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ABSTRACT

Sequence to Sequence (Seq2Seq) approaches have shown
good performances in automatic music generation. We
introduce MINGUS, a Transformer-based Seq2Seq archi-
tecture for modelling and generating monophonic jazz
melodic lines. MINGUS relies on two dedicated embed-
ding models (respectively for pitch and duration) and ex-
ploits in prediction features such as chords (current and
following), bass line, position inside the measure. The
obtained results are comparable with the state of the art
of music generation with neural models, with particularly
good performances on jazz music.

1. INTRODUCTION

Natural Language Processing (NLP) techniques are
achieving remarkable results when applied to MIR
tasks [1]. Music can indeed be interpreted as a language,
and automatic music generation has been a showcase for
the NLP technologies in MIR. Among these techniques,
Transformer models [2] have succeeded in complex tasks
related to language understanding, overcoming the perfor-
mances of more established architecture such as Recurrent
Neural Networks (RNN) when huge amounts of data are
available [3, 4].

In this paper, we introduce MINGUS 1 (Melodic Im-
provisation Neural Generator Using Seq2seq), a trans-
former architecture for modelling and generating mono-
phonic jazz melodic lines. MINGUS handles pitch and du-
ration as separate features, using two distinct transformer
models. In addition, it exploits the whole available infor-
mation by conditioning on other musical features, such
as harmonic structure and rhythmic properties. An im-
plementation of MINGUS is available in open-source at
https://git.io/mingus.

The remaining of this paper is structured as follows. Af-
ter pointing to some related work in Section 2, we will
describe MINGUS in Section 3. Section 4 reports about

1 Named in honour of Charles Mingus (1922 – 1979), American jazz
composer, double bassist and pianist.
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an evaluation experiment, whose results are discussed in
Section 5. In Section 6, we carried on a qualitative eval-
uation with a user survey. Finally, conclusions and future
work are outlined in Section 7.

2. STATE OF THE ART

Data representation Musical data can be represented
symbolically with different levels of abstraction and pre-
cision, involving features such as pitch and duration of the
notes, relative position in the bar, harmonic structure, in-
tensity (velocity), timbre. Different approaches have been
experimented with in literature for duration representation,
among which time-step encoding 2 [5–8], note duration
encoding [5, 9, 10] and note beat position encoding [5, 11].
The duration information can be also modelled as a se-
quence and independently learned [9, 12].

Model architecture Multiple different models have
been used for jazz music generation, among those Hidden
Markov Models [13], melodic grammar learning [14] and
genetic algorithms [15] have achieved notable results. In
this paper, we have focused on deep learning approaches
to this task. The simplest approach for monophonic music
generation with neural networks is jointly learning the de-
pendencies between features. This has been implemented
in different architecture, such as RNNs [6], Generative Ad-
versarial Networks (GAN) [5], combinations of GAN and
RNN [16] or Transformer models [17].

An alternative strategy is to train separately to learn spe-
cific features of the data, then conditioning them on the
other features. In [18] and [19], two LSTM models are
trained separately on pitch and duration of the notes in
the melodies. LSTM are also used in [9], in which dif-
ferent conditioning combinations – inter-conditioning be-
tween pitch and duration, chord, next chord and relative
position in the bar – are compared. In BebopNet [12],
a unique embedding representation of pitch and duration
feeds a unique Transformer module. SeqAttn [6] obtained
good performances using a modified conditioned LSTM
attention unit.

Transformer-based architecture can be used for over-
coming the problem of vanishing gradient of RNNs [20].
In polyphonic music generation, training transformer mod-
els on massive amounts of data produced impressive re-

2 Sampling over time and using using a sustain character (s) for pitch
continuation.
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sults, as in OpenAI’s MuseNet [3] and Magenta’s Music
transformer [4].

Evaluation Methods Evaluating the performance of a
generative task is an open problem, with several metrics
and methods proposed. Classical machine-learning met-
rics – loss and accuracy – are applied in evaluating music
generation from a sequence-modelling point of view, mea-
suring the capability of predicting the most probable class
(e.g. pitch) given the sequence of all the previous ones. It
could be argued that the purpose of generation tasks goes
beyond the completely accurate prediction of the next to-
ken and so these metrics can capture only partially the
quality of music generation systems. Nevertheless, they
are useful to make a comparison among models.

Common metrics for generative NLP task evaluation
can be used also for music generation, such as perplex-
ity [21] and BLEU [22]. The latter in particular has been
applied to music generation as a measure of similarity be-
tween two corpora of music [9]. A comprehensive eval-
uation of NLP metrics for music generation is performed
in [23].

Other metrics have been proposed for measuring how
realistic a generated melody is by comparing it with the
training corpus in musical terms. In [5], the authors pro-
pose a collection of metrics, which includes counting pitch
repetitions, rhythmic variations and measuring harmonic
consistency. Similar features are involved in MGEval 3 ,
which computes the degree of similarity (KL-divergence)
between two corpora of MIDI files by extracting the dis-
tribution of each metric on a reference corpus from the
original data and on a corpus of generated musical se-
quences [24]. More metrics are proposed in [17], focus-
ing on the structural coherence of the generated musical
phrases. Other common metrics are purely music-related,
such as harmonic coherence [5, 12], the measurement of
the percentage of chord and scale tones among the gener-
ated notes. Finally, focus groups and user surveys have
been extensively used for qualitative evaluation [7, 8].

3. APPROACH

In this section, we will describe in detail MINGUS, focus-
ing on the strategy for data representation and its architec-
ture.

3.1 Data representation

The required input formats are MusicXML or abc notation.
We require that the chords – when available – are explic-
itly expressed by their signature in the right place in the
measure 4 .

Each melodic line is represented as sequences of the
following features – with the range of possible values re-
ported in square brackets:

3 The MGEval toolbox – which we use in this work – is available in its
original implementation at https://git.io/mgeval

4 Future work includes the possibility of automatically inferring the
chords from the played notes.

1. Pitch (P): pitch of each note, as MIDI pitch num-
ber (from 0 to 127). Rests are represented with the
additional character R [0-128]

2. Duration (D): duration of each note [0-12]

3. Chord (C): current chord in the starting beat of the
note [0-128 x 4]

4. Next Chord (NC): next chord in the progression
[0-128 x 4]

5. Bass (B): current bass in the beat the note starts on
[0-128]

6. Beat (BE): number of beat in the measure the note
starts on [0-3]

7. Offset (O): offset of the note from the start of the
measure [0-95]

An example of input format for note sequences can be
seen in Figure 1. The duration value D is extracted by sam-
pling each measure into 96 equally sized parts and assign-
ing to each note the closest duration from a dictionary of
possible duration values chosen in advance; for example,
the "quarter note" value is assigned to notes whose dura-
tion is closer to dmeasure/96 ∗ 24, where dmeasure is the
duration of the measure in seconds. In this specific case,
the choice to divide a measure into 96 equal parts allows
for representation precision up to 8th note triplets and dot-
ted 16th notes. By using a greater number of samples it
would be possible to represent more precisely many differ-
ent duration values. This method of time division ensures
flexibility to different music styles which could require the
use of more complex time divisions such as quituplets or
septuplets. Chords (C and NC) are always represented by
their four fundamental notes in MIDI encoding, as already
seen in [9,12]; chords with more than four notes have been
cropped, the V II degree has been added to chords with
less than four notes.

Given that language models are normally trained on
batches of phrases with a maximum fixed length, we in-
cluded a melody segmentation strategy for dividing tracks
into meaningful musical phrases. For this purpose, we con-
sider a melodic phrase to end when a long rest – longer than
a threshold r, equivalent to a quarter note triplet – is en-
countered or when the maximum sequence length l = 35
is reached. The thresholds for the long rest duration and
the sequence length have been chosen experimentally. It
has been found that a different choice of maximum dura-
tion, if not extreme, do not have much influence on the
result, while the sequence length has a greater effect on the
result. Another observation is that the long rests at the end
of each segment must be included in the sequence, other-
wise the model will not learn to include them. Segments
shorter than 35 tokens are padded with specific "pad" to-
kens.
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Figure 1: MINGUS model architecture and data representation. The example melodic sequence is extracted from Charlie
Parker’s improvisation on Billie’s Bounce, Weimar Jazz DB

3.2 Model Architecture

MINGUS is structured as two parallel transformer models
with the same structure, respectively predicting pitch and
duration, composed by the sole encoder module with a for-
ward mask and a pad mask. This structure was chosen be-
cause it allows capturing the rhythmic variation with great
precision, by allowing the model to learn different embed-
ding and weights for pitch and duration prediction. The
architecture used in this experiment is shown in Figure 1.
The structure is the same for pitch and duration models,
the only difference is the output of the prediction, which
can be either from the pitch or the duration dictionary.

Batched data is encoded with feature-specific embed-
ding layers. Pitch-related data (melody pitch, chord
pitches, next-chord pitches and bass) are encoded with a
pitch embedding layer while duration, offset and beat have
their own embedding dictionary. After embedding, chord
pitches are grouped in a linear layer which is then com-
bined with the other embedded features and fed into a four-
layer, four-heads self-attention module.

The model was conditioned on all the features men-
tioned in Section 3.1. We performed an ablation study in
order to understand the contribution of each feature, choos-
ing the combination maximising the accuracy score. In
particular, the optimal combination for the pitch model in-
cluded features D, C, B, BE, and O, while for the duration
model B, BE, and O. However, it should be noticed that the
feature combination that maximises accuracy might not be
the one that generates the most convincing music samples.
More results about this ablation study are included in the
repository.

4. EXPERIMENT

MINGUS was trained on two different datasets to evalu-
ate its adaptability to different styles of music and com-
pare it with other models. The Weimar Jazz Database
(WjazzDB) [25] is a collection of annotated transcriptions
of jazz solos, composed of 456 improvisations on famous
jazz standards. It is a very diverse set of improvisations
played on multiple instruments, including multiple jazz
styles with different degrees of complexity. The dataset is
complete with chords and bass information. The Nottigh-
man Database (NottinghamDB) is a collection of 1034
folk songs 5 . The harmony of the music in this dataset is
less complex with respect to the Weimar Jazz DB, never-
theless its smaller dimensions could be useful to show how
the size of the dataset influences the generation results.

Each dataset was split into three subsets for training
(70%), validation (10%) and testing (20%). The 35-token
sequences were grouped into batches of 20 melodies for
training and 10 melodies for validation and testing.

The network is trained for next-token prediction task
using sequential information. Both pitch and duration are
trained using cross-entropy loss function and Stochastic
Gradient Descent optimiser. More details on the training
parameters are available in the repository.

Music generation is done by sampling the trained net-
work given an input note sequence of variable length. The
input melody is split into pitch and duration sequences and
each sequence is given as input to the respective trained
model. The output of the model consists of the proba-
bilities for each token in the dictionary to be the next to-
ken. The most probable token is selected and added to the

5 https://github.com/jukedeck/
nottingham-dataset
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original sequence, which is then given back as input to the
model, together with other required features for condition-
ing – features 3–7 in Section 3.1. This process is repeated
as many times as the number of notes to be generated,
which of course must be the same for pitch and duration.
After generating the new sequences of pitch and duration
separately, they are combined and exported to MIDI.

5. RESULTS

This section reports the performance of MINGUS and
compares it to SeqAttn [6] and BebopNet [12]. These two
models have been chosen because they represent different
state-of-the-art architecture for music generation. Bebop-
Net is based on transformer and SeqAttn is a bi-directional
LSTM model conditioned on chords, with different fea-
tures and duration representation. To obtain comparable
results MINGUS 6 , BebopNet and SeqAttn have been re-
trained on the two datasets 7 , and evaluated on the same
metrics.

The perplexity and accuracy of SeqAttn have been com-
puted using the functions available in the authors’ imple-
mentation. However, the prediction of the sustain token
(s) is considered accurate even if the note that is being
sustained is not correct; similarly, (s) is considered as a
distinct token in the computation of the perplexity. Instead,
in MINGUS and BebopNet duration is represented with a
separate dictionary and this allows to have note-specific
perplexity and accuracy.

5.1 Perplexity

The perplexity scores of the three models computed on the
test set are collected in Table 1. For MINGUS, it is re-
ported for pitch and duration models, while for BebopNet
and SeqAttn it is computed on the summed entropy of pitch
and duration.

Perplexity MINGUS BebopNet SeqAttn
Dataset pitch duration
WjazzDB 11.01 4.14 44.70 3.71
NottinghamDB 11.03 1.88 13.46 1.40

Table 1: Test perplexity scores for MINGUS, BebopNet
and SeqAttn. Values in italic are reported from the original
paper

The perplexity can give a general idea of the degree of
the uncertainty of the model when predicting the next to-
ken, it is however not a good indicator of music generation
quality. The perplexity of all models changes according to
the dataset. The greatest perplexities have been obtained

6 In the best configuration obtained from the ablation study
7 WjazzDB has been converted from the original csv format into mu-

sical formats compatible with the studied implementations, namely into
musicXML – for BebopNet and MINGUS – and MIDI – for SeqAttn. 28
songs have been removed from the original dataset due to incompatibil-
ity with BebopNet, which was not recognising chords outside its internal
dictionary; all models have been trained on this reduced version. The csv
has been selected as starting format because it is the only one including
all mentioned information (notes, chords, bass line).

for all models on the WjazzDB, despite the fact that Not-
tingham DB has fewer data, proving that the complexity
of the music is an important factor for language modelling
tasks.

5.2 Accuracy

The accuracy measures how many times the model predic-
tion for the next note is correct. This metric could be useful
to have an overall representation of the model performance
but it does not guarantee a realistic music generation. The
accuracy values of MINGUS and SeqAttn on all datasets
are reported in Table 2. The implementation of BebopNet
is not providing the computation of accuracy on a test set,
therefore its scores are not shown in the table.

Accuracy [%] MINGUS SeqAttn
Dataset pitch duration
WjazzDB 16.32 32.34 74.43
NottinghamDB 35.82 76.62 90.26

Table 2: Test accuracy comparison between MINGUS and
SeqAttn. Values in italics are reported from the original
paper

It is difficult to compare the accuracy results because of
the different note representations and the division of pitch
and duration models in MINGUS. The model achieves a
higher accuracy on the duration prediction and a lower ac-
curacy in pitch predictions; this could be due to the dif-
ferent size of vocabulary, but it could also be related to
the difference between the two tasks, with an higher diffi-
culty for pitch prediction. When comparing MINGUS and
SeqAttn it should be considered that a percentage of the
accuracy of SeqAttn is due to the prediction of common
sustain tokens.

5.3 MGEval

MGEval is a collection of metrics specifically proposed for
evaluation of generative music tasks [24]. For MINGUS
and BebopNet, we computed MGEval metrics comparing
15 reference tunes randomly selected from the original
dataset – used as reference corpus – and a set of 15 tunes,
generated from the same input by each model. SeqAttn
generates music from internally selected songs from the
dataset seen during training, instead of accepting a track in
input for triggering the generation; for this reason, MGEval
metrics for SeqAttn are comparing the whole output of the
model and the whole studied corpus (reference corpus).

Table 3 collects the results obtained on MINGUS, Be-
bopNet and SeqAttn trained on WjazzDB. MGEval metrics
yield very diverse results and do not reveal a clear overall
winner. While the LSTM-based model (SeqAttn) has bet-
ter scores on avg IOI and comparable results on pitch range
and total used pitches, transformer-based ones (MINGUS
and BebopNet) largely over-perform it in total pitch class
histogram and note length histogram. MINGUS stands out
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MGEval MINGUS BebopNet SeqAttn
Measure KL div overlap area KL div overlap area KL div overlap area
total used pitch 0.172 0.7959 0.007 0.539 0.068 0.735
total used note 0.071 0.678 0.046 0.794 0.169 0.239
avg IOI 0.054 0.625 0.219 0.842 0.049 0.719
avg pitch shift 0.041 0.821 0.160 0.424 - -
note length histogram 0.283 0.507 0.054 0.821 0.241 0.468
total pitch class histogram 0.088 0.864 0.137 0.786 0.405 0.658
note length transition matrix 0.149 0.695 0.210 0.850 0.261 0.388
pitch class transition matrix 0.038 0.836 0.118 0.737 0.183 0.744
pitch range 0.037 0.844 0.093 0.571 0.062 0.702

Table 3: MGEval comparison between MINGUS, BebopNet and SeqAttn on WjazzDB

in pitch class transition matrix and total pitch class his-
togram, whose results are largely better than the other two
models. We interpret this result with a better modelling ca-
pability for transitions between notes, maybe due to MIN-
GUS’ flexible duration vocabulary. On the other hand,
SeqAttn performs much better on NottinghamDB 8 . This
suggests the duration representation employed in SeqAttn
does a better job in generalising on the music style of Not-
tinghamDB, while on WjazzDB the additional information
provided in MINGUS and BebopNet improve generation
quality.

5.4 Harmonic coherence

The harmonic coherence measures how many notes of each
solo are coherent to the related harmonic context. It is de-
fined here as the percentage of generated notes that are
tones belonging to the current chord, or to the scale as-
sociated with it. These metrics have been calculated on
the generated tracks and on the entire original dataset. The
results are reported in Table 4.

Harmonic coherence [%] Chord Scale
Original 49.17 72.16
MINGUS 51.81 77.49
BebopNet 40.66 64.55
SeqAttn 35.92 60.26

Table 4: Harmonic coherence on WjazzDB

These results confirm that MINGUS generated
melodies tend to have greater harmonic coherence than
other models, with BebopNet obtaining slightly worse
performance and SeqAttn being less good on this metric.
We may conclude that the conditional LSTM module
proposed in SeqAttn is less able to capture the complex
relationship between chords and melody with respect to
Transformer-based architectures. Another reason may be
identified in the presence of additional features such as
duration and offset – in both MINGUS and BebopNet
– which are beneficial for the harmonic coherence.

8 Results provided in the repository.

However, MINGUS generations are more harmonically
coherent than the original dataset. We can claim here the
model has been able to capture the general connection
between melody and harmony, even if in jazz we can often
find more complex harmonic relationships, for which there
is space for improvement.

6. QUALITATIVE EVALUATION

6.1 Blind quiz

In order to evaluate our system from a user point of view,
we performed a survey (blind quiz) involving listeners with
different musical backgrounds and education levels. All
the melodies have been exported into audio tracks and
completed with a shuffle drum beat and chords for har-
monic and rhythmic context.

Users were asked to rate a set of 15 short melodies (with
an average duration of 20 seconds) with a score from 1
to 5 based on how much they liked it. The set was com-
posed of 5 original melodies from the Weimar Jazz DB,
5 generated by MINGUS and 5 generated by BebopNet 9 .
Users were unaware of which melodies were original and
which ones were generated. The web app used for the quiz
is available at https://mingus.tools.eurecom.
fr/. Figure 2 reports the obtained scores, detailed for 3
categories of users: music lover (8 participants), music stu-
dent (9), professional musician (11).

As expected, listeners are capable of identifying the
original musical phrases with different degrees of con-
fidence, proportional to their level of musical expertise.
Overall the evaluation pointed out that MINGUS genera-
tions tend to be preferred by the users with respect to Be-
bopNet generations, probably due to the greater harmonic
coherence which makes the melodies more pleasing to the
ear. There is still a clear difference between machine learn-
ing generated samples and original ones, especially when
evaluated by high-skilled musicians. It should also be
pointed out that this kind of evaluation takes into account
very short, selected music segments: the difference be-
tween machine-generated and original samples may prob-
ably be more evident on long tracks.

9 The chosen melodies are available in the repository.
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Figure 2: User evaluation summary

6.2 Musical insight on the generations

Taking a look at the generated tracks in musical terms
could be useful to identify areas of improvement. In this
section, we propose a musical analysis of a phrase gener-
ated by MINGUS in comparison with an original phrase.
The two phrases are shown in Figure 3 10 .

(a) Original improvised phrase

(b) MINGUS generated phrase

Figure 3: Comparison of original and generated musical
phrases on Blues for Blanche by Art Pepper, Weimar Jazz
DB. Chord tones in the melody are highlighted in red.

Pitch and duration The figure highlights in red the
notes that are part of the underlying chords. In the original
improvisation, the red notes are more frequent and have a
longer duration. The last note of this phrase is indeed a
note of the chord, a typical choice by jazz improvisers be-
cause it creates a feeling of tension release. On the other
hand, in the phrase generated by MINGUS less importance
is given to chord tones. We can observe that notes in phrase
3a present more homogeneous and repetitive duration pat-
terns, while in phrase 3b note durations – although not far
from each other – do not follow any specific pattern.

Patterns It is possible to spot some patterns in the con-
struction of the phrases, highlighted in the figure by red
lines. In the original one, we can see two clear upward

10 The two phrases have been chosen because they allow showing re-
current patterns in MINGUS generation, although they do not correspond
to the same bars in the standard

and downward motions as the phrase progresses. Although
MINGUS seems to have grasped a general idea of such be-
haviour, the note movement in the generated phrase is not
very clear. Other interesting segments are highlighted in
blue. In the first blue segment of phrase 3a, the melody
is out of tune, but this is justified by chromatic downward
motion in the melody. In the second blue segment, the im-
proviser performed a C7 arpeggio to end the phrase. An
interesting similar behaviour appears in the blue segment
of phrase 3b, where also MINGUS performs an arpeggio
at the end of the phrase. Unfortunately in this case it is a
C#m7 arpeggio, which is out of tune in the key of Ab7,
so the result is not quite as pleasing.

Overall, MINGUS has learned to generate musical
phrases separated by longer rests with approximate upward
and downward motion and approximate harmonic coher-
ence. Nevertheless, the generated phrases still lack a strong
internal structure and the typical call-and-response inter-
phrase behaviour of jazz solo phrases, with few connec-
tions from one generated phrase to the other.

7. CONCLUSIONS

MINGUS uses a transformer architecture to generate mu-
sic by separately predicting pitch and duration. The model
was experimented on popular datasets and evaluated at dif-
ferent levels using a broad range of metrics, revealing com-
parable performances with respect to the state of the art.
The experiment proved the capability of transformers to
model and generate realistic melodic lines in the style of
a jazz improvisation, with harmonically better results than
LSTM. The MINGUS architecture proved to be particu-
larly good at obtaining harmonically coherent melodies.

The choice of metrics has a crucial impact on the eval-
uation of generation models, making it necessary to use
many metrics at different levels of abstraction to obtain a
reliable quality estimation.

During the experiments, the conditioning features have
shown to learn different hidden representations of the data,
which brings to different models. These learned models
should not necessarily be ranked on a better-worse scale,
but can be considered as alternative sounding. In future
work, we intend to further measure the impact of the dif-
ferent features, with the goal of enabling an aware use for
generating specific styles and exploring conditioning on
other features provided by WjazzDB, such as instrument,
jazz style and rhythm feel. In addition, we want to explore
techniques for expressive generation as in [26,27] and gen-
eration at phrase or lick level as in [11].

Even though MINGUS has been designed and trained
specifically for music modelling and generation, we intend
to improve and adapt it for other MIR tasks such as score
music classification, bass line generation, automatic har-
monisation, assisted composition, automatic music inter-
pretation, conditional regression of musical features. Fur-
ther research must be carried on for improving music gen-
eration systems to achieve long-term phrase-level coher-
ence and to be applied in live conditions, including inter-
acting with musicians for educational and artistic purposes.
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