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ABSTRACT

Recent advances of music source separation have achieved
high quality of vocal isolation from mix audio. This has
paved the way for various applications in the area of mu-
sic informational retrieval (MIR). In this paper, we pro-
pose a method to learn a cross-domain embedding space
between isolated vocal and mixed audio for vocal-centric
MIR tasks, leveraging a pre-trained music source sepa-
ration model. Learning the cross-domain embedding was
previously attempted with a triplet-based similarity model
where vocal and mixed audio are encoded by two differ-
ent convolutional neural networks. We improve the ap-
proach with a structure-preserving triplet loss that exploits
not only cross-domain similarity between vocal and mixed
audio but also intra-domain similarity within vocal tracks
or mix tracks. We learn vocal embedding using a large-
scaled dataset and evaluate it in singer identification and
query-by-singer tasks. In addition, we use the vocal em-
bedding for vocal-based music tagging and artist classi-
fication in transfer learning settings. We show that the
proposed model significantly improves the previous cross-
domain embedding model, particularly when the two em-
bedding spaces from isolated vocals and mixed audio are
concatenated.

1. INTRODUCTION

Vocal is the key component in popular music, as it is usu-
ally tied to the artist and melody of a song. Research re-
ports that vocal is the most salient part in music listening
experience of streaming service [1] and the most effective
factor in hit song prediction [2]. A number of MIR tasks
are also focused on the singing voice, for example, singer
identification [3], melody extraction [4], singing transcrip-
tion [5], and query-by-humming [6]. However, vocal sound
sources are usually available in mixed form with instru-
mental sounds in popular music and isolated vocal tracks
are scarcely available. This has been a barrier in singing
voice research.
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Recent advances of music source separation achieved
a significant level of competency [7]. Pre-trained source
separation models are freely available for practical appli-
cations [8]. This has opened up a great potential for various
down-streaming tasks. Among others, vocal source separa-
tion found immediate uses in many relevant tasks including
vocal melody extraction [9, 10], vocal tagging [11], singer
identification [12, 13], and automatic drum mixing [14].

In this paper, we apply the vocal source separation to
learn a cross-domain embedding space between isolated
vocal and mix audio. The goal of this research is learning
a discriminative vocal embedding space agnostic to mix-
ing with instrumental sounds. This idea of cross-domain
embedding space was first proposed in [15]. However, the
previous work secured the isolated vocal and mix audio
by a simple music mash-up, an artificial mix between two
heterogeneous datasets by musical matching (i.e., tempo,
beat, and key). This is not a realistic setting for obtain-
ing a practical vocal embedding space. Furthermore, they
considered only the correspondence between monophonic
vocal and mixed audio in training the model using metric
learning, missing vocal similarity within the same domain.

We improve the cross-domain embedding space in two
ways. First, we employ a structure-preserving triplet loss
that exploits not only cross-domain similarity between vo-
cal and mixed audio but also intra-domain similarity within
vocal tracks or mix tracks. Second, we conduct a large-
scale cross-domain vocal embedding learning by leverag-
ing a pre-trained vocal separation model to extract iso-
lated vocals with high-quality. We show that the proposed
method achieves significant improvements in singing iden-
tification, compared to the previous work. In addition, we
evaluate the cross-domain vocal embedding for vocal tag-
ging and artist classification in transfer learning settings
and show the generalization capability.

2. RELATED WORKS

2.1 Singer Identification in Polyphonic Music

The main challenge of singer identification in polyphonic
music is to extract voice features from music signals mixed
with instrumental sounds. The most straightforward way
to handle this issue is to separate the vocal sound sources
from mixed audio as a pre-processing step. Early ap-
proaches relied on vocal melody extraction (or predom-
inant pitch estimation) with a combination of voice re-
synthesis and voice detection algorithms to obtain en-
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hanced vocal sources [16—18]. They then extracted various
hand-engineered features such as mel-frequency cepstral
coefficient (MFCC), linear prediction mel-frequency cep-
stral coefficient (LPMCC) as input features for a classifier.
Recently, music source separation algorithms based on
deep learning have significantly advanced [7,19] and some
of them focused more on vocal source separation [20]. This
has provided a great chance to improve singer identifica-
tion by allowing to use high-quality isolated vocals [13] or
augmenting training data by remixing of vocals and ac-
companiment [12]. However, the scope of research was
limited to achieving high accuracy on a small size dataset
without scaling up to general vocal audio embedding.

2.2 Representation Learning

Representation learning allows unorganized input data to
be mapped into an structured space [21]. Previously, this
was done by a shallow network with hand-crafted features
[22], and more recently deep representation learning where
the deep neural networks directly learn the mapping from
the raw input data became a dominant methodology. Once
the representation space is structured, we can utilize it to
solve the related domain problems (or downstream tasks),
known as transfer learning [23].

Among many techniques for deep representation learn-
ing, metric learning with a triplet loss became popular
because of its flexibility in training the model with less
strict distance metrics [24]. This triplet loss based net-
work is trained with three sampled examples such that the
two examples are defined as similar, but not the rest one.
Then, the embedding network is trained to locate the two
similar examples to be closer than the dissimilar example
in the representation space. This similarity-based learning
can be easily extended to multi-modal data (e.g. image-to-
text [25-28], video-to-text [29], face-to-voice [30], video-
to-audio [31, 32]). In this case, two different embedding
networks are trained for each modality. For example, if
the case is to learn a cross-modal embedding of image
and audio [32], an image and an audio from the same cat-
egory are sampled, and an audio from the different cat-
egory are sampled. Then, the embedding feature of the
image and the embedding features of the audio are com-
pared. By optimizing the embedding features of the image
and audio from the same category to be placed closer than
the different one, we can build cross-modal embedding
space. This representation learning paradigm is close to
our study. However, cross-domain embedding learning is
different from the cross-modal embedding learning in that
the two embedding networks are from the same modality
(e.g., sketch-to-photo [33], sketch-to-3Dshape [34], street-
view-to-satellite-view [35], vocal-to-mixed [15]). Because
the inherent characteristics in each domain may largely dif-
fer, it is required to have separate networks for each do-
main.

2.3 Representation Learning in MIR

Representation learning in MIR has mainly been explored
in semantic level [36-38]. Diverse similarity supervisions

have been employed to train the triplet networks. Tag la-
bels are one representative similarity supervision by re-
garding the two examples similar if they belongs to the
same tag [39,40]. User’s preference data (similarity judge-
ment [36] or listening history [41]) is another similar-
ity supervision. Artist information has also been explored
[37,42]. In this case, the two examples are treated as sim-
ilar if they are released from the same artist. The artist
based similarity may represent some of the vocal charac-
teristics of the artist. However, artists in some genres do
not contain vocal sounds, and vocal-focused representation
learning has not been extensively studied [43]. For mono-
phonic singing voice, vocal representation learning was at-
tempted using the DAMP dataset (amateur karaoke vocal
recordings) [44]. It was extended to joint embedding be-
tween mono and mixed audio by an artificial mash-up of
the karaoke recordings and instrumental tracks [15]. How-
ever, the outcomes are not directly applicable to commer-
cial popular music.

3. METHODS

We present three training models to learn a vocal embed-
ding space. Each model consists of multiple encoder net-
works for feature extraction from mixed audio or isolated
vocal. We first introduce the backbone network common to
all encoders and then describe the three training models.

3.1 Backbone Network

The backbone network for the encoders consists of 8 con-
volutional layers with 128 3-by-3 filters except the first
layer with 64 filters and the last layer with 256 filters. Each
convolutional layer is followed by a batch normalization,
ReLU, and a 2-by-2 max-pooling layer, while the pooling
layer for the last convolutional layer is a global average
pooling layer. The network takes mel-spectrogram with
128 mel bins from each audio clip after applying short-
time Fourier transform with 1,024 samples of Hann win-
dow and 512 samples of hop size. The input size of the
CNN encoder is 129 frames, which corresponds to a 3-
second-long segment at the sampling rate of 22,050 Hz.

3.2 Training Models

Figure 1 illustrates the training models based on metric
learning. The goal of metric learning is to learn an embed-
ding space where inputs from the same class are closer to
each other than those from different classes. In our setting,
we take either mixed audio or vocal as input, use the output
of global average pooling layer in the backbone network
as the embedding space, and determine if the embedded
inputs belong to the same class or not using artist labels
(i.e., singer labels). We build the models upon a triplet net-
work that consists of three encoder networks. They take an-
chor, positive (same class as the anchor) and negative (dif-
ferent class as the anchor) examples as input. The triplet
network is often extended to take multiple negative ex-
amples for more effective training. Following the previ-
ous works [15,37], we used four negative examples. The

335



Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

Anchor Samples Positive Samples

Negative Samples

[ o— — ) | 5 Yp m, L(mg,m,,m,) — m, m, . MIXED
; | \ ; % | e o B .
‘ =" CROSS-SP
£0 £0 A A \
| Mixed Vocal Mixed Mixed | Tt 2 LOpvpv) ™ w
Vocal Vocal v vy
\ X 4 a 14 n
from Singer A from Singer A from Singer B, C, D, E Anchor Samples Positive / Negative Samples

Figure 1. Left: triplet network for metric learning with singer labels. Right: distances used for the loss function in the three
models. m and v represent embedding vectors from mixed audio and isolated vocal, respectively. The subscripts (a, p, n)

denote for anchor, positive, and negative samples, respectively.

encoders share the weights when they take the same do-
main of input (vocal or mixed audio). Therefore, we even-
tually obtain two encoder networks with different weights:
one for vocal and the other for mixed audio. In Figure 1,
they are denoted as f,(-) and f,,(-), respectively. Given
the common ground, we present three models, differing in
the choice of input and the loss function. Each of them is
described in detail below.

3.2.1 MIXED

The MIXED model takes only mixed audio as input in
the triplet network and thus it uses f,,(-) for feature ex-
traction. This is the baseline model that takes no advan-
tage from vocal source separation. The model was origi-
nally proposed as a general music representation learning
method using the cost-free artist labels in [37]. The dif-
ference in this model is that instrumental music (with no
vocals) is excluded in training the model. The triplet loss
is formally defined as follows. Let xfl, x; and xilj denote
the anchor, the positive, and the j-th negative sample of
the i-th triplet, respectively, and m’, = f,,(x%) denote the
embedding vector of input sample z’. Following the pre-
vious works [15,37], we use the hinge rank loss defined as
below:

L(triplet’) = Z [M 4 d(m’,mi) — d(mfl,mij)] (1)

P
J

where d(x,y) is given as a cosine distance:

d(z,y) = —— Y
9) = L Tl

@)

and M is the margin, which was set to 0.4.

3.2.2 CROSS

The CROSS model was proposed to learn the cross-domain
embedding between monophonic and mixed music sig-
nals [15]. In the triplet network, the anchor takes vocal
through f,(-) and the positive and negative takes mixed
audio through f,,(-). Therefore, both vocal and mixed au-
dio from the same class (anchor and positive) are expected
to be closed to each other in the embedding spaces. The
triplet loss is formally defined as follows. Let y, v/, and
Yp,; denote the vocal counterpart of mixed samples z;,, z;,
and x},; and v, = f,(y,) denote the embedding vector for
vocal. The loss function is defined as follow:

336

Joint Embedding Space Joint Embedding Space
. m, ; 3 ; i Structure-preserved
12 . :
vy 1 : my Vi
: my m, V)
Vs N 7 E— L V> B
: my s
m, V4 A
s A A
Coms N Vs Wi
| o V' W

Figure 2. Tllustrated examples of cross-domain embedding
space when the structure-preserving triplet is not applied
(left) and applied (right).

L(triplet’) = Z [M + d(vz,mé) —d(vl, ng)] 3)

J

d(-) is the distance defined in Equation 2. Note that the
only difference from the MIXED model is the use of em-
bedding vector from vocal source v for anchor samples.

3.2.3 CROSS-SP

The CROSS model effectively learns the cross-domain em-
bedding between mixed audio and its vocal counterpart.
However, this does not necessarily learn similarity within
the same domain. That is, vocal examples from the same
artist or mixed audio examples from the same artist are not
enforced to be close to each other in the embedding space.
The left column in Figure 2 illustrates a possible distribu-
tion of vocal and mixed audio examples. While the pairs
of m; and v; are closely located by the loss function, the
relations among m; or among v; can be arbitrary.

This issue has been addressed in the context of cross-
modal representation learning where the inputs are image
and text [27], or image and audio [32]. They suggested to
add constraints to the triplet loss such that the similarity
within the same modality is also preserved. Furthermore,
they made the loss bi-directional (or symmetric) with re-
gards to two different modalities by having a dual loss
where the two triplets take exclusively different modali-
ties of inputs. This setting can be also applied to two dif-
ferent audio domains in our setting: vocal and mixed au-
dio. As a result, we expect that the embedding spaces pre-
serve the structure of similarity in both cross-domains and
intra-domain, as illustrated in the right column in Figure
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2. We call this model "CROSS-SP" where SP stands for
structure-preserving. The structure-preserving triplet loss
is defined as a weighted sum of four separate hinge rank
loss functions:

L(t') =X Y [M +d(v), mp) —d(vi,mi;)]  (4a)
J
+A2 Y [M +d(mi,v}) — d(ml, vl,;)]  (4b)
J
+As ) M + d(my, my) = d(mg, my,;)] - (4e)
-
A1) (M +d(v),v) — d(v], vp,))] (4d)
J

d(-) is the distance defined in Equation 2. Note that all
four possible combinations of distances between anchor
and positive/negative samples are present: vocal-mix, mix-
vocal, mix-mix and vocal-vocal. The first two terms are
the bi-directional cross-domain ranking loss [45, 46] and
the last two terms are structure-preserving loss [27]. A, is
a weight for each loss term. The MIXED model can be re-
garded as a special case where A3 = 1 and others are 0.
The CROSS model is also a special case where A\; = 1
and others are 0. In recent studies, the structure-preserving
loss terms tend to have a small weight [28] or can be mod-
ified to have weak impacts [32]. However, we used 1/4 for
all \,, in the CROSS-SP model, because vocal and mixed
audio actually share the same modality and only have dif-
ferent content. An extensive grid search for various combi-
nations of \,, is left to future research.

4. EXPERIMENTS AND RESULTS

4.1 Dataset and Training Details

We used a filtered version of Million Song Dataset (MSD)
[47] for the vocal embedding learning. It contains 4,389
singers with 10 to 20 vocal songs ' . The audio tracks were
ensured to include vocal segments using a singing voice
detector [48]. For each singer, we used 3 songs for valida-
tion, 2 songs for test, and the remaining 5 to 15 songs for
training (the test songs were used only for internal evalu-
ation). For vocal source separation, we used the Spleeter
vocals/accompaniment separation model from Deezer [8].
To train the vocal embedding models, we used an SGD
optimizer with the initial learning rate of 0.01, decay rate
of le—6 and the Nesterov momentum. We empirically
chose to randomly generate 1200 batches of 25 triplets per
epoch. The training is stopped when there is no decrease of
validation loss for 20 epochs, and took about 100 epochs.

4.2 Task 1: Singer Identification

We first evaluate the cross-domain vocal embedding for
singer identification. The task predicts the correct singer of
the query audio among a list of candidate singer models.

! We used artist labels in MSD and assumed that artists of songs that
contain vocal sounds correspond to “singers” in the experiment.

Mixed (M)  Vocal (V) Summed ((M+V]) Concatenated ([M,V])
Singer Mg Vavg  SUM(Myye Vaye)  COM(Myye, Vi)
Model 1 wmzzzz & 7B
Que}.}; ,,,,,,,,,,,,,,,,,,,,, ,,,,,,,, o
Song avg vavg sum(mavg’ vavg) Con(mavg’ vavg)
Single-domain Cross-domain Combined
M-M M—V [M+V]—>[M+V]
VoV V-M — [M,V]>[M,V]

Figure 3. Test scenarios for the singer identification task.

4.2.1 Experiment Settings

We chose 300 singers who have 20 vocal songs from MSD,
which are unseen in the training phase. We built the singer
models by averaging the embedding vectors from vocal
segments of 15 training songs. A query was also computed
as an average of the embedding vectors from each of the
remaining 5 songs, resulting in a total of 1,500 queries.
Since we have two encoders to extract vocal embedding
vectors (f,,() and f,()), singer models and queries can be
formed with a different combination. We investigated the
following four possibilities for evaluation:

 M: takes mixed audio with f,,(-)

* V: takes isolated vocal with f,(-) but, in the MIXED
model, it takes isolated vocal with f,,(+)

e [M+V]: takes both isolated vocal and mixed audio with
fm(+) and f, (), and computes the sum of the two em-
bedding vectors

e [M, V]: takes both isolated vocal and mixed audio with
fm(:) and f,(-), and concatenates the two embedding
vectors

The entire test scenarios with the different combinations
of models and queries are illustrated in Figure 3. They in-
clude not only single-domain tests where the singer mod-
els and queries are formed from the same encoders (M—,
V—V, [M+V]— [M+V], [M, V] — [M, V]) but also cross-
domain tests where the singer models and queries are
formed from different encoders (M—V, V—M). We used the
cosine distance between the models and queries to identify
the singer.

4.2.2 Results

Figures 4 shows the singer identification results given the
three training models in the 6 test scenarios. Each of the
bar graphs shows top-1 and top-5 accuracy. In general, the
CROSS-SP model significantly outperforms the CROSS
and MIXED models in most test scenarios. In the single-
domain querying tests (M—M, V—V), the CROSS model
shows notable improvement over the MIXED model, im-
plying that the encoder for mixed audio, f, (), becomes
more discriminative when it is jointly trained with the en-
coder for isolated vocal, f,(+). This result is not commonly
observed in cross-modal embedding research. The differ-
ence is presumably attributed to the fact that we use the
same modality of audio data although the domains are
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Figure 4. Singer identification result. The filled bars in-
dicate top-1 accuracy while the blank bars indicate top-5

accuracy

Model Space R@5 R@10 Pr@5 Pr@10 | mAP
M 0.1014 | 0.1519 | 0.1217 | 0.0918 | 0.1176
MIXED \Y 0.0499 | 0.0757 | 0.0598 | 0.0454 | 0.0589
[M+V] 0.1015 | 0.1515 | 0.1218 | 0.0909 | 0.1200
M, V] 0.1139 | 0.1689 | 0.1367 | 0.1013 | 0.0713
M 0.1218 | 0.1874 | 0.1462 | 0.1124 | 0.1523
v 0.0971 | 0.1501 | 0.1165 | 0.0901 | 0.1178
CROSS [M+V] 0.1215 | 0.1893 | 0.1458 | 0.1136 | 0.1499
M, V] 0.1375 | 0.2010 | 0.1650 | 0.1206 | 0.1672
M 0.1617 | 0.2410 | 0.1940 | 0.1446 | 0.1979
X_SP v 0.1079 | 0.1689 | 0.1295 | 0.1013 | 0.1350
[M+V] 0.1625 | 0.2408 | 0.1950 | 0.1445 | 0.1974
[M, V] 0.1817 | 0.2651 | 0.2180 | 0.1591 | 0.2211

Table 1. Results from the query-by-singer task.

different. The single-domain querying tests are improved
further in the CROSS-SP model. This validates that the
structure-preserving triplet loss improves the arrangement
of similar items on both embedding spaces.

In the cross-domain querying tests (M—V, V—M), the
CROSS and CROSS-SP models show little difference.
This indicates that the CROSS-SP model maintains the
similarity between the cross-domains despite the addi-
tional loss terms. On the other hand, the MIXED model
shows poor performance. This is expected because the
model was not trained to handle isolated vocals and mixed
at the same time.

In the combination querying tests, we can observe an
interesting result that the concatenation of the two embed-
ding vectors consistently increases the accuracy in all mod-
els. This indicates that musical sounds other than isolated
vocals provide additional information to identify singers.
This make senses in that artists are often associated with
a particular style or genre of music. In the meantime, the
sum of the two embedding vectors did not help improving
the accuracy in all models.

4.3 Task 2: Query-by-Singer

A follow-up task using the vocal embeddings is to retrieve
songs with the singer information of a query song.

4.3.1 Experiment Settings

We used the same 300 singers from the singer identifica-
tion task above. For each singer, we chose 6 songs to in-
clude in the dataset to be retrieved and 4 songs as queries.
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Figure 5. The model structure for the vocal tagging task

using transfer learning with the vocal embedding models.

This results in 1800 songs in the search space and 1200
queries. We represented all queries and retrieved songs as
an average of the vocal embedding vectors, and calculated
the similarity using the cosine distance.

We evaluated the models using Recall-at-k£(R@Xk),
Precision-at-k(Pr@k) and mean average precision (mAP).
R @k represents how many songs among the relevant songs
are retrieved, which is songs from the same artist in this
case. It is the ratio of the number of relevant songs in
top-k similar songs over all relevant songs, in our case, 6.
Pr@k is a metric which shows how many items are rele-
vant among top-k similar songs. For both metrics, we used
5 and 10 for k. The last metric is mAP, which counts the
rank of every relevant song. We tested mixed only embed-
ding space (M), isolated vocal embedding space (V) and
concatenated space ([M, V]) for all three strategies. For
the MIXED strategy, the same mixed encoder is used for
processing isolated vocal too.

4.3.2 Results

Table 1 summarizes the results with the three metrics. The
general trend is similar to that in the singer identifica-
tion task; the vocal embedding space from mixed audio
(M) slightly outperforms that from isolated vocals (V) in
all three models, and the concatenated embedding space
(IM, V]) improves the performance further. Among the
three models, CROSS-SP performs the best.

4.4 Task 3: Transfer Learning to Vocal Tagging

In this task, we evaluate the generalization capability of
the vocal embedding models trained in the previous sec-
tion for a downstream task. For this purpose, we used the
K-pop Vocal Tag (KVT) dataset designed for music auto-
tagging focusing on singing voice [11]. It consists of 6,787
vocal segments from K-pop music tracks. They are an-
notated with 42 semantic tags which describe various vo-
cal characteristics in the categories of pitch range, timbre,
playing techniques, and gender. A subset of the tag labels
are shown in Figure 5. Since the vocal tags are also associ-
ated with different styles and identities of singers, we hy-
pothesize that the pre-trained vocal embedding space will
be useful for the vocal tagging task and thus the transfer
learning is effective.
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Models Space AUC Fl Prec. Recall Models Space Eval. Level Accuracy F1
Baseline - 0.7116 | 0.7198 | 0.6132 | 0.7661 GMM [49] Frame 0.5%
MIX M 0.7338 | 0.7393 | 0.6495 | 0.8013 SMM [5501"‘ SF‘ame 0.541 -
CROSS M| 07336 | 0.7340 | 0.6450 | 0.8046 R oseaD . Soement e e
CROSS V| 0.7406 | 0.7392 | 0.6511 | 0.8007 RO r - SZimznt 0300 156
CROSS [M,V] | 0.7449 | 0.7431 | 0.6531 | 0.8052 CROSS.SP T Segment 0.638 0587
CROSS-SP M 0.7376 | 0.7383 | 0.6457 | 0.8054 CROSSSP I, V] Seament 0.638 057G
CROSS-SP v 0.7401 | 0.7414 | 0.6575 | 0.7751 SVM [50 Song 0687
CROSS-SP | [M,V] | 0.7529 | 0.7469 | 0.6617 | 0.8186 CRNN [51] Song 0653
i-Vector [52] Song 0.8545 0.8459
Table 2. Result from the vocal tagging task using transfer CROSS-SP M Song 0.772 0.753
. . . CROSS-SP \Y Song 0.894 0.891
learning with the vocal embedding models. CROSS.SP T Song 0815 0.304
CROSS-SP M, V] Song 0.806 0.795

4.4.1 Experiment Settings

Figure 5 depicts the transfer learning setting for vocal tag-
ging. We first extract embedding vectors using two pre-
trained encoders. The mixed audio encoder, f,(+), is ob-
tained from all three models (MIX, CROSS and CROSS-
SP) whereas the isolated vocal encoder, f,(-), is from the
CROSS and CROSS-SP models only. Either one or the
concatenation of the embedding vectors is used as an input
feature vector of a classifier that consists of two fully con-
nected layers (64 and 42 units) with the ReLU activation.
The output layer takes the sigmoid function for multi-label
classification. The classifier head is trained with the binary
cross-entropy loss between the sigmoid predictions and the
tag labels.

We compared the transfer learning settings with a sim-
ple CNN model trained with the KVT dataset from scratch
as a baseline. The baseline model is a modified version of
the CNN model in the original study of the KVT dataset
[11]. The main difference is that the input segment size
changes from 129 frames to 107 frames to match the base-
line model to the transfer learning settings.

4.4.2 Results

Table 2 summarizes the vocal tagging accuracy measured
with AUC, F1 score, precision and recall. Compared to
the baseline model, the training learning models show in-
creased performances in all metrics. This indicates that the
vocal embedding learned with MSD generalizes to K-pop
music vocals even though if the music genre and the tar-
get task are different. In terms of input audio domain, iso-
lated vocals is more effective than mixed audio as shown
in the CROSS model (M and V) and CROSS-SP models
(M and V). This is contrasted to the results in two previ-
ous tasks (singer identification and query-by-singer), pre-
sumably because the vocal tagging task requires detailed
information about timbre and singing techniques which is
mainly found in vocal sounds. The results also show that
the concatenated embedding vector ([M, V]) further im-
proves the tag predictions. In particular, the CROSS-SP
model achieves the best performance. This result confirms
that the structure-preserving triplet-loss helps generaliza-
tion in learning vocal embedding.

4.5 Task 4: Transfer Learning to Artist Classification

Lastly, we conduct artist classification using the artist20
dataset [49]. The transfer learning setting is identical to
the task 3 except that the last layer is the softmax unit with
20 outputs that correspond to 20 artists. Similar to [49],

Table 3. Comparison of artist classification using the
artist20 dataset (* [50] used 18 artists.)

we report average performance from 6-fold cross valida-
tion. Table 3 compares the CROSS-SP model to the base-
line [49, 50] and recent works [51,52]. All of them used
album-level train-test split, which tends to be more chal-
lenging than song-level train-test split [51]. For compari-
son, we evaluated the input in two duration levels; One is
segment-level (3 seconds) and the other is song-level. The
song-level prediction was obtained by averaging the soft-
max activations from segment-level inputs through each
song. The results show that the CROSS-SP model out-
performs all previous works. In segment-level evaluation,
the summed ([M+V]) and concatenated ([M, V]) embed-
ding spaces are better than individual embedding spaces.
In song-level evaluation, on the other hand, using only vo-
cal embedding space (V) is better. This contradictory result
can be explained by the consistency of identifiable infor-
mation in vocal embedding space, which can restrain nois-
ier information from background music.

5. CONCLUSIONS

We presented a method to learn cross-domain embedding
spaces between isolated vocals and mixed audio by lever-
aging the state-of-the-art music source separation algo-
rithm. We show that the structure-preserving triplet-loss
used in training the deep neural networks greatly improves
the generalization capability when the embedding vectors
are used for singer identification, query-by-singer and vo-
cal tagging. Also, we showed the concatenation of the two
vocal embedding vectors from isolated vocals and mixed
audio are more effective in the tasks. This indicates that
unique genres or styles of artists are reflected on their in-
strumental sounds and thus mixed audio is complementary
to vocal sounds. We expect to extend the use of cross-
domain vocal embedding to various music applications
such as singer-focused music recommendation, vocal-to-
music cross retrieval and other vocal-centric MIR tasks.
We demonstrate an example at this link as a potential use

case?.

2We implemented a vocal-to-accompaniment matching system
using the cross-domain vocal embedding vector. The demo au-
dio examples are found at https://khlukekim.github.io/
crossdomainembedding/
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