
SYNTHESIZER SOUND MATCHING WITH DIFFERENTIABLE DSP

Naotake Masuda Daisuke Saito
The University of Tokyo

{n_masuda, dsk_saito}@gavo.t.u-tokyo.ac.jp

ABSTRACT

While synthesizers have become commonplace in music
production, many users find it difficult to control the pa-
rameters of a synthesizer to create the intended sound. In
order to assist the user, the sound matching task aims to es-
timate synthesis parameters that produce a sound closest to
the query sound. Recently, neural networks have been em-
ployed for this task. These neural networks are trained on
paired data of synthesis parameters and the corresponding
output sound, optimizing a loss of synthesis parameters.
However, synthesis parameters are only indirectly corre-
lated with the audio output. Another problem is that query
made by the user usually consists of real-world sounds, dif-
ferent from the synthesizer output used during training. In
this paper, we propose a novel approach to the problem
of synthesizer sound matching by implementing a basic
subtractive synthesizer using differentiable DSP modules.
This synthesizer has interpretable controls and is similar to
those used in music production. We can then train an esti-
mator network by directly optimizing the spectral similar-
ity of the synthesized output. Furthermore, we can train the
network on real-world sounds whose ground-truth synthe-
sis parameters are unavailable. We pre-train the network
with parameter loss and fine-tune the model with spectral
loss using real-world sounds. We show that the proposed
method finds better matches compared to baseline models.

1. INTRODUCTION

Synthesizers have become an essential tool in modern mu-
sic production, owing to their ability to produce a wide
array of sounds. The user can directly interact with the
parameters of the audio synthesis algorithm to discover in-
teresting sounds. Despite the prevalence of synthesizers in
modern music production, most music producers still find
it difficult to control the parameters of a synthesizer. The
relationships between a synthesis parameter and the per-
ceptual qualities of the output sound is unclear, and com-
plex synthesis algorithms create unexpected outputs. As
such, producers often rely on presets, parameter settings
crafted by sound designers. By using presets, producers
can easily incorporate appealing sounds. However, finding

© N. Masuda and D. Saito. Licensed under a Creative Com-
mons Attribution 4.0 International License (CC BY 4.0). Attribution:
N. Masuda and D. Saito, “Synthesizer Sound Matching with Differen-
tiable DSP”, in Proc. of the 22nd Int. Society for Music Information
Retrieval Conf., Online, 2021.

an appropriate preset can be difficult, and the sonic palette
of the synthesizer is limited by the availability of presets.

Thus, there is great need for user assistance in the sound
design process using a synthesizer. One way of assist-
ing the user is automatic programming of the synthesizer
to imitate a certain sound. We will refer to this task as
sound matching. Given a query sound that the user wants
to imitate, parameters for a certain synthesizer that pro-
duces the best match possible with the synthesizer is esti-
mated. Recently, neural networks have been employed for
the sound matching task [1–3]. They are trained to predict
the ground-truth synthesis parameter from the synthesized
sound, minimizing the error of estimated parameters.

However, the parameter loss maybe a suboptimal loss
for optimization. In fact, the model that performs the best
in terms of parameter loss does not always return the best
match in terms of spectral features [3]. Since we are inter-
ested only in the audio match quality, it is better to opti-
mize the network using a loss directly related to the audio.
Unfortunately, conventional synthesizers do not allow for
backpropagation of the gradients, leaving this problem un-
addressed in previous works.

Another problem is that the models in previous works
can only be trained on sounds created by the synthesizer
(we will refer to them as in-domain sounds), as the best
matching parameters for sounds not created by the synthe-
sizer (out-of-domain) are unknown. In a sound matching
application, the system should expect queries consisting
of sounds not created by the same synthesizer, originating
from acoustic instruments or different synthesizers. Thus,
there is a gap in the domain between training and inference,
which has been unaddressed by previous works.

In this paper, we address the two problems mentioned
above by implementing a synthesizer with interpretable
controls using differentiable DSP [4] modules. In our
method, the estimator network is optimized in an end-to-
end framework including the synthesizer. This allows us to
utilize not only parameter loss but also spectral loss, which
is more directly related to the audio output of the system.
Also, since the ground-truth parameter values are unnec-
essary when optimizing for spectral loss, the model can
be trained using out-of-domain sounds that better repre-
sent queries in real-life applications. The proposed model
is pre-trained using parameter loss on in-domain data and
fine-tuned with spectral loss on out-of-domain data. We
show the effectiveness of our method in matching out-of-
domain sounds through quantitative measures and subjec-
tive evaluations.

428



Synthesized
Audio

Synthesis
Parameters

Synthesizer(a)

(b)

Estimated
Parameters

Match
Audio

Estimator
Network

Parameter-
Audio pair

Parameter loss

Figure 1. NN-based synthesizer sound matching. (a) A
synthesizer renders audio according to synthesis parame-
ters. (b) An estimator network is trained to estimate the
parameters from the sound, optimizing the parameter loss.

2. RELATED WORKS

2.1 Synthesizer Sound Matching

Synthesizer sound matching is a task that aims to estimate
the parameters of a synthesizer to produce a sound similar
to the query sound. This supposes an application where
the user has a sound that is similar to the desired sound,
and queries the system for a parameter setting that pro-
duces a similar sound. The user can then adjust the sound
further using the synthesizer. This is akin to the query-
by-example approach in sound retrieval, where a sound
that best matches the query sound is retrieved from the
database [5]. In fact, sound matching has been realized by
retrieval of presets from a database [6]. However, a large
database of presets that sufficiently cover the capabilities
of a synthesizer is not available for most synthesizers, as
the distribution of presets is limited and often not free.

One of the earliest work in sound matching used genetic
algorithm (GA) to match a target spectrum frame [7]. Sub-
sequent works using GA challenged more complex tasks,
using conventional synthesizer software to match the entire
sound [8]. GA-based sound matching directly optimizes
for the similarity of the query sound and the match sound
in terms of audio features such as spectral distance. How-
ever, GA-based sound matching can take anywhere from
10 minutes to several hours to match a single sound, since
fitness of each individual can only be evaluated by render-
ing audio. For example, a single run with population size
of 200 for 200 generations would require 40,000 renders
of the synthesizer.

Recently, supervised machine learning methods such as
multiple linear regression [9] and neural networks (NNs)
[1–3] have been used for sound matching. These meth-
ods view sound matching as a regression problem, where
the synthesis parameters are estimated from audio features.
This is illustrated in Figure 1. While NNs allow for fast
estimation of synthesis parameters during inference, they
optimize the parameter loss and not the actual match qual-
ity of the synthesized audio. This is because gradients can
not be propagated through the conventional synthesizer.

To circumvent the same problem in the case of black-box
audio effects, stochastic gradient approximation methods
were applied [10]. However, the gradients obtained for the
audio effect are only approximate.

It is also important to consider the actual applications
of sound matching. It is expected that users will want to
match sounds that were not originally made by the synthe-
sizer. For example, use of vocal imitation as a query for
sound matching has been proposed [6]. Perhaps a user will
want to imitate acoustic instrument sounds using a synthe-
sizer. While such sounds cannot be matched perfectly, syn-
thesizers can imitate some of their qualities, leading to the
discovery of unique sounds. Thus, out-of-domain sounds
should be the focus of sound matching. For conventional
neural network models trained on pairs of synthesis pa-
rameters and the corresponding audio output, such out-of-
domain sounds are unseen during training.

2.2 Neural Audio Synthesis

Recently, neural networks have garnered attention as a new
way to synthesize musical sounds. Since a typical neural
network has millions of model parameters with no inter-
pretability, it is impossible to directly interact with the pa-
rameters of a neural audio synthesizer as one would with
the synthesis parameters of a conventional synthesizer. As
such, neural networks must offer another way to control the
synthesis. This is achieved through either model condition-
ing or learning a latent representation of musical sounds.

SING is a neural audio synthesizer that can be condi-
tioned by the pitch, velocity, and instrument labels [11].
Embeddings for the instrument can be learned to adjust the
timbre more flexibly [12]. Alternatively, an autoencoder
can be used to learn the latent representation of musical
sounds. A standard autoencoder with feedforward layers
was used to reconstruct spectral frames [13]. A WaveNet
autoencoder can be used to model raw audio of musical
sounds [14]. Autoencoder models encode the audio into
a compact representation and decode it to reconstruct the
audio. By modifying this representation, the output sound
can be controlled.

Compared to conventional synthesizers, neural audio
synthesizers can potentially create more realistic sounds
and offer a novel way to control musical sounds. However,
they do not provide full control to the user over the synthe-
sis process, and their use in practical music production has
been limited so far.

2.3 Differentiable DSP

While neural audio synthesizers aim to generate raw au-
dio using only neural networks, differentiable digital signal
processing (DDSP) aims to integrate conventional signal
processing elements with deep learning [4]. The parame-
ters of a differentiable audio synthesis model are estimated
by a neural network in an end-to-end manner. In the orig-
inal DDSP paper, a differentiable version of an additive
synthesis model called the harmonics-plus-noise model is
used to generate audio. This is a variant of the sinusoids-
plus-noise model [15]. While the harmonics-plus-noise

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

429



model can be considered as a synthesizer, it is much more
complicated than conventional synthesizers, as the ampli-
tude of each harmonic and the full frequency response of
the filter must be specified. The harmonics-plus-noise syn-
thesizer allows for accurate reconstruction of real instru-
ment sounds, but the synthesis parameters are far too many
to allow for direct interaction.

The idea of DDSP has inspired a handful of works. Ad-
versarial loss was used with a hierarchical generator net-
work to improve the quality of the output [16]. Pitch de-
tection of musical signals was accomplished by using dif-
ferentiable DSP in a self-supervised framework [17]. New
differentiable DSP modules have been proposed as well.
An infinite impulse response (IIR) filter was implemented
using differentiable DSP and its parameters were trained
to emulate a guitar pedal [18]. Similarly, differentiable bi-
quad filters were used for parametric equalizer matching,
where optimizing spectral loss was shown to be superior
to parameter loss [19]. Our work expands this idea to the
synthesizer sound matching problem.

Parallels can be drawn between differentiable DSP and
differentiable rendering. Differentiable rendering aims to
integrate rendering of 3D objects into a deep learning
framework [20]. 3D attributes of an object were estimated
from a 2D image in an end-to-end framework [21]. This
network was first trained by a 3D attribute prediction loss
using ground-truth labels, and a projection loss using a ren-
derer was introduced afterwards. This is similar to our
training procedure, in which the network is pre-trained by
synthesis parameter estimation loss, and spectral loss using
the differentiable synthesizer is introduced afterwards.

3. PROPOSED METHOD

3.1 Overview

A diagram of the proposed method is shown in Figure 2.
Melspectrogram frames calculated from the audio are fed
into a neural network to estimate the synthesis parameters
frame-by-frame. The in-domain dataset consists of syn-
thesis parameters and the synthesized sound. This is gen-
erated by random sampling of synthesis parameters. For
in-domain sounds, the parameter estimation loss is calcu-
lated between the estimated and the ground-truth synthesis
parameters, in a similar manner to conventional NN-based
synthesizer sound matching. Finally, a differentiable syn-
thesizer is used to render the audio from the synthesis pa-
rameters. This allows for end-to-end training using spec-
tral loss, for both in-domain and out-of-domain sounds. By
using out-of-domain sounds for training, it is expected that
our proposed method will be better able to generalize to
actual queries consisting of real-world sounds.

3.2 Differentiable Synthesizer

An additive-subtractive synthesizer that approximates a
classical subtractive synthesizer using additive synthesis
was implemented in PyTorch. This design is inspired by
popular additive-subtractive synthesizer software such as
Harmor by Image-Line or Razor by Native Instruments.

This synthesizer features two oscillators with varying pitch
and amplitude. The waveform of each oscillator can be
interpolated between a sawtooth wave and a square wave.
Each oscillator is implemented in an additive way, meaning
that sine oscillators with different frequencies are added up
to create a waveform with richer harmonic. More specifi-
cally, sawtooth waveform and square waveform with fun-
damental frequency f can be decomposed into sine waves
as follows:

xsawtooth(t) =
2

π

∞∑
k=1

sin(k · 2πft)
k

, (1)

xsquare(t) =
4

π

∞∑
k=1

sin{(2k − 1)2πft}
2k − 1

. (2)

The output of two oscillators are mixed and fed into a res-
onant low-pass filter. This filter can alter the timbre by at-
tenuating the harmonics above the cutoff frequency and ac-
centuating the harmonics around the cutoff frequency ac-
cording to its resonance parameter. While previous works
has proposed a differentiable implementation of a resonant
IIR filter [18], IIR inherently involves recurrent computa-
tion which is computationally expensive. Thus, we approx-
imate a resonant filter by applying the frequency response
of the filter as a multiplier to the amplitudes of the har-
monics. Ultimately, the parameters of this synthesizer are
as follows: amplitude, frequency and saw/square wave mix
of each oscillator and the cutoff frequency and resonance
of the filter.

The parameters of the synthesizer can change over time
to create movement in a sound. Conventional synthesiz-
ers use envelope generators and low-frequency oscillators
(LFOs) to control the modulation of some important syn-
thesis parameters. In our experiments, the amplitudes of
each oscillator and the cutoff frequency of the filter were
estimated frame-by-frame, and other parameters were set
to a single value which was estimated from the last output
of the GRU.

Our method aims to assist the user in controlling a prac-
tical synthesizer, so we implemented a differentiable syn-
thesizer with familiar controls such as cutoff frequency.
While this synthesizer has fewer parameters compared to
the harmonics-plus-noise model in the original DDSP, we
find that parameter estimation is more difficult for this syn-
thesizer than the harmonics-plus-noise model. We suppose
that this is due to the indirectness of the relationship be-
tween the synthesis parameters and the output spectrum.
A single synthesis parameter in the harmonics-plus-noise
model roughly corresponds to a single spectrogram time-
frequency component of the output, especially when it is
conditioned by the fundamental frequency. On the other
hand, a synthesis parameter in the proposed synthesizer
model can affect many components, and its effects are de-
pendent on each other. Furthermore, our synthesizer is
intentionally limited in terms of the sounds it can create.
The estimator must utilize the synthesizer to roughly imi-
tate features of the target sound, which imposes a unique
challenge.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

430



In-domain

Dataset

Out-of-domain

Dataset

Melspectrogram
Frames

Spectral
Loss


Parameter
Loss


Estimated
Parameters

Differentiable
Synthesizer

Output

Synthesis Parameters

Synthesizer

Synthesized Output

Real-world Sounds
Estimator
Network

Estimator
Network

1D Convolution
(stride=2, kernel=7)

Resonant
Filter

1D Convolution
(stride=2, kernel=7)

1D Convolution
(stride=2, kernel=7)

GRU
(dim=512)

Linear (FC)

Saw/Sqr
Oscillator

Saw/Sqr
Oscillator

+

Differentiable
Synthesizer

Figure 2. The architecture of the proposed model. Two different losses can be calculated in this framework: the param-
eter loss and the spectral loss. Parameter loss can be calculated only for in-domain data, whose ground-truth synthesis
parameters are available.

3.3 Training

The estimator network can be trained using both the pa-
rameter loss and the spectral loss. The parameter loss is
defined as the L1 loss between the estimated parameter and
the ground-truth synthesis parameter. The spectral loss is
a multi-scale spectrogram loss [4], which is defined as the
sum of L1 loss of spectrograms and log-spectrograms in
multiple resolutions. In the experiments, we use FFT sizes
of (64, 128, 256, 512, 1024, 2048). Frames were over-
lapped at 75% with the next frame.

During preliminary experiments, we found that training
the model with only spectral loss was ineffective. We sup-
pose that this is due to the indirectness of the relationship
between the synthesis parameters and the output spectrum.
We found that pre-training the model by parameter loss
and fine-tuning the model using spectral loss was the most
effective. More specifically, our training procedure can be
split into three steps. First, the network is trained by pa-
rameter loss on the in-domain dataset. Next, spectral loss
is gradually introduced and eventually replaces the param-
eter loss completely. Finally, the model is trained using the
out-of-domain dataset.

This final step can be considered as a form of domain
adaptation. Specifically, unsupervised domain adaptation
aims to transfer the knowledge of labeled source domain
to a target domain with no labels [22]. While ground-
truth parameter values are unavailable for the out-of-
domain sounds, we can transfer the knowledge of models
trained using in-domain sounds to out-of-domain sounds
by switching to the spectral loss.

4. EXPERIMENT SETUP

4.1 Training Procedure

The proposed method aims to improve the quality of sound
matching by use of spectral loss and adaptation to out-of-
domain data. To examine the effect of each, the perfor-
mance of models trained using three different training pro-
cedures are compared.

• Parameter-loss only model (hereinafter, denoted as
P-loss). This model is trained using only parameter
loss for 400 epochs. This is in line with conventional
NN-based sound matching methods and serves as
the baseline of our experiment.

• In-domain spectral loss model (Synth). This model
is pre-trained using parameter loss for 50 epochs.
For the next 150 epochs, a spectral loss is gradu-
ally introduced by increasing the weighting of the
spectral loss linearly and decreasing that of the pa-
rameter loss. Finally, the model is trained for 200
epochs using only the spectral loss on the in-domain
dataset.

• Out-of-domain spectral loss model (Real). This
model is trained in the same way as the Synth model
for the first 200 epochs. Then, the model is trained
for 200 epochs using the spectral loss on the out-of-
domain dataset.

The learning rate is decreased with an exponential de-
cay rate of 0.99 every epoch (16000 iterations). To match

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

431



the scale of the parameter loss and spectral loss, the L1 pa-
rameter loss is multiplied by a factor of 10 during training.
The network was trained with a batch size of 64.

4.2 Estimator Network

The estimator network is trained to predict the synthesis
parameter at each time step from the melspectrogram of
input audio. Melspectrogram frames with 128 bands were
extracted from the input waveform with an FFT size of
1024 samples and a hop size of 256 samples. Each frame is
fed into 3 layers of 1D convolution with batch normaliza-
tion to obtain a high-level representation of spectral fea-
tures. Then, the output is fed into a gated recurrent unit
(GRU) layer. Finally, the output of GRU is fed into a lin-
ear layer. Since all synthesis parameters are normalized
to be within (0, 1), sigmoid nonlinearity is applied to the
network output.

4.3 Dataset

4.3.1 In-domain

The in-domain dataset is generated by randomly sampling
synthesis parameter settings and rendering them with the
same synthesizer used in the model. The value of a static
parameter is uniformly randomized. The temporal evo-
lution of a dynamic parameter is modelled by an attack-
decay-sustain-release (ADSR) envelope generator used in
most conventional synthesizers. The parameters of this en-
velope generator are attack time, decay time, sustain level,
release time and the peak/floor levels. These envelope pa-
rameters are uniformly randomized for each dynamic pa-
rameter. Gaussian noise is added to the output of this en-
velope generator to model the fluctuation present in real-
world sounds. The note-off point triggering the release
stage of the envelope is at 3 seconds, and the audio was
recorded for 4 seconds. Parameter settings that resulted
in silence were removed from the dataset. 20,000 sound-
parameter pairs were generated, and partitioned into an 80-
10-10 train-validation-test split.

4.3.2 Out-of-domain

For the out-of-domain sounds, the NSynth dataset [14] was
used. This dataset includes acoustic and synthetic musi-
cal sounds from sample libraries. They were played with
MIDI notes in various pitch lasting 3 seconds and recorded
for 4 seconds at sampling rate of 16kHz. 20,000 sounds
were randomly selected from the full dataset and parti-
tioned into an 80-10-10 train-validation-test split.

5. RESULTS

We perform objective and subjective evaluation of the
sound matching results and discuss our findings. Audio
examples and source code are available on the accompa-
nying webpage 1 .

1 https://hyakuchiki.github.io/DiffSynthISMIR/

In-domain Out-of-domain
Models Param LSD Multi LSD Multi
P-loss 0.065 16.14 4.72 19.60 8.84
Synth 0.083 14.38 3.37 19.13 5.79
Real 0.177 15.35 3.87 17.27 3.90

Table 1. Objective measures of sound matching (Param:
L1 parameter loss, LSD: log-spectral distortion, Multi:
multi-scale spectrogram loss). Smaller values indicate bet-
ter performance.

0 100 200 300 400

Epochs

18

20

L
og

-s
p

ec
tr

a
l

d
is

to
rt

io
n

P-loss

Synth

Real

Figure 3. Spectral loss on out-of-domain sounds during
training. The gray lines at 50th epoch and 200th epoch
indicate the change in the weighting of the loss.

5.1 Quantitative Results

As a quantitative measure of the quality of sound match,
we use log-spectral distortion (LSD) and the multi-scale
spectral loss (Multi). We also calculate the L1 parameter
loss (Param) for in-domain sounds. The results are shown
in Table 1. The P-loss model achieved the best perfor-
mance in terms of parameter loss, but performed poorly
compared to other models in terms of spectral measures.
This suggests that parameter loss is an inadequate crite-
rion for match quality. The Synth model performed the
best for matching the spectra of in-domain sounds, but the
Real model was superior for out-of-domain data. This re-
sult shows that the fine-tuning was effective in transferring
the knowledge learned from in-domain sounds to out-of-
domain sounds. Since the out-of-domain data better repre-
sents query sounds in real-life applications, the Real model
is the most promising for sound matching.

To examine the effects of the training procedures, we
monitored the LSD for the out-of-domain validation set
during training. This is shown in Figure 3. We can see that
introducing the spectral loss from the 50th epoch caused
a gradual decrease in LSD for the models Synth and Real.
After the 200th epoch, the Real model was trained using
out-of-domain data. From the sharp drop in LSD after this
point, we can see the effectiveness of using out-of-domain
sounds. The P-loss model was ineffective in improving
spectral loss beyond a certain point.

5.2 Subjective Evaluation

For subjective evaluation of the match quality, paired com-
parison was conducted with reference stimuli via a crowd

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

432



P-loss vs. Real

P-loss vs. Synth

0% 25% 50% 75% 100%

Match Preference Score

Synth vs. Real

Figure 4. Results of subjective evaluation of the match
quality. The three models were compared in a round-robin
manner. Error bars denote 95% confidence intervals.

sourcing system. In total, 25 listeners from various back-
grounds answered 18 questions. In each question of the
test, listeners were exposed to the original target sound and
the matches created by two models. The listeners answered
which match sounded more similar to the target sound. The
order in which the two matches were presented was ran-
domized. The target sounds were randomly chosen from
the test set of the out-of-domain data, as they better rep-
resent queries in real-life applications of sound matching
than in-domain sounds.

Results of the preference test is shown in Figure 4.
First, the P-loss model was compared with the Real model.
The audio outputs of the Real model was preferred more
frequently than the P-loss model, indicating that the pro-
posed method of using spectral loss and using out-of-
domain sounds during training was effective in producing
perceptually better matches, compared to the conventional
method of optimizing only parameter loss. Second, the
models P-loss and Synth were compared. The Synth model
performed better than the P-loss model, indicating that the
use of spectral loss was effective in producing perceptu-
ally better matches. Finally, the models Real and Synth
were compared. The Real model performed better than the
Synth model. This highlights the importance of fine-tuning
the estimator model with data that more closely resembles
the query.

We show examples of sound matching in Figure 5. We
can note that while all models perform comparably well on
most in-domain sounds, the P-loss model tended to fail in
reproducing features such as pitch and spectral envelope
of the the out-of-domain sounds. The first out-of-domain
sound in Figure 5 is a brass sound with rich harmonics, but
only the Real model successfully produced timbre resem-
bling a brass sound. For the second out-of-domain sound,
the P-loss and Synth models failed to estimate the pitch,
resulting in a sound with lower pitch.

6. CONCLUSIONS AND FUTURE DIRECTIONS

We presented a novel method of synthesizer sound match-
ing by implementing the synthesizer using differentiable

P-loss Synth Real
Matches

Target

In
-d
o
m
ai
n

O
ut
-o
f-
d
o
m
ai
n

Figure 5. Examples of sound matching results. The three
models were used to match the same target sounds taken
from the in-domain and out-of-domain test set. We display
the spectrogram (frequency is log-scaled, 0-8000Hz) of the
audio output.

DSP. The proposed method is able to directly optimize
spectral loss in an end-to-end manner. Furthermore, the
model is able to utilize real-world sounds during training.
By pre-training the model with parameter loss on the syn-
thetic data and fine-tuning on real-world sounds with spec-
tral loss, we showed that the proposed method can provide
perceptually better matches to real-world sounds compared
to baseline models.

While dynamic parameters were estimated frame-by-
frame in our experiments, typical synthesizers use ADSR
and LFO modules to model the dynamics of parameters.
Such modules are required for intuitive control of the dy-
namics and playing notes with different length, but the use
of such modules has been left unaddressed by our work.
One solution is to estimate the envelope parameters from
the frame-wise synthesis parameters [23]. Another solu-
tion is to implement such modules in a differentiable man-
ner and use them during training. Preliminary experiments
using differentiable envelope modules yielded promising
results, although the match is less accurate for real-world
sounds due to the simplification of the dynamics.

Another direction is to experiment with different syn-
thesis techniques and audio effects. Preliminary experi-
ments on using spectral loss to estimate the parameters of
an FM synthesizer was shown to be less successful. This
may be due to the fact that FM synthesis creates many in-
harmonic partials resulting in a complex spectrum. Re-
cent research suggests that deep audio embeddings may
be a better distance metric than multi-scale spectral loss
for complex synthesizer sounds [24]. Such alternative cri-
teria for the match quality is worth considering not only
for improving the estimation quality, but also for providing
unique matches that capture a certain feature of the query.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

433



7. REFERENCES

[1] O. Barkan, D. Tsiris, N. Koenigstein, and O. Katz, “In-
verSynth: Deep estimation of synthesizer parameter
configurations from audio signals,” IEEE/ACM Trans.
on Audio, Speech, and Language Processing, vol. 27,
no. 11, pp. 2385–2396, 2019.

[2] M. J. Yee-King, L. Fedden, and M. D’Inverno, “Auto-
matic programming of VST sound synthesizers using
deep networks and other techniques,” IEEE Trans. on
Emerging Topics in Computational Intelligence, vol. 2,
no. 2, pp. 150–159, 2018.

[3] P. Esling, N. Masuda, A. Bardet, R. Despres, and
A. Chemla-Romeu-Santos, “Universal audio synthe-
sizer control with normalizing flows,” in Proc. of the
22nd Int. Conf. on Digital Audio Effects, 2019.

[4] J. Engel, L. Hantrakul, C. Gu, and A. Roberts,
“DDSP:Differentiable Digital Signal Processing,” in
Proc. of the Int. Conf. on Learning Representations,
2020.

[5] P. Esling and C. Agon, “Multiobjective time series
matching for audio classification and retrieval,” IEEE
Trans. on Audio, Speech and Language Processing,
vol. 21, no. 10, pp. 2057–2072, oct 2013.

[6] M. Cartwright and B. Pardo, “SynthAssist: Querying
an audio synthesizer by vocal imitation,” in Proc. of the
Int. Conf. on New Interfaces For Musical Expression,
2014, pp. 363–366.

[7] A. Horner, J. Beauchamp, and L. Haken, “Machine
Tongues XVI: Genetic algorithms and their application
to FM matching synthesis,” Computer Music Journal,
vol. 17, no. 4, pp. 17–29, mar 1993.

[8] K. Tatar, M. Macret, and P. Pasquier, “Automatic syn-
thesizer preset generation with PresetGen,” Journal of
New Music Research, vol. 45, no. 2, pp. 124–144,
2016.

[9] K. Itoyama and H. G. Okuno, “Parameter estimation of
virtual musical instrument synthesizers,” in Proc. of the
40th Int. Computer Music Conf., 2014, pp. 1426–1431.

[10] M. A. Martinez Ramirez, O. Wang, P. Smaragdis, and
N. J. Bryan, “Differentiable signal processing with
black-box audio effects,” in Proc. of IEEE Int. Conf.
on Acoustics, Speech and Signal Processing, 2021, pp.
66–70.

[11] A. Défossez, N. Zeghidour, N. Usunier, L. Bottou, and
F. Bach, “SING: Symbol-to-instrument neural gener-
ator,” in Advances in Neural Information Processing
Systems, 2018, pp. 9041–9051.

[12] J. W. Kim, R. Bittner, A. Kumar, and J. P. Bello, “Neu-
ral music synthesis for flexible timbre control,” in Proc.
of the IEEE Int. Conf. on Acoustics, Speech and Signal
Processing, 2019, pp. 176–180.

[13] A. M. Sarroff and M. Casey, “Musical audio synthesis
using autoencoding neural nets,” Proc. of the 40th Int.
Computer Music Conf., ICMC, pp. 1411–1417, 2014.

[14] J. Engel, C. Resnick, A. Roberts, S. Dieleman, D. Eck,
K. Simonyan, and M. Norouzi, “Neural audio synthesis
of musical notes with WaveNet autoencoders,” in Proc.
of the 34th Int. Conf. on Machine Learning, 2017, pp.
1068–1077.

[15] X. Serra, “Musical sound modeling with sinusoids
plus noise,” in Musical Signal Processing, C. Roads,
S. Pope, A. Picialli, and G. D. Poli, Eds., 1997, pp.
91–122.

[16] M. Michelashvili and L. Wolf, “Hierarchical timbre-
painting and articulation generation,” in Proc. of the
Int. Society for Music Information Retrieval Conf.,
2020, pp. 916–922.

[17] J. Engel, R. Swavely, A. Roberts, L. Hantrakul,
and C. Hawthorne, “Self-supervised pitch detection
by inverse audio synthesis,” in Workshop on Self-
Supervision in Audio and Speech at the 37th Int. Conf.
on Machine Learning, 2020.

[18] B. Kuznetsov, J. D. Parker, and F. Esqueda, “Differen-
tiable IIR filters for machine learning applications,” in
Proc. of the 23rd Int. Conf. on Digital Audio Effects,
2020, pp. 297–303.

[19] S. Nercessian, “Neural parametric equalizer matching
using differentiable biquads,” in Proc. of the 23rd Int.
Conf. on Digital Audio Effects, 2020, pp. 265–272.

[20] H. Kato, Y. Ushiku, and T. Harada, “Neural 3D mesh
renderer,” in Proc. of the IEEE/CVF Conf. on Com-
puter Vision and Pattern Recognition, 2018, pp. 3907–
3916.

[21] S. Yao, T. M. H. Hsu, J. Y. Zhu, J. Wu, A. Tor-
ralba, W. T. Freeman, and J. B. Tenenbaum, “3D-aware
scene manipulation via inverse graphics,” in Advances
in Neural Information Processing Systems, 2018, pp.
1887–1898.

[22] G. Wilson and D. J. Cook, “A survey of unsupervised
deep domain adaptation,” ACM Trans. on Intelligent
Systems and Technology, vol. 11, no. 5, Jul. 2020.

[23] K. Jensen, “Envelope model of isolated musical
sounds,” in Proc. of 2nd COST G-6 Workshop on Dig-
ital Audio Effects, 1999.

[24] J. Turian, J. Shier, G. Tzanetakis, K. McNally,
and M. Henry, “One billion audio sounds from
GPU-enabled modular synthesis,” arXiv preprint
arXiv:2104.12922, 2021.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

434


