
ARTIST SIMILARITY WITH GRAPH NEURAL NETWORKS

Filip Korzeniowski Sergio Oramas Fabien Gouyon
Pandora Media LLC., Oakland, California, USA

fkorzeniowski@pandora.com

ABSTRACT

Artist similarity plays an important role in organizing,
understanding, and subsequently, facilitating discovery in
large collections of music. In this paper, we present a hy-
brid approach to computing similarity between artists us-
ing graph neural networks trained with triplet loss. The
novelty of using a graph neural network architecture is to
combine the topology of a graph of artist connections with
content features to embed artists into a vector space that
encodes similarity. To evaluate the proposed method, we
compile the new OLGA dataset, which contains artist simi-
larities from AllMusic, together with content features from
AcousticBrainz. With 17,673 artists, this is the largest aca-
demic artist similarity dataset that includes content-based
features to date. Moreover, we also showcase the scal-
ability of our approach by experimenting with a much
larger proprietary dataset. Results show the superior-
ity of the proposed approach over current state-of-the-art
methods for music similarity. Finally, we hope that the
OLGA dataset will facilitate research on data-driven mod-
els for artist similarity.

1. INTRODUCTION

Music similarity has sparked interest early in the Music
Information Retrieval community [1,2], and has since then
become a central concept for music discovery and recom-
mendation in commercial music streaming services.

There is however no consensual notion of ground-truth
for music similarity, as several viewpoints are relevant [2].
For instance, music similarity can be considered at several
levels of granularity; musical items of interest can be mu-
sical phrases, tracks, artists, genres, to name a few. Fur-
thermore, the perception of similarity between two mu-
sical items can focus either on (1) comparing descriptive
(or content-based) aspects, such as the melody, harmony,
timbre (in acoustic or symbolic form), or (2) relational
(sometimes called cultural) aspects, such as listening pat-
terns in user-item data, frequent co-occurrences of items in
playlists, web pages, et cetera.

© Filip Korzeniowski, Sergio Oramas, and Fabien Gouyon.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Filip Korzeniowski, Sergio Oramas,
and Fabien Gouyon, “Artist Similarity with Graph Neural Networks”, in
Proc. of the 22nd Int. Society for Music Information Retrieval Conf.,
Online, 2021.

In this paper, we focus on artist-level similarity, and for-
mulate the problem as a retrieval task: given an artist, we
want to retrieve the most similar artists, where the ground-
truth for similarity is cultural. More specifically, artist sim-
ilarity is defined by music experts in some experiments,
and by the “wisdom of the crowd” in other experiments.

A variety of methods have been devised for computing
artist similarity, from the use of audio descriptors to mea-
sure similarity [3], to leveraging text sources by measuring
artist similarity as a document similarity task [4]. A signif-
icant effort has been dedicated to the study of graphs that
interconnect musical entities with semantic relations as a
proxy to compute artist similarity. For instance, in [5], user
profiles, music descriptions and audio features are com-
bined in a domain specific ontology to compute artist sim-
ilarity, whereas in [6], semantic graphs of artists are ex-
tracted from artist biographies.

Other approaches use deep neural networks to learn
artist embeddings from heterogeneous data sources and
then compute similarity in the resulting embedding
space [7]. More recently, metric learning approaches
trained with triplet loss have been applied to learn the em-
bedding space where similarity is computed [8–13].

In this work, we propose a novel artist similarity
model that combines graph approaches and embedding
approaches using graph neural networks. Our proposed
model, described in details in Sec. 2, uses content-based
features (audio descriptors, or musicological attributes)
together with explicit similarity relations between artists
made by human experts (or extracted from listener feed-
back). These relations are represented in a graph of artists;
the topology of this graph thus reflects the contextual as-
pects of artist similarity.

Our graph neural network is trained using triplet loss to
learn a function that embeds artists using content features
and graph connections. In this embedding space, similar
artists are close to each other, while dissimilar ones are
further apart.

To evaluate our approach (see Sec. 4), we compile a
new dataset from publicly available sources, with similar-
ity information and audio-based features for 17,673 artists,
which we describe in Sec. 3. In addition, we evaluate the
scalability of our method using a larger, proprietary dataset
with more than 136,731 artists.

2. MODELLING

The goal of an artist similarity model is to define a func-
tion s(a, b) that estimates the similarity of two artists—i.e.,

350



yields a large number if artist a is considered similar to
artist b, and small number if not.

Many content-based methods for similarity estimation
have been developed in the last decades of MIR research.
The field has closely followed the state-of-the-art in ma-
chine learning research, with general improvements com-
ing from the latter translating well into improvements in
the former. Acknowledging this fact, we select our base-
lines based on the most recent developments: Siamese neu-
ral networks trained with variants of the triplet loss [9–13].
Building and training this type of models falls under the
umbrella of metric learning.

2.1 Metric Learning

The fundamental idea of metric learning is to learn a pro-
jection yv = f (xv) of the input features xv of an item v
into a new vector space; this vector space should be struc-
tured in a way such that the distances between points reflect
the task at hand. In our case, we want similar artists to be
close together in this space, and dissimilar artists far away.

There is an abundance of methods that embed items into
a vector space, many rooted in statistics, that have been
applied to music similarity [14]. In this paper, we use a
neural network for this purpose. The idea of using neural
networks to embed similar items close to each other in an
embedding space was pioneered by [15], with several im-
provements developed in the following decades. Most no-
tably, the contrastive learning objective—where two items
are compared to each other as a training signal—was re-
placed by the triplet loss [16, 17]. Here, we observe three
items simultaneously: the anchor item xa is compared to
a positive sample xp and a negative sample xn. With the
following loss formulation, the network is trained to pull
the positive close to the anchor, while pushing the negative
further away from it:

L (t) =
[
d (ya,yn)− d (ya,yp) + ∆

]+
,

where t denotes the triplet (ya,yp,yn), d (·) is a distance
function (usually Euclidean or cosine), ∆ is the maximum
margin enforced by the loss, and [·]+ is the ramp function.

As mentioned before, state-of-the-art music similarity
models are almost exclusively based on learning deep neu-
ral networks using the triplet loss. We thus adopt this
method as our baseline model, which will serve as a com-
parison point to the graph neural network we propose in
the following sections.

2.2 Graph Neural Networks

A set of artists and their known similarity relations can
be seen as a graph, where the artists represent the nodes,
and the similarity relations their (undirected) connections.
Graph methods thus naturally lend themselves to model
the artist similarity problem [6]. A particular set of graph-
based models that has been gaining traction recently are
graph neural networks (GNNs), specifically convolutional
GNNs. Pioneered by [18], convolutional GNNs have be-
come increasingly popular for modelling different tasks

Fully Connected
Backend

Graph Convolutional
Frontend

Triplet LossInput Features

Figure 1: Overview of the graph neural network we
use in this paper. First, the input features xv are first
passed through a front-end of graph convolution layers (see
Sec. 2.2.2 for details); then, the output of the front-end is
passed through a traditional deep neural network back-end
to compute the final embeddings yv of artist nodes. Based
on these embeddings, we use the triplet loss to train the
network to project similar artists (positive, green) closer
to the anchor, and dissimilar ones (negative, red) further
away.

that can be interpreted as graphs. We refer the interested
reader to [19] for a comprehensive and historical overview
of GNNs. For brevity, we will focus on the one specific
model our work is based on—the GraphSAGE model in-
troduced by [20] and refined by [21]—and use the term
GNNs for convolutional GNNs.

2.2.1 Model Overview

The GNN we use in this paper comprises two parts: first,
a block of graph convolutions (GC) processes each node’s
features and combines them with the features of adjacent
nodes; then, another block of fully connected layers project
the resulting feature representation into the target embed-
ding space. See Fig. 1 for an overview.

We train the model using the triplet loss, in an iden-
tical setup as the baseline model. Viewing the proposed
GNN from this angle, the only difference of the GNN from
a standard embedding network is the additional Graph
Convolutional Frontend. In other words, if we remove
all graph convolutional layers, we arrive at our baseline
model, a fully connected Deep Neural Network (DNN).

2.2.2 Graph Convolutions

The graph convolution algorithm, as defined in [20, 21],
features two operations which are not found in classic neu-
ral networks: a neighborhood function N (·), which yields
the set of neighbors of a given node; and an aggregation
function, which computes a vector-valued aggregation of a
set of input vectors.

As a neighborhood function, most models use guided or
uniform sub-sampling of the graph structure [20–22]. This
limits the number of neighbors to be processed for each
node, and is often necessary to adhere to computational
limits. As aggregation functions, models commonly apply
pooling operators, LSTM networks, or (weighted) point-
wise averages [20].

In this work, we take a simple approach, and use point-
wise weighted averaging to aggregate neighbor representa-
tions, and select the strongest 25 connections as neighbors.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

351



Figure 2: Tracing the graph to find the necessary input
nodes for embedding the target node (orange). Each graph
convolution layer requires tracing one step in the graph.
Here, we show the trace for a stack of two such layers.
To compute the embedding of the target node in the last
layer, we need the representations from the previous layer
of itself and its neighbors (green). In turn, to compute these
representations, we need to expand the neighborhood by
one additional step in the preceding GC layer (blue). Thus,
the features of all colored nodes must be fed to the first
graph convolution layer.

If weights are not available, we use the simple average of
random 25 connections. This enables us to use a single
sparse dot-product with an adjacency matrix to select and
aggregate neighborhood embeddings. Note that this is not
the full adjacency matrix of the complete graph, as we se-
lect only the parts of the graph which are necessary for
computing embeddings for the nodes in a mini-batch.

Algorithm 1 describes the inner workings of the graph
convolution block of our model. Here, the matrix X ∈
RD×V stores the D-dimensional features of all V nodes,
the symmetric sparse matrix A ∈ RV×V defines the con-
nectivity of the graph, and N (v) is a neighborhood func-
tion which returns all connected nodes of a given node v
(here, all non-zero elements in the vth row of A).

To compute the output of a graph convolution layer for
a node, we need to know its neighbors. Therefore, to com-
pute the embeddings for a mini-batch of nodes V , we need
to know which nodes are in their joint neighborhood. Thus,
before the actual processing, we first need to trace the
graph to find the node features necessary to compute the
embeddings of the nodes in the mini-batch. This is shown
in Fig. 2, and formalized in lines 1–4 of Alg. 1.

At the core of each graph convolution layer k ∈
[1 . . .K] there are two non-linear projections, parameter-
ized by projection matrices Qk ∈ RHQk

×D and Wk ∈
RHWk

×(HQ+D), and a point-wise non-linear activation
function σ, in our case, the Exponential Linear Unit func-
tion (ELU). Here, HQk

and HWk
are the output dimen-

sions of the respective projections. The last output, XK ∈
RHWK

×V , holds the l2-normalized representations of each
node in the mini-batch in its columns. It is fed into the
following fully connected layers, which then compute the
output embedding yv of a node. Finally, these embeddings
are used to compute the triplet loss and back-propagate it
through the GNN.

Algorithm 1: GRAPH CONVOLUTION BLOCK

Input : Node input features X.
Sparse connectivity matrix A.
Nodes in mini-batch V ⊂ [1 . . . V ].

Output: Node output representation XK

. Trace back input nodes for each layer.
1 VK ← V ;
2 for k = K − 1 . . . 0 do
3 Vk ←

⋃
v∈Vk+1

N (v) ;
4 end
. Select input features for first layer. We use M[r, c] to

denote selecting r rows and c columns from a matrix
M.

5 X0 = X [·,V0] ;
6 for k = 1 . . .K do
7 Ak = A [Vk−1,Vk] ;
8 Nk = σ (Qk ·Xk−1) ·Ak ;

9 Xk ← σ

(
Wk ·

[
Nk

Xk−1 [·,Vk]

])
;

. l2-normalize embeddings of each output node.

10 Xk ←
[

xv

‖xv‖2 | v ∈ Vk
]

;

11 end
12 return XK

3. DATASETS

Many published studies on the topic of artist similarity are
limited by data: datasets including artists, their similarity
relations, and their features comprise at most hundreds to a
few thousand artists. In addition, the quality of the ground
truth provided is often based on 3rd party APIs with ob-
scure similarity methods like the last.fm API, rather than
based on data curated by human experts.

For instance, in [6], two datasets are provided, one with
~2k artists and similarity based on last.fm relations, and
another with only 268 artists, but based on relations cu-
rated by human experts. In [4], a dataset of 1,677 artists
based on last.fm similarity relations is used for evaluation.
Also, the dataset used in the Audio Music Similarity and
Retrieval (AMS) MIREX task, which was manually cu-
rated, contains data about only 602 artists. Other works,
like [8], use tag data shared among tracks or artists as a
proxy for similarity estimation—which can be considered
as a weak signal of similarity—and use a small set of 879
human-labeled triplets for evaluation.

For all these issues regarding existing datasets, we com-
piled a new dataset, the OLGA Dataset, which we describe
in the following.

3.1 The OLGA Dataset

For the OLGA (“Oh, what a Large Graph of Artists”)
dataset, we bring together content-based low-level features
from AcousticBrainz [23], and similarity relations from
AllMusic. Assembling the data works as follows:

1. Select a common pool of artists based on the unique
artists in the Million Song Dataset [24].

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

352



2. Map the available MusicBrainz IDs of the artists
to AllMusic IDs using mapping available from
MusicBrainz.

3. For each artist, obtain the list of “related” artists
from AllMusic; this data can be licensed and ac-
cessed on their website. Use only related artists
which can be mapped back to MusicBrainz.

4. Using MusicBrainz, select up to 25 tracks for each
artist using their API, and collect the low-level fea-
tures of the tracks from AcousticBrainz.

5. Compute the track feature centroid of each artist.

In total, the dataset comprises 17,673 artists connected
by 101,029 similarity relations. On average, each artist is
connected to 11.43 other artists. The quartiles are at 3, 7,
and 16 connections per artist. The lower 10% of artists
have only one connection, the top 10% have at least 27.

While the dataset size is still small compared to in-
dustrial catalog sizes, it is significantly bigger than other
datasets available for this task. Its size and available fea-
tures will allow us to apply more data-driven machine
learning methods to the problem of artist similarity. 1

For our experiments, we partition the artists following
an 80/10/10 split into 14,139 training, 1767 validation, and
1767 test artists.

3.2 Proprietary Dataset

We also use a larger proprietary dataset to demonstrate the
scalability of our approach. Here, explicit feedback from
listeners of a music streaming service is used to define
whether two artists are similar or not.

For artist features, we use the centroid of an artist’s
track features. These track features are musicological at-
tributes annotated by experts, and comprise hundreds of
content-based characteristics such as “amount of electric
guitar”, or “prevalence of groove”.

In total, this dataset consists of 136,731 artists con-
nected by 3,277,677 similarity relations. The number of
connections per artists is a top-heavy distribution with few
artists sharing most of the connections: the top 10% are
each connected to more than 134 others, while the bottom
10% to only one. The quartiles are at 2, 5, and 48 connec-
tions per artist.

We follow the same partition strategy as for the OLGA
dataset, which results in 109,383 training, 13,674 valida-
tion, and 13,674 test artists.

4. EXPERIMENTS

Our experiments aim to evaluate how well the embeddings
produced by our model capture artist similarity. To this
end, we set up a ranking scenario: given an artist, we col-
lect its K nearest neighbors sorted by ascending distance,
and evaluate the quality of this ranking. To quantify this,
we use normalized discounted cumulative gain [25] with

1 The procedure to assemble the dataset, including relevant metadata,
is available on https://gitlab.com/fdlm/olga/.

a high cut-off at K = 200 (“ndcg@200”). We prefer
this metric over others, because it was shown that at high
cut-off values, it provides better discriminative power, as
well as robustness to sparsity bias (and, to moderate de-
gree, popularity bias) [26]. Formally, given an artist a with
an ideal list of similar artists s (sorted by relevance), the
nDCGK of a predicted list of similar artists ŝ is defined
as:

nDCGK(a, ŝ, s) =

∑K
k=1 g(ŝk, a)d(k)∑K
k=1 g(sk, a)d(k)

,

where g(·, a), the gain, is 1 if an artist is indeed similar to
a, and 0 otherwise, and d(k) = log−12 (k+ 1) the discount-
ing factor, weights top rankings higher than the tail of the
list.

In the following, we first explain the models, their train-
ing details, the features, and the evaluation data used in our
experiments. Then, we show, compare and analyze the re-
sults.

4.1 Models

As explained in Sec. 2.2.1, a GNN with no graph convo-
lutional layers is identical to our baseline model (i.e. a
DNN trained using triplet loss). This allows us to fix-
ate hyper-parameters between baseline and the proposed
GNN, and isolate the effect of adding graph convolutions
to the model. For each dataset, we thus train and evaluate
four models with 0 to 3 graph convolutional layers.

The other hyper-parameters remain fixed: each lay-
ers in the graph convolutional front-end consists of 256
ELUs [27]; the back-end comprises two layers of 256
ELUs each, and one linear output layer with a 100 di-
mensions; we train the networks using the ADAM opti-
mizer [28] with a linear learning-rate warm-up [29] for
the first epoch, and following a cosine learning rate de-
cay [30] for the remaining 49 epochs (in contrast to [30],
we do not use warm-restarts); for selecting triplets, we ap-
ply distance-weighted sampling [31], and use a margin of
∆ = 0.2 in the loss; finally, as distance measure, we use
Euclidean distance between l2-normalized embeddings.

We are able to train the largest model with 3 graph con-
volutional layers within 2 hours on the proprietary dataset,
and under 5 minutes on OLGA, using a Tesla P100 GPU
and 8 CPU threads for data loading.

4.2 Features

We build artist-level features by averaging track-level fea-
tures of the artist’s tracks. Depending on the dataset, we
have different types of features at hand.

In the OLGA dataset, we have low-level audio features
as extracted by the Essentia library. 2 These features repre-
sent track-level statistics about the loudness, dynamics and
spectral shape of the signal, but they also include more ab-
stract descriptors of rhythm and tonal information, such as
bpm and the average pitch class profile. We select all nu-
meric features and pre-process them as follows: we apply

2 See https://essentia.upf.edu/streaming_extractor_music.html#
music-descriptors

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

353



element-wise standardization, discard features with miss-
ing values, and flatten all numbers into a single vector of
2613 elements.

In the proprietary dataset, we use numeric musicolog-
ical descriptors annotated by experts (for example, “the
nasality of the singing voice”). We apply the same pre-
processing for these, resulting in a total of 170 values.

Using two different types of content features gives us
the opportunity to evaluate the utility of our graph model
under different circumstances, or more precisely, features
of different quality and signal-to-noise ratio. The low-level
audio-based features available in the OLGA dataset are un-
doubtedly noisier and less specific than the high-level mu-
sical descriptors manually annotated by experts, which are
available in the proprietary dataset. Experimenting with
both permits us to gauge the effect of using the graph topol-
ogy for different data representations.

In addition, we also train models with random vectors
as features. For each artist, we uniformly sample a random
vector of the same dimension as the real features, and and
keep it constant throughout training and testing. This way,
we can differentiate between the performance of the real
features and the performance of using the graph topology
in the model: the results of a model with no graph con-
volutions is only due to the features, while the results of a
model with graph convolutions but random features is only
due to the usage of the graph topology.

4.3 Evaluation Data

As described in Section 3, we partition artists into a train-
ing, validation and test set. When evaluating on the vali-
dation or test sets, we only consider artists from these sets
as candidates and potential true positives. Specifically, let
Veval be the set of evaluation artists, we only compute em-
beddings for those, and retrieve nearest neighbors from this
set, and only consider ground truth similarity connections
within Veval.

This notion is more nuanced in the case of GNNs. Here,
we want to exploit the known artist graph topology (i.e.,
which artists are connected to each other) when comput-
ing the embeddings. To this end, we use all connections
between artists in Vtrain (the training set) and connections
between artists in Vtrain and Veval. This process is outlined
in Fig. 3.

Note that this does not leak information between train
and evaluation sets; the features of evaluation artists have
not been seen during training, and connections within the
evaluation set—these are the ones we want to predict—
remain hidden.

4.4 Results

Table 1 compares the baseline model with the proposed
GNN. We can see that the GNN easily out-performs the
DNN. It achieves an NDCG@200 of 0.55 vs. 0.24 on
the OLGA dataset, and 0.57 vs. 0.44 on the proprietary
dataset. The table also demonstrates that the graph topol-
ogy is more predictive of artist similarity than content-
based features: the GNN, using random features, achieves

Training artists

Evaluation artists

Training connections

Known evaluation connections

Evaluation Connections

Figure 3: Artist nodes and their connections used for train-
ing (green) and evaluation (orange). During training, only
green nodes and connections are used. When evaluating,
we extend the graph with the orange nodes, but only add
connections between validation and training artists. Con-
nections among evaluation artists (dotted orange) remain
hidden. We then compute the embeddings of all evaluation
artists, and evaluate based on the hidden evaluation con-
nections.

Dataset Features DNN GNN

OLGA
Random 0.02 0.45
AcousticBrainz 0.24 0.55

Proprietary
Random 0.00 0.52
Musicological 0.44 0.57

Table 1: NDCG@200 for the baseline (DNN) and the pro-
posed model with 3 graph convolution layers (GNN), using
features or random vectors as input. The GNN with real
features as input gives the best results. Most strikingly, the
GNN with random features—using only the known graph
topology—out-performs the baseline DNN with informa-
tive features.

better results than a DNN using informative features for
both datasets (0.45 vs. 0.24 on OLGA, and 0.52 vs 0.44 on
the proprietary dataset).

Additionally, the results indicate—perhaps to little
surprise—that low-level audio features in the OLGA
dataset are less informative than manually annotated high-
level features in the proprietary dataset. Although the pro-
prietary dataset poses a more difficult challenge due to
the much larger number of candidates (14k vs. 1.8k), the
DNN—which can only use the features—improves more
over the random baseline in the proprietary dataset (+0.44),
compared to the improvement (+0.22) on OLGA. These
are only indications; for a definitive analysis, we would
need to use the exact same features in both datasets.

Similarly, we could argue that the topology in the pro-
prietary dataset seems more coherent than in the OLGA
dataset. We can judge this by observing the performance
gain obtained by a GNN with random feature—which can
only leverage the graph topology to find similar artists—
compared to a completely random baseline (random fea-
tures without GC layers). In the proprietary dataset, this
performance gain is +0.52, while in the OLGA dataset,

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

354



AcousticBrainz Random

0.0

0.1

0.2

0.3

0.4

0.5

0.6

nd
cg

 @
20

0

0.24

0.02

0.49

0.28

0.53

0.42

0.55

0.45

OLGA Dataset
Graph Layers

0 1 2 3

Musicological Random

0.0

0.1

0.2

0.3

0.4

0.5

0.6

nd
cg

 @
20

0

0.44

0.00

0.56

0.05

0.57

0.48

0.57

0.52

Proprietary Dataset

Figure 4: Results on the OLGA (top) and the proprietary
dataset (bottom) with different numbers of graph convolu-
tion layers, using either the given features (left) or random
vectors as features (right).

only +0.43. Again, while this is not a definitive analysis
(other factors may play a role), it indicates that the large
amounts of user feedback used to generate ground truth in
the proprietary dataset give stable and high-quality simi-
larity connections.

Figure 4 depicts the results for each model and feature
set depending on the number of graph convolutional lay-
ers used. (Recall that a GNN with 0 graph convolutions
corresponds to the baseline DNN.) In the OLGA dataset,
we see the scores increase with every added layer. This
effect is less pronounced in the proprietary dataset, where
adding graph convolutions does help significantly, but re-
sults plateau after the first graph convolutional layer. We
believe this is due to the quality and informativeness of the
features: the low-level features in the OLGA dataset pro-
vide less information about artist similarity than high-level
expertly annotated musicological attributes in the propri-
etary dataset. Therefore, exploiting contextual informa-
tion through graph convolutions results in more uplift in
the OLGA dataset than in the proprietary one.

Looking at the scores obtained using random features
(where the model depends solely on exploiting the graph
topology), we observe two remarkable results. First,
whereas one graph convolutional layer suffices to out-
perform the feature-based baseline in the OLGA dataset
(0.28 vs. 0.24), using only one GC layer does not produce
meaningful results (0.05) in the proprietary dataset. We

believe this is due to the different sizes of the respective
test sets: 14k in the proprietary dataset, while only 1.8k in
OLGA. Using only a very local context seems to be enough
to meaningfully organize the artists in a smaller dataset.

Second, most performance gains are obtained with two
GC layers, while adding the third GC layer pushes the re-
sults to a much lesser degree. Our explanation for this
effect is that most similar artists are connected through
at least one other, common artist. In other words, most
artists form similarity cliques with at least two other artists.
Within these cliques, in which every artist is connected to
all others, missing connections are easily retrieved by no
more than 2 graph convolutions.

In fact, in the OLGA dataset, ~71% of all cliques fulfill
this requirement. This means that, for any hidden similar-
ity link in the data, in 71% of cases, the true similar artist
is within 2 steps in the graph—which corresponds to using
two GC layers.

5. SUMMARY AND FUTURE WORK

In this paper, we described a hybrid approach to computing
artist similarity, which uses graph neural networks to com-
bine content-based features with explicit relations between
artists. To evaluate our approach, we assembled a novel
academic dataset with 17,673 artists, their features, and
their similarity relations. Additionally, we used a much
larger proprietary dataset to show the scalability of our
method. The results showed that leveraging known sim-
ilarity relations between artists can be more effective for
understanding their similarity than high-quality features,
and that combining both gives the best results.

Our work is a first step towards models that directly
use known relations between musical entities—like tracks,
artists, or even genres—or even across these modalities.
Multi-modal connections could also help predicting artist
similarity; we could add collaborations, or band member-
ship connections to the graph. Finally, it would be inter-
esting to analyze the effect of our approach on long-tail
recommendations and/or the cold-start problem.

6. REFERENCES

[1] J.-J. Aucouturier and F. Pachet, “Music Similarity
Measures: What’s The Use?” in Proc. of the 3rd Inter-
national Conference on Music Information Retrieval
(ISMIR), Paris, France, Oct. 2002.

[2] D. P. W. Ellis, B. Whitman, A. Berenzweig, and
S. Lawrence, “The Quest for Ground Truth in Musical
Artist Similarity,” in Proc. of the International Sympo-
sium on Music Information Retrieval (ISMIR), Paris,
France, Oct. 2002.

[3] T. Pohle, D. Schnitzer, M. Schedl, P. Knees, and
G. Widmer, “On Rhythm and General Music Similar-
ity,” in Proc. of the 10th International Society for Mu-
sic Information Retrieval Conference (ISMIR), Kobe,
Japan, Oct. 2009.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

355



[4] M. Schedl, D. Hauger, and J. Urbano, “Harvesting
microblogs for contextual music similarity estimation:
A co-occurrence-based framework,” Multimedia Sys-
tems, vol. 20, no. 6, pp. 693–705, Nov. 2014.

[5] Ò. Celma and X. Serra, “FOAFing the music: Bridg-
ing the semantic gap in music recommendation,” Jour-
nal of Web Semantics, vol. 6, no. 4, pp. 250–256, Nov.
2008.

[6] S. Oramas, M. Sordo, L. Espinosa-Anke, and X. Serra,
“A Semantic-Based Approach for Artist Similarity,” in
Proc. of the 16th International Society for Music Infor-
mation Retrieval Conference (ISMIR), Málaga, Spain,
Oct. 2015.

[7] B. McFee and G. R. G. Lanckriet, “Heterogeneous Em-
bedding For Subjective Artist Similarity,” in Proc. of
the 10th International Society for Music Information
Retrieval Conference (ISMIR), Kobe, Japan, Oct. 2009.

[8] J. Lee, N. J. Bryan, J. Salamon, Z. Jin, and J. Nam,
“Disentangled Multidimensional Metric Learning for
Music Similarity,” in IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
Barcelona, Spain, May 2020.

[9] G. Doras, F. Yesiler, J. Serrà, E. Gómez, and
G. Peeters, “Combining Musical Features for Cover
Detection,” in Proc. of the 21st International Society
for Music Information Retrieval Conference (ISMIR),
Montréal, Canada, Oct. 2020.

[10] J. Lee, N. J. Bryan, J. Salamon, Z. Jin, and J. Nam,
“Metric Learning vs Classification for Disentangled
Music Representation Learning,” in Proc. of the 21st
International Society for Music Information Retrieval
Conference (ISMIR), Montréal, Canada, Aug. 2020.

[11] J. Park, J. Lee, J. Park, J.-W. Ha, and J. Nam, “Rep-
resentation Learning of Music Using Artist Labels,” in
Proc. of the 19th International Society for Music Infor-
mation Retrieval Conference (ISMIR), Paris, France,
Jun. 2018.

[12] F. Yesiler, J. Serrà, and E. Gómez, “Accurate and Scal-
able Version Identification Using Musically-Motivated
Embeddings,” in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
Barcelona, Spain, May 2020.

[13] M. Dorfer, A. Arzt, and G. Widmer, “Learning Audio-
Sheet Music Correspondences for Score Identification
and Offline Alignment,” in Proc. of the 18th Interna-
tional Society for Music Information Retrieval Confer-
ence (ISMIR), Suzhou, China, Jul. 2017.

[14] M. Slaney, K. Q. Weinberger, and W. White, “Learning
a Metric for Music Similarity,” in Proc. of the 9th Inter-
national Conference on Music Information Retrieval
(ISMIR), Philadelphia, USA, Sep. 2008.

[15] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and
R. Shah, “Signature verification using a "Siamese"
time delay neural network,” in Proc. of the 6th Inter-
national Conference on Neural Information Processing
Systems (NIPS), San Francisco, USA, Nov. 1993.

[16] E. Hoffer and N. Ailon, “Deep Metric Learning Using
Triplet Network,” in Similarity-Based Pattern Recogni-
tion (SIMBAD), A. Feragen, M. Pelillo, and M. Loog,
Eds., Copenhagen, Denmark, Oct. 2015.

[17] J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang,
J. Philbin, B. Chen, and Y. Wu, “Learning Fine-
Grained Image Similarity with Deep Ranking,” in
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Columbus, USA, Jun. 2014.

[18] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spec-
tral Networks and Locally Connected Networks on
Graphs,” in Proc. of the International Conference on
Learning Representations (ICLR), Banff, Canada, Apr.
2014.

[19] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S.
Yu, “A Comprehensive Survey on Graph Neural Net-
works,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 32, no. 1, pp. 4–24, Jan. 2021.

[20] W. L. Hamilton, R. Ying, and J. Leskovec, “Induc-
tive Representation Learning on Large Graphs,” in
Proceedings of the 31st International Conference on
Neural Information Processing Systems (NIPS), Long
Beach, USA, Dec. 2017.

[21] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L.
Hamilton, and J. Leskovec, “Graph Convolutional
Neural Networks for Web-Scale Recommender Sys-
tems,” in Proc. of the 24th International Conference
on Knowledge Discovery & Data Mining (SIGKDD),
Jul. 2018.

[22] J. Oh, K. Cho, and J. Bruna, “Advancing Graph-
SAGE with A Data-Driven Node Sampling,” in Proc.
of the ICLR Workshop on Representation Learning on
Graphs and Manifolds, New Orleans, USA, May 2019.

[23] A. Porter, D. Bogdanov, R. Kaye, R. Tsukanov, and
X. Serrà, “AcousticBrainz: A Community Platform
for Gathering Music Information Obtained from Au-
dio,” in Proc. of the 16th Conference of the Inter-
national Society for Music Information Retrieval (IS-
MIR), Málaga, Spain, Oct. 2015.

[24] T. Bertin-Mahieux, D. P. W. Ellis, B. Whitman, and
P. Lamere, “The Million Song Dataset,” in Proc. of the
12th International Society for Music Information Re-
trieval Conference (ISMIR), A. Klapuri and C. Leider,
Eds., Miami, USA, Oct. 2011.

[25] K. Järvelin and J. Kekäläinen, “Cumulated gain-based
evaluation of IR techniques,” ACM Transactions on In-
formation Systems, vol. 20, no. 4, pp. 422–446, Oct.
2002.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

356



[26] D. Valcarce, A. Bellogín, J. Parapar, and P. Castells,
“On the robustness and discriminative power of infor-
mation retrieval metrics for top-N recommendation,” in
Proc. of the 12th ACM Conference on Recommender
Systems (RECSYS), Vancouver, Canada, Oct. 2018.

[27] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast
and Accurate Deep Network Learning by Exponen-
tial Linear Units (ELUs),” in Proc. of the International
Conference on Learning Representations (ICLR), San
Juan, Puerto Rico, May 2016.

[28] D. P. Kingma and J. Ba, “Adam: A Method for
Stochastic Optimization,” in Proc. of the International
Conference on Learning Representations (ICLR), San
Diego, USA, May 2015.

[29] J. Ma and D. Yarats, “On the adequacy of untuned
warmup for adaptive optimization,” in Proc. of the 35th
Conference on Artificial Intelligence (AAAI), Virtual
conference, Feb. 2021.

[30] I. Loshchilov and F. Hutter, “SGDR: Stochastic Gradi-
ent Descent with Warm Restarts,” in Proc. of the In-
ternational Conference on Learning Representations
(ICLR), Toulon, France, May 2017.

[31] C.-Y. Wu, R. Manmatha, A. J. Smola, and P. Krähen-
bühl, “Sampling Matters in Deep Embedding Learn-
ing,” in Proc. of the International Conference on Com-
puter Vision (ICCV), Venice, Italy, Oct. 2017.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

357


