground truth note if it fulfills the three rules: 1) the dif-
ference in pitch number between the predicted note and the
ground truth note is less than a pitch tolerance value δp (in
cents), 2) the difference in onset time is less than an on-
set tolerance value δo (in seconds), and 3) the difference in
offset time is less than max(δo, δf×g), where δx is an off-
set tolerance ratio and g is the duration of the ground truth
note (in seconds). The F1-score is the harmonic mean of
the precision and recall values obtained from these criteria.

Therefore, the F1-score is parametrized by (δp, δo, δf),
and is denoted as F(δp,δo,δf) in this paper. This incorpo-
rates several conventional metrics of note-level transcrip-
tion. Setting δp = 50 cents, δo = 50ms and δf = 0.2, we
consider the following F1-scores (a tolerance value of ∞
means that it is not consider in the evaluation):

• Onset-only F1-score: F(∞,0.05,∞)

• Offset-only F1-score: F(∞,∞,0.2)

• Onset-offset F1-score: F(∞,0.05,0.2)

• Onset-pitch F1-score: F(50,0.05,∞)

• Onset-offset-pitch F1-score: F(50,0.05,0.2)

For example, F(50,0.05,0.2) means that a note is consid-
ered as a true positive if its pitch deviates from the ground
truth pitch by less than 50 cents, its onset deviates from the
ground truth onset by less than 0.05s, and its offset devia-
tion is less than 0.2 times the duration of the ground truth
note. The F1-scores of only onset (or only offset) events
are the cases of δp = δf =∞ (or δp = δo =∞).

Besides the note-level F1-scores, we also propose a
high-level metric called the sequence-level Note Accuracy
(NAcc), which is based on matching the MIDI pitches of
predicted and ground truth note sequences rather than the
timestamps of onset/ offset. More specifically, NAcc is the
Levenshtein distance between the ground truth and the pre-
dicted MIDI sequences: NAcc := 1 − (D + I + S)/N ,
where D denotes the number of deletions, I is the number
of insertions, S is the number of substitutions, andN is the
length of the ground truth sequence. Unlike the F1-score,
NAcc can better reveal the performance on the entire pitch
sequence, rather than the performance on the time stamps
of note events. This evaluation is useful when accurate
time stamps of the output are not of primary importance
while the global information of pitch sequence is required.

4.3 Results

4.3.1 Effect of singing voice separation

First, as a pilot study, we compare the two SVT approaches
for polyphonic audio mentioned in Section 2: 1) a model
directly trained with polyphonic Dul, and 2) a model
trained with SVS-processed (i.e. monophonic) Dul, and
requiring SVS in the inference stage. Using MIR1K as
Dul and ISMIR2014 as Dtest, results show that the onset-
offset-pitch F1-score is 30.04% for the first model, while
the second model achieves 68.38%, a much better perfor-
mance. This is mainly due to the domain difference be-
tween Dl and Dul (the former is purely monophonic while
the latter is polyphonic). We therefore focus on the second
approach in evaluating the proposed SVT framework.

4.3.2 Comparison of models

Table 1 compares the performance metrics of two models
(ResNet-18 and PyramidNet) trained under a supervised
scheme (w/o VAT), and a semi-supervised schemes (w/i
VAT) with three different unlabeled datasets (Dul) having
different scales: MIR1K, MIR1K + MedleyDB, and also
MIR1K + MedleyDB + DALI-train.

A comparison of the two models is first made from the
left three columns of Table 1 (without VAT). ResNet-18
outperforms PyramidNet for onset F1-score, onset-pitch
F1-score and NAcc, while PyramidNet prevails on offset
detection and gives better onset-offset-pitch F1-scores on
the three datasets. In short, PyramidNet, with a larger size
of training parameters, performs better on strict note tran-
scription metric such as onset-offset-pitch F1-score.

4.3.3 Effects of semi-supervised learning

By comparing the results without VAT and the ones with
VAT, we observe two different trends for the two models.
For PyramidNet, using VAT improves the performance for
almost all Dtest and all the metrics. For example, with
MIR1K as Dul improves the onset-offset-pitch F1-score
of the three test datasets by 5.73, 0.08 and 3.01 percent-
age points, respectively. Since all the methods adopt the
same pitch extraction results, such improvement is fully
contributed by the improvement of note segmentation net-
work with semi-supervised learning.

For ResNet-18, however, using VAT only improves
the performance of offset-related metrics rather than all
metrics. This is possibly because VAT performs more
effectively on larger models with regularization mecha-
nism. Among the improvement of offset detection met-
rics, it is worth mentioning that the offset F1-score of
the ISMIR2014 dataset is improved by 3.83 percentage
points (from 74.68% to 78.51%) with the Dul being
MIR1K+Med+DALI. In summary, although VAT does not
improve the performance consistently over all types of
models on all performance metrics, it still exhibits a trend
to improve more challenging metrics such as offset.

4.3.4 Effects of the unlabeled dataset Dul
Table 1 also demonstrates that the size, quality, and diver-
sity of the unlabeled dataset (Dul) affect the performance
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w/o VAT w/i VAT
Dul – MIR-1K MIR-1K + MedleyDB MIR1K + Med + DALI
Dtest I D C I D C I D C I D C

PyramidNet + ShakeDrop
Onset-only 78.02 27.79 58.15 84.04 32.87 64.56 81.10 28.98 60.65 82.25 30.40 61.81
Offset-only 75.50 36.32 45.24 80.06 33.95 51.86 78.52 33.95 48.29 78.42 34.87 47.43
Onset-offset 62.92 11.16 25.95 68.60 11.95 33.65 67.06 10.85 29.97 67.12 11.13 29.65
On-off-pitch 62.65 2.69 22.36 68.38 2.76 28.28 66.73 2.65 25.37 66.92 2.68 25.05
Onset-pitch 75.32 5.26 45.57 80.58 5.99 48.33 78.26 5.35 45.95 78.72 5.50 47.28
NAcc 69.76 12.30 50.54 78.68 12.06 48.52 75.51 12.78 47.88 77.41 15.43 52.36

ResNet
Onset-only 82.01 30.05 60.12 79.39 26.70 55.87 78.85 26.71 55.80 78.38 26.68 55.68
Offset-only 74.68 35.38 45.31 76.76 33.23 44.18 76.11 33.32 46.94 78.51 33.29 46.47
Onset-offset 61.80 10.46 26.60 62.93 9.91 25.10 62.93 9.65 26.53 63.32 9.49 26.32
On-off-pitch 61.71 2.51 22.95 62.76 2.42 21.66 62.77 2.21 22.60 63.04 2.28 22.44
Onset-pitch 77.97 5.89 47.87 75.90 5.19 43.76 74.87 4.93 43.12 74.78 5.11 43.51
NAcc 80.08 16.06 56.24 73.29 4.11 43.08 74.20 11.17 48.28 78.16 10.79 48.38

Table 1. Evaluation results on three test datasets (I: ISMIR2014; D: DALI-test; C: Cmedia). The evaluation metrics are
(from top to bottom): onset F1, offset F1, onset-offset F1, onset-offset-pitch (on-off-pitch) F1, and pitch-onset F1. See
Section 4.2 for more details on the evaluation metrics. The best performances of each dataset are marked in bold. Upper:
PyramidNet with ShakeDrop. Lower: ResNet-18.

with VAT in a quite complicated way. First, it should be
noted that a larger-scale of unlabeled dataset (Dul) does not
always imply better performance, and this phenomenon
is also model-dependent. First, for PyramidNet, optimal
performances mostly occur when only MIR1K is taken
as Dul, and adding MedleyDB and DALI-train does not
guarantee better results. For ResNet, its can be observed
that a larger unlabeled dataset (MIR1K+Med+DALI) does
give better results, but this trend is more obvious only in
offset-related metrics. A possible reason is that the genres
of the three Dul are quite different. Both MedleyDB and
DALI-train contain a much wider ranges of singing styles,
usually with chorus singing, while MIR1K is less diverse
and can be better optimized when training in batch. Nev-
ertheless, using MIR1K+MedleyDB+DALI-train still out-
performs the case using MIR-1K+MedleyDB, and this in-
dicates that there is still room for improvement if incorpo-
rating more unlabeled data for semi-supervised learning.

Among the three testing datasets, DALI-test is obvi-
ously the most challenging and is hard to be improved
by VAT. This is because that the note event annotation
in DALI is obtained automatically from global alignment,
and is reported to be error prone [30]. Besides, the cho-
rus singing part, which is commonly seen in the DALI
dataset, may confound the result of monophonic pitch ex-
traction. This can be seen from the fact that the perfor-
mance greatly drops when considering pitch for DALI-
test set: its onset-offset-pitch F1-scores are always much
lower than its onset-offset F1-scores. These challenging
issues might still require solutions from supervised learn-
ing rather than the SSL approaches.

4.3.5 Sequence-level vs. note-level evaluation

It is worth noting that NAcc exhibits a trend different from
other metrics. A high onset-offset-pitch F1-score does not

Method P R F
[31] 30.4 31.5 30.8
[24] 43.0 37.3 39.8
[32] 39.7 44.0 41.5
[12] 40.9 43.6 42.1
[13] 51.0 53.4 52.0
[8] 62.5 56.9 59.4
ResNet w/o VAT 63.1 60.6 61.7
ResNet w/i VAT 67.7 58.8 62.8
PyramidNet w/o VAT 68.6 58.1 62.7
PyramidNet w/i VAT 72.2 65.3 68.4

Table 2. Performance comparison (in %) of various SVT
methods on the ISMIR2014 dataset (Dul = MIR1K).

imply a high NAcc. On DALI-test and Cmedia, we observe
that using larger scale of Dul does result in better NAcc
using PyramidNet. This can be explained by the high vari-
ability of annotation of onset/ offset time. With large-scale
and high-diversity data, SSL may not be effective in cap-
turing local event, but can improve the performance in the
global scale. Besides, given the fact that the onset/offset
annotations are not perfectly reliable, sequence-level met-
rics such NAcc is worth further investigation when the pur-
pose of SVT is to transcribe the music score rather than
replicating the music performance.

4.3.6 Comparison to the state of the arts

Table 2 compares the precision, recall, and F1-score of
the proposed method to previous work on the ISMIR2014
dataset, the only public dataset systematically evaluated on
note-level SVT (this why a comparison on polyphonic mu-
sic datasets is not made here). Results of previous work
are listed in the upper six rows, while the new results are
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(a) ‘afemale6.wav’ in the ISMIR2014 dataset

(b) ‘10.wav’ in the CMedia dataset (10-30 seconds)

Figure 2. Data representations and transcription results using the PyramidNet model. From top to bottom: data representa-
tion, transcription results without VAT (blue lines), and transcription results with VAT (green lines). Grey dashed lines are
frame-level pitch contours. Red lines are ground truth. Circle dots are onset events, and crosses are offset events.

in the lower four rows. The result of ResNet w/o VAT can
be regarded as an imporved version of [8], by re-arranging
the channels of the input data representations while fol-
lowing the same output dimensions and temporal decoding
processes. Such modification entails 2.3 percentage points
of improvement from [8]. Besides, using a model larger
than ResNet-18 (i.e. PyramidNet) further improves the re-
sulting F1-score by 1 percentage point. Finally, with the
assistance of SSL, the PyramidNet model with MIR1K for
VAT achieves 68.5% of F1-score, which outperforms the
best previous method [8] by 9.0 percentage points.

4.3.7 Illustration

Figure 2 shows the results of two challenging examples of
SVT. The first example is challenging because of the re-
peated notes (consecutive note with the same pitch), while
the main challenge of the second example is its wide pitch
range. Figure 2(a) shows that the it is hard to observe the
onset and offset events from the data representation. The
purely supervised model fails to capture most of the on-
set and offset events of repeated notes, and this issue can

be partly solved by utilizing VAT; see the repeated notes
captured at around 2 secs and 9 secs of the example. In
Figure 2(b), it can be shown that both models without and
with VAT fail to transcribe low-pitch notes and high-pitch
ornamentation (around 24 secs), partly due to the fact that
these events are less visible on the data representations.

5. CONCLUSION

We have validated the effectiveness of leveraging semi-
supervised learning on note segmentation in singing voice
transcription. State-of-the-art performance has been re-
ported on public benchmarks. The role of semi-supervised
learning is found depending on the model and the
size, quality and the diversity of the unlabeled training
data. These findings provide insights into future semi-
supervised MIR research. The source code is available at
the project page. 3 VOCANO is also available as part of
the automatic music transcription library Omnizart [33]. 4

3 https://github.com/B05901022/VOCANO
4 https://github.com/Music-and-Culture-Technology-Lab/omnizart
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