A DEEP LEARNING METHOD FOR ENFORCING COHERENCE IN
AUTOMATIC CHORD RECOGNITION

Gianluca Micchi Katerina Kosta

Gabriele Medeot

Pierre Chanquion

ByteDance

{name.surname}@bytedance.net

ABSTRACT

Deep learning approaches to automatic chord recogni-
tion of symbolic music have improved the state of the art,
but they still face a common problem: how to deal with
a vast chord vocabulary. The naive approach of writing
one output class for each possible chord is hindered by the
combinatorial explosion of the output size (~10 million
classes). We can reduce this complexity by several orders
of magnitude by treating each label (e.g. key or chord qual-
ity) independently. However, this has been shown to lead
to incoherent output labels. To solve this issue we intro-
duce a modified Neural Autoregressive Distribution Esti-
mation (NADE) as the last layer of a Convolutional Recur-
rent Neural Network. The NADE layer ensures that labels
related to the same chord are dependently predicted, and
therefore, enforce coherence. The experiments showcase
the advantage of the new model both in chord symbol pre-
diction and functional harmonic analysis compared to the
model that does not include NADE as well as state-of-the-
art models.

1. INTRODUCTION

Harmony, together with counterpoint and form, is tradi-
tionally considered to be one of the three main parts of mu-
sical composition in Western classical tradition [1]. This
tradition is based on what is known as the tonal system,
that is, a “theoretical formulation of certain psychological
or physiological constraints upon the perception of sounds
and their combination" [2][p.206]. Their musical effect
can be summarised in a few rules that are followed by most
Western music (and also some non-Western music) [3].
Nevertheless, harmonic interpretation of music is com-
plex due to its ambiguity. The same audio content can
acquire different perceptual significance depending on its
context: As a simple example, the chord symbols Aff major
and Bb major are acoustically indistinguishable but used in
different contexts, hence the different spelling. Therefore,
it is necessary to study the chord not as single entities but as

© Gianluca Micchi, Katerina Kosta, Gabriele Medeot,

Pierre Chanquion. Licensed under a Creative Commons Attribution 4.0
International License (CC BY 4.0). Attribution: Gianluca Micchi,
Katerina Kosta, Gabriele Medeot, Pierre Chanquion, “A Deep Learning
Method for Enforcing Coherence in Automatic Chord Recognition”, in
Proc. of the 22nd Int. Society for Music Information Retrieval Conf.,
Online, 2021.

443

THE FROG
MODEL

x B
oAl

on
Ox O

~
e

Quality

v
A

INPUT

'

OUTPUT

Figure 1: The proposed model, frog, analyses an input
score in symbolic format and outputs the functional har-
monic analysis through autoregressive predictions of its el-
ementary components at each time step.

a progression. This is usually done with the help of the Ro-
man numeral notation (RN), which describes every chord
in relation to the local key. RNs provide insights into har-
mony theory by exposing its invariances and symmetries.
They highlight the function of each chord inside the pro-
gression and, for this reason, Automatic Chord Recogni-
tion (ACR) with RN is also known as functional harmonic
analysis.

The problem of harmony has a long academic history,
but remains central to modeling and understanding most
music, including modern pop; indeed, harmony is one of
the main categories in which submissions to the 2020 Al
Song Contest were judged. [4]. Therefore, it is natural that
computational analysis of harmony has attracted so much
attention in the MIR community.

Previous work. There is a relatively vast body of work
on ACR from audio signals (see [5] for a literature review
on the topic). All these methods address chord symbol
recognition instead of functional harmonic analysis. From
the very first article published on the subject, the idea that
has dominated the field is to interpret the audio signal using
chroma features [6]. This amounts to identifying and an-
notating the pitch content of the audio signal at each given
time frame. Given how close the resulting audio represen-
tation resembles a symbolic music score, it is a bit puzzling
to see how little attention symbolic ACR has received.

There are only a few works, to our knowledge, that ex-
plicitly perform ACR on symbolic scores. Kroger et al. [7]
collect a few early approaches, and a more recent one is



Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

presented in [8]. However the interest on the topic has
increased in more recent years, probably driven also by
the growing attention to symbolic music for music gen-
eration [4,9-13]. Symbolic music makes a perfect entry
point for the harder task of functional harmonic analysis
because, with respect to audio data, it offers a much more
direct representation of the musical content. There are two
popular MIR approaches to functional harmonic analysis:
One uses generative grammars [14, 15], the other a deep
learning based data-driven approach that can learn rules
more flexibly [16—19].

Known issues in ACR. One difficult issue that prevents
naive rule-based approaches from being successful is the
identification of non-chord tones: Music often contains
notes that are not part of the core harmony and designing
a system that knows when to ignore these anomalies is a
complex task to define algorithmically [20]. Specifically
for the task of functional harmonic analysis, there is also
the problem of automatic key recognition, a subject that
is well known in the community [21-24] but still largely
unsolved, partly due to ambiguities in its definition [24].

Finally, an important issue is that the number of pos-
sible output classes is very large. Even considering only
the most common chords, the possibilities easily exceed
100,000. This is because there is a combinatorial explo-
sion due to the presence of several elementary labels asso-
ciated with each possible chord. In the case of functional
harmonic analysis, these labels are key, tonicisation, de-
gree, quality, and inversion. For chord symbol prediction,
instead, they are root, quality, and inversion. To reduce the
dimensionality of the output space, it has been proposed
to predict each label independently [16—18]. However, this
approach often leads to incoherent output labels. For ex-
ample, for a harmony that can be interpreted as either A mi-
nor or C major, a system without coherence could equally
well output A major or C minor.

Our proposal. We propose a chord recognition al-
gorithm (CRA) —which we nickname frog after the
sound they make in Italian, cra-cra— that analyses chords
through separate but coherent predictions of their elemen-
tary labels (see Fig. 1). This is achieved through the ad-
dition of a Neural Autoregressive Distribution Estimator
(NADE) [25-27] to a CRNN architecture. At each time
step, we provide the NADE with a fixed ordering of the
chord’s elementary labels from which it sequentially sam-
ples, conditioning each sampling probability on the out-
come of the previous labels. We release the code open-
source and make it available at [28].

We evaluate the output of frog against two state-of-the-
art models on a large dataset of functional harmonic anal-
yses, containing over 300 scores that span over two cen-
turies, from Monteverdi to Brahms. Due to the similarity
in data representation, mentioned above, we believe our
system to be extensible to the audio domain [17,19].

2. DATA REPRESENTATION AND CORPUS

In RN notation, each chord is defined by its relation with
the tonic of the local key. The basic components of RNs

444

S e e e

;:AJ ;‘LL Fﬁ‘l :"'J)‘n

C:I i42 V65

Figure 2: Example RN analysis of the Prelude in C from
JS Bach’s Well-Tempered Clavier, book first.

are key, degree of the scale on which the chord is built
(expressed in Roman numerals), quality of the chord (i.e.,
the type of triad plus any possible extension), and inver-
sion (i.e., which of the notes is the lowest). For example,
from the RN analysis in Fig.2 we see the annotation V65
at the third measure. In the key of C (see first measure),
this corresponds to a G (fifth degree of the scale) dominant
seventh chord in first inversion (numerals 65). !

Sometimes, chords are borrowed from other keys for a
very short period of time and introduce some colouring in
the harmonic progression. For example a D7 chord con-
tains an F. Whenever we find such a chord in the key of C
resolving to a G chord we identify it as a dominant chord
borrowed from the neighbouring key of G and encode it
as V7/V. Those borrowed chords are known as tonicised
chords, and the tonicisation defines the relation between
the local key and the temporary tonic [24]. The boundaries
of this relation are sometimes blurry. As Kostka and Payne
putit, "The line between modulation and tonicization is not
clearly defined in tonal music, nor is it meant to be" [30].

The tonicisation completes the set of elementary labels
that we use to describe a chord in the RN notation.

RN encoding. The simplest data encoding for RN re-
quires 24 keys, 7 degrees, 7 tonicisations, and 4 inver-
sions per each quality of chord. In our analyses we use
10 chord qualities: 4 triads (major, minor, diminished,
and augmented), 5 sevenths (major, dominant, minor, half-
diminished, and diminished), and augmented sixth.

When predicting all these labels at once, their sizes mul-
tiply to make a total of 47k possible output classes. If one
wants to add pitch spelling, support for alterations both in
degree and in tonicisation, and a direct prediction of the
root, the total number of combinations climbs up to 22
millions [18]. Also, while the ten qualities cover most
of the cases in classical music, making up for 99.98% of
the dataset we consider, they don’t even come close to de-
scribing the wealth of extensions and colourings that are
commonly used in jazz music [33]. In short, it is not desir-
able to deal directly with such a combinatorially explosive
situation. Making individual predictions for each of the el-
ementary labels that form the chord and then combining
them together, instead, results in a summation of their out-
put sizes, rather than a multiplication, making the problem
tractable again.

Chord symbols. From the RN notation it is possible
to derive chord symbols. Those are defined only by root,
quality, and inversion. For example, a V65 in C major in

! The details of RN notation are complex and out of the scope of this
paper. See [29] for an introduction to the syntax.



Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

Dataset Composer Content Crotchets Annotations
Roman Text [29] C Monteverdi 48 Madrigals 15,040 5,828
JS Bach 24 Preludes 3,168 2,107
[31] FJ Haydn 24 String Quartets Movements 9,113 4,815
Various 156 Romantic Songs 22,254 11,851
Various 4 Additional Compositions 2,649 1,165
BPS-FH [17] Lv Beethoven 32 Sonata Movements 23,554 8,615
TAVERN [32] WA Mozart 10 theme and variations 7,833 3,887
Lv Beethoven 17 theme and variations 12,840 6,836
Total 315 scores 96,450 45,104

Table 1: The datasets included in our training / validation data. TAVERN has two alternative annotations: We have only

included the anonymous annotator A.

RN notation would be written in chord symbols, follow-
ing the same encoding as mir_eval [34,35], as G:7/3. All
information about local key and tonicisation is lost.

Datasets. In recent years, several datasets of RN anno-
tations have been published. Up to our knowledge, they
have all been collected and converted to the “rntxt" data
format [29] inside the GitHub repository in [36]. We re-
port the size and content of the corpora we used in Ta-
ble 1.2 We provide the dataset parsing code, including
fixes on known issues, in [28].

3. NADE FOR HARMONIC ANALYSIS

Given a musical context, that is, the portion of score be-
tween to and ¢;, let us focus on the prediction of a sin-
gle chord at time ¢ € [to,¢1]. As we have seen, a chord
can be separated in several labels. This means that we
can represent the output class of the chord as a variable
in a multi-dimensional space. If those dimensions were
all independent, one could project the distribution on each
axis and independently estimate each projection of the dis-
tribution. This is the case, for example, of a rectangular
uniform distribution in a 2D space, which can be writ-
ten as a product of two independent uniform distributions:
p(x,y) = pa(2)py(y). Butif the distribution is more com-
plex this is no longer true. What one can always do without
loss of generality is to determine an ordering of the dimen-
sions and estimate their value sequentially, conditioning
each dimension given the result of all the preceding ones.
This approach is at the heart of the Neural Autoregressive
Distribution Estimator, or NADE [25-27].

Introduction to the NADE. The NADE is composed
of two parts: a visible layer —which is made of as many
neurons as there are dimensions in the distribution that we
want to encode— and a hidden layer. At each step, the con-
tent of the hidden layer is used to determine the value of
the next neuron of the visible layer. The output sampled
from the newly-updated neuron is then reinjected into the
hidden layer to inform the decision on the next step. The
equations are the following [27]:

p(zglr<q) = sigmoid(V 4 - hg + by), (1)
hg = sigmoid(W .4 - <4 + ¢), 2

where x4 is the output at dimension d, x4 is the vector
of all the outputs before d, V' and W are respectively the

2 Due to the restrictive licence under which it is released, we decided
not to include the ABC dataset [37] into our training data.

tensor of hidden-to-visible and visible-to-hidden weights,
b is the vector of biases in the visible layer and c in the
hidden layer. Eqgs. 1 and 2 are to be applied iteratively for
all neurons in the visible layer.

Application of NADE to chords. NADE has been ap-
plied to music generation [10, 38], with the visible layer
representing a frame of the piano roll. In the case of har-
monic analysis, the visible layer represents instead a chord
annotation. We separate the annotation along six dimen-
sions (see Sec. 2) and organise them in the following order:
key, tonicisation, degree, quality, inversion, and root. 3 Ev-
ery element in this list is conditioned on all the elements
that appear before it.

This situation is slightly different from the one in the
original NADE formulation since the output is no longer
a collection of binary units, but of categorical units with
a variable number of classes. The same mechanism of
NADE still works, but we have to make a few modifica-
tions to it: First, a softmax layer is applied instead of a
sigmoid to Eq. 1. Then, to adapt to this change in the out-
put size, the weight tensors V4, which was understood to
be unidimensional and of size ny, in the original work, is
instead two-dimensional and of size (ng,ny). Similarly,
the shape of W 4 is (n4, ), .4 1) instead of (ny,d—1).

It is worth emphasising that, in this case, the NADE
is used to autoregressively model the distribution of the
output on the different dimensions of the chord and ar a
specific instant of time t.

The final frog model. So far, we only explained how to
introduce correlation in the outputs but not how to derive
those outputs from the inputs. Inspired by [38], we do so
with the help of the biases, that we define as

b = sigmoid(0, - f(x) + 3,), 3)
c = sigmoid(0y, - f(x) + 3,).

Here 0 and 3 are the weights and biases of a dense layer
connecting an arbitrary function of the inputs f with the
NADE biases.

The function f that we choose is a CRNN since it
has already been proven to work well in this domain

3 The ordering of the output labels has been suggested by music theory,
and namely by the fact that the degree of the Roman numeral directly
depends on the key. For example, the same chord of G major could have
degree I in the key of G or IV in D. Keys are a much broader structure
than single chords and they change more slowly, therefore we decided to
prioritise them in order to avoid an excessive amount of modulations in
the output. Similarly, the degree depends on the tonicisation, since this
latter expresses the temporary key from which the music borrows.

445



Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

DenseNet
Filter Filter Filter
H-- B - B -
— — —
size: 7 size: 3 size: 3
L I L 11 |
—— BLOCK 1 BLOCK 2 BLOCK 3

—
NADE *—
—
GRU
size: 178

Bottleneck
size: 64

Figure 3: Schematic representation of the model structure.

[16, 18]. In particular, we follow Micchi et al. [18] and
use DenseNet [39] for the convolutional part and a bi-
directional GRU [40] for the recurrent part, which takes
care of modelling the autoregressive part of the calcula-
tions in the time domain. A fully connected layer is intro-
duced as a bottleneck in between the GRU and the NADE.
We represent the final model, frog, in Fig. 3.

The hyper-parameters of frog have been selected with
the help of hyperopt [41]. In particular, the DenseNet is
made of three blocks: The first block has three convolu-
tional layers, each made of 10 filters of size 7; the other
two blocks are identical, each with 2 layers made of 4 fil-
ters of size 3. The GRU has 178 hidden neurons and is
trained with a dropout of 0.2, while the bottleneck layer
is made of 64 neurons. Finally, the hidden layer of the
NADE is made of 350 neurons. The training is done with
an ADAM optimiser with a learning rate of 0.003.

4. EXPERIMENTAL SETUP

We train our models on the task of functional harmonic
analysis on symbolic scores. The input is a symbolic file
(such as MusicXML, MIDI and **kern) and the output
is an aligned harmonic analysis. We tested frog against
two state-of-the-art models: the original CRNN architec-
ture [18] that we used as a basis for our model and the
improved Harmony Transformer model (HT*) [17, 19].
Our proposed model, frog, has in total 389k trainable
weights, while the HT* has 750k and the original CRNN
architecture only 83k. The size difference between frog
and CRNN is partially due to frog including NADE (93k
weights), as well as the increase of the GRU’s size to 251k
weights for frog. A CRNN model with the same GRU
hyper-parameters as frog, only marginally improved the
outcome compared to the original CRNN model, so the
former was disregarded.

All the trainings use early stopping and typically re-
quire less than 20 epochs. The entire training of frog lasts
for a little more than 2 hours on a recent laptop (no GPU
needed). The loss function is the sum of all the categori-
cal cross entropies applied separately to each output. Each
individual collection in the dataset is split 80/20 between
training and validation data.

446

4.1 Data encoding

Pitch. For CRNN and frog, we have implemented two dif-
ferent representations of the input data: “pitch class+bass"
and “pitch spelling+bass". Pitch class+bass contains 24 el-
ements, 12 indicating all the active pitch classes (multi-hot
encoded) and 12 indicating the lowest active pitch class
—the bass (one-hot encoded). If pitch class+bass is used,
the output labels root and key are also encoded using only
pitch classes, therefore having respectively size 12 and 24
(the keys can be major or minor).

Pitch spelling+bass, instead, contains 35 elements, that
is, the seven notes times five alterations (double flats, flats,
diatonic, sharps, double sharps). When pitch spelling+bass
is used, the output label root has shape 35 and keys 36 —
this is obtained keeping the 18 keys between Cb and Af in
the circle of fifths# in two modes, major and minor.

Meter. We tested whether or not the addition of metri-
cal information has a positive impact on the outcome. In
models that are trained with metrical information (tagged
with “w/ meter” label in Section 5), the input includes two
additional vectors. The first one-dimensional vector is 1
whenever a new measure begins and 0 otherwise, the sec-
ond one-dimensional vector is 1 at the onset of a new beat
and 0 otherwise.

Time. The input data is quantised in time frames of
the length of a demisemiquaver (1/32nd note). Due to the
presence of pooling layers in the convolutional part, the
output resolution is reduced and corresponds to the quaver
(1/8th note).

4.2 Comparison with HT* inputs and outputs

HT* has a slightly different approach. In the original pa-
per, the authors present two separate HT* models. In both
cases, the input is encoded in MIDI numbers following a
piano roll representation and additionally contains infor-
mation of the tonal centroids [42].

The first model is trained for functional harmonic anal-
ysis and has two outputs: the key (24 categories = 12 pitch
classes x 2 modes) and the RN annotations (5,040 cate-
gories = 9 tonicisations x 14 degrees x 10 qualities x 4
inversions). We use these RN predictions to derive the root
of the chord and therefore its chord symbol representation.

The other model is trained only for chord symbol recog-
nition and has a single output with 25 possible categories:
major and minor triads (possibly with extensions) for all
the 12 pitch classes and a last category for all remaining
chords. We decided not to include the latter model in our
experiments because the output vocabulary is too small to
be fairly compared with the other models. Such a variant
would be comparable to the models we train only in case
it contained the same roots, qualities, and inversions as the
others, for a total of 480 output classes. Moreover, such
chord symbol-oriented HT* can not produce predictions
for functional harmonic analysis because of the absence of
key, tonicisation, and degree.

4We do not keep all keys from Fbb to Bfff because most of those keys
are never used in practice and also because they would require triple flats
and sharps to encode all the diatonic pitches.



Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

1.0

Models
1 CRNN w/ meter
0.8 EEE frog w/o meter
Il frog w/ meter
1 CRNN w/o meter
]

0.9

0.7

2 3 &
$\S\\(~® \‘A\o“%
& & €

506 HT*
n
0.5
0.4
0.3
0.2
.\(\4 .\(\4 \(\4

+
((.\\\e ,\00 NG &

Figure 4: The score of all tested models on selected metrics. The models in shades of red (the first three) are our contri-
butions, the blue ones (last two) are from the state-of-the-art. From left to right: the first three metrics report the ratio of
frames with correct predictions to the total number of frames for the written tasks. The remaining seven report the results

derived from the specific mir_eval tasks.

S. RESULTS

Evaluating the quality of a functional harmonic analysis is
an extremely challenging task. First, there could be dif-
ferent analysis of the same music that are equally accept-
able [18,32] — this is a complex issue that might require a
complete rethinking of our training strategies and we do
not address it in this paper. Second, not all errors are
equally important: one could argue that correctly identi-
fying the inversion is less important than the root or the
quality of the chord. To address this second issue, we re-
port the scores on several metrics and let the readers decide
which one is the most important for their task.

5.1 Analysing the metrics

Remarkably, frog shows better results when compared to
the previous state-of-the-art models (CRNN w/o meter and
HT*) in almost every metric considered (see Fig. 4). No-
tice that, to provide a better comparison with the HT*
model, we report the results of the pitch class + bass input
data representation (see Sec. 4).

Accuracy on Roman numerals. The most complete
metric that we show is the accuracy on RNs. (see Fig. 4,
first two metrics from the left). We present two versions:
in the first (“RN w/o key"), the prediction is considered
correct if and only if tonicisation, degree, quality, and in-
version are all correct — this corresponds to the direct RN
output of the HT* model (see Sec. 4). For this task, frog re-
ports a 52.1% accuracy against the 47.6% that we obtained
for HT* and 44.9% for CRNN (w/o meter, understood
from now on). The new XL-CRNN achieves 47.1%. >

The second case ("RN w/ key") requires also a correct
prediction of the key. Here, frog still gives a correct pre-
diction in 50.1% of cases against 41.9% that we obtained
for HT* and 40.8% for CRNN (43.1% on XL-CRNN). The

5 The HT* results we report show a significantly higher accuracy than
the 41.7% reported in [19]. We assume that this is due to the larger size
of the dataset we train all three models on.

absolute margin of improvement of frog on the best com-
peting state-of-the-art algorithms goes from 4.5% on RN
w/o key to 8.2% on the more complex task of RN w/ key.

The case of the diminished sevenths. Diminished
seventh are a special chord in music theory because they
divide the octave in 4 equal intervals. Therefore, these
highly symmetrical chords are often used during modula-
tions. This makes them very easy preys to problems of
misclassification due to the lack of coherence. In addition,
they are sporadic chords, making up 4.3% of our dataset,
which makes correct predictions both difficult and impor-
tant. The accuracy with frog makes a big leap from 39.1%
of the HT* model and 42.4% of CRNN to 53.3%, show-
ing a better than average result on these chords (See Fig.4,
metric “d7").

The scores on mir_eval metrics. We then report a se-
lection of the metrics included in the package mir_eval
[35] (see Fig. 4, last seven metrics to the right).

The first conclusion we can draw from these results is
that the HT*, which chooses its output among a large vo-
cabulary of more than 5000 output classes, has the low-
est accuracy of all systems. The more powerful variant
of the ACR-oriented version of HT* that we mentioned in
Sec. 4 would however probably obtain higher scores than
this general-purpose HT* on these metrics.

The second conclusion is that all models perform al-
most equally on segmentation. The segmentation is re-
ported as the minimum of the score on over-segmentation
and under-segmentation and for all models the minimum
score is given by the over-segmentation. This could be due
either to an intrinsic limitation that is common to all ar-
chitectures and that needs yet to be discovered; it could
be also due to the fact that human annotators might prefer
a more synthetic analysis: for example, some notes could
be interpreted as passing tones by humans and considered
instead as structural part of the chord by the algorithm.

The root coherence. As we saw in Sec. 2, it is possi-
ble to derive the root of a chord from its key, tonicisation,

447



Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

and degree. The CRNN and frog models predict an addi-
tional redundant output, the root, with the assumption that
it helps the systems learn faster. Comparing the root de-
rived from the RN with the one directly estimated by the
model we can obtain a measure of the internal coherence
of the output labels. CRNN has a root coherence of 78.9%,
compared to frog which has a root coherence of 99.0%.
Adding metrical information. We notice that the in-
troduction of metrical information (cf. Section 4) has a
positive but quite small impact on the results in all metrics.

5.2 Analysing the confusion matrix

In Fig. 5 we report the confusion matrix for the key ob-
tained with frog when trained with pitch spelling. The
keys are arranged according to the circle of fifths (F-C-G-
D...) with the major keys preceding the minor keys, i.e.,
the top-left quadrant shows the major/major correlation
while the bottom-right the minor/minor correlation. The
values reported are the occurrences of each pair ground-
truth/prediction and are presented in a logarithmic scale to
enhance the different scales in prediction errors.

Ground-truth
foovaaoF02020 ERRRTom>000mPTPPO0

®a@Qg
I

Prediction

Figure 5: Confusion matrix for frog on label key.

The mir_eval key metric that we reported in Fig. 4 as-
signs 1 point to all keys that are correctly predicted, 0.5
points to dominant/sub-dominant predictions (G/F instead
of C), 0.3 to relative (a instead of C or vice versa), and
0.2 to parallel (c instead of C or vice versa). Those cases
are the ones reported on the five diagonals super-imposed
to the plot: The main diagonal, in solid line, shows the
correctly predicted keys. Dominant predictions are imme-
diately to its right and sub-dominant to its left. Dashed
lines show the relative predictions, while dotted lines show
the parallel predictions. Some rows and columns of the
confusion matrix are empty: These are the keys that are
supported by the model but never used in the test dataset.

5.3 Using a key oracle

In a separate but related experiment, we have allowed frog
to access a key oracle. We did that by reading the key from
the test data and setting it as the first output of the visible

448

layer of the NADE. Then, we sampled the remaining labels
autoregressively in the given order, as usual.

We measured the impact of this key oracle on the re-
sults. Without a dedicated retraining, a multi-output model
with no coherence between the different labels, such as the
HT* or the CRNN, would report unvaried accuracies for
all elementary labels except key. This entails that the accu-
racy for the RN w/ key prediction be equivalent to the one
for RN w/o key. However, this is not what happens with
frog: The degree accuracy goes from 72.6% to 80.3% and
the tonicisation from 91.4% to 94.0%.° As a result, the
accuracy on RN w/ key jumps to 60.3%, much higher than
the 52.1% we would expect in absence of coherence.

6. CONCLUSIONS AND PERSPECTIVES

We report an advancement in the field of automatic chord
recognition and especially functional harmonic analysis
for symbolic music. The improvements are mostly due
to the use of a modified version of the NADE algorithm,
which allows us to separate the complex and large vocab-
ulary of all possible output classes into a set of elementary
labels (such as key, degree, and quality of the chords) while
retaining strong coherence between them. This effectively
reduces the size of the output classes by several orders of
magnitude and at the same time offers better results, as we
showed in Sec. 5.

A consequence of the reduction in complexity of the
output labels is the increased flexibility that this model
gives to the users, as changes to the chord labels do not
dramatically alter the size of the model nor the complex-
ity of the task. For example, one could easily introduce
a larger amount of chord colourings, which makes frog a
better candidate for analysing music such as jazz.

A lot still remains to explore on the details of this ap-
proach. We kept the six output labels that had already been
presented in previous articles [16-18], where they had
been used in absence of the coherence-enforcing NADE
layer. Now, we expect to be able to improve the quality of
the output even further by tweaking these six labels. For
example, one could study the key by separating tonic and
mode (major / minor); and the degrees could be separated
on two axis: the position on the scale and the alteration.

Concerning the input representation, there are at least
three strains of research that caught our interest: relative
music representation [43, 44], use of Tonnetz for better
convolutions in pitch spaces [45], and better representa-
tions for the metrical strength [46].

Another aspect to test is the introduction of Orderless-
NADE [26]. The OrderlessNADE effectively trains one
separate model for all the possible orderings and then aver-
ages the results obtained. This approach could improve the
quality of the model both directly (because it demonstrates
to be intrinsically superior to our ordered model) and in-
directly (because it allows us to find a better ordering than
the one we proposed).

% The remaining three labels —inversion, quality, and root— are not
impacted, which is consistent with the fact that they are independent from
the key from a music theory point of view.



Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

7. ACKNOWLEDGEMENTS

We thank Raluca Semenescu for creating the main illustra-
tions in the paper and Jordan B. L. Smith for his extensive
paper review before submission.

(1]

(2]

(3]

[4]

(5]

(7]

(8]

[10]

(1]

8. REFERENCES

A. Schoenberg, Harmonielehre. ~ Universal Edition,

1922.

N. Cook et al., Music, imagination, and culture. Ox-

ford University Press, 1990.

D. Tymoczko, A geometry of music: Harmony and
counterpoint in the extended common practice. Ox-
ford University Press, 2010.

C.-Z. A. Huang, H. V. Koops, E. Newton-Rex, M. Din-
culescu, and C. Cai, “Human-Al Co-creation in Song-
writing,” in Proceedings of the 21st International Soci-
ety for Music Information Retrieval Conference, ISMIR
2020, 2020.

J. Pauwels, K. O’Hanlon, E. Gémez, and M. B. San-
dler, “20 Years of Automatic Chord Recognition From
Audio,” in Proceedings of the 20th International Soci-
ety for Music Information Retrieval Conference, ISMIR
2019, nov 2019, pp. 54-63. [Online]. Available: https:
/lqmro.qmul.ac.uk/xmlui/handle/123456789/62088

T. Fujishima, “Real-time chord recognition of musical
sound: A system using common lisp music,” pp. 464—
467, 1999.

P. Kroger, A. Passos, M. Sampaio, and G. De Cidra,
“Rameau: A system for automatic harmonic analysis,”
in In Proceedings of ICMC, 2008.

K. Masada and R. C. Bunescu, “Chord recognition in
symbolic music: A segmental crf model, segment-level
features, and comparative evaluations on classical and
popular music,” Transactions of the International So-
ciety for Music Information Retrieval, vol. 2, no. 1, pp.
1-13, 2019.

G. Hadjeres, F. Pachet, and F. Nielsen, “Deepbach: a
steerable model for bach chorales generation,” in Inter-
national Conference on Machine Learning, 2017, pp.
1362-1371.

C. Z. A. Huang, T. Cooijmans, A. Roberts,
A. Courville, and D. Eck, “Counterpoint by con-
volution,” in Proceedings of the 18th International
Society for Music Information Retrieval Conference,
ISMIR 2017, 2017, pp. 211-218. [Online]. Available:
https://coconets.github.io/

C.-Z. A. Huang, A. Vaswani, J. Uszkoreit, N. Shazeer,
I. Simon, C. Hawthorne, A. M. Dai, M. D. Hoff-
man, M. Dinculescu, and D. Eck, “Music transformer,”
arXiv preprint arXiv:1809.04281, 2018.

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

449

A. Roberts, J. Engel, C. Raffel, C. Hawthorne, and
D. Eck, “A hierarchical latent vector model for learning
long-term structure in music,” in International Confer-
ence on Machine Learning, 2018, pp. 4364-4373.

M. Dinculescu, J. Engel, and A. Roberts, “Midime:
Personalizing a musicvae model with user data,” in
Workshop on Machine Learning for Creativity and De-
sign, NeurlPS, 2019.

M. Rohrmeier, “Towards a generative syntax of tonal
harmony,” Journal of Mathematics and Music, vol. 5,
no. 1, pp. 35-53, 2011.

D. Harasim, M. Rohrmeier, and T. J. O’Donnell, “A
generalized parsing framework for generative models
of harmonic syntax.” in ISMIR, 2018, pp. 152-159.

T.-P. Chen and L. Su, “Functional harmony recognition
of symbolic music data with multi-task recurrent neural
networks,” in Proceedings of the 19th International
Society for Music Information Retrieval Conference,
ISMIR 2018, 2018, pp. 90-97. [Online]. Available:
https://github.com/

T. P. Chen and L. Su, “Harmony transformer:
Incorporating chord segmentation into harmony recog-
nition,” in Proceedings of the 20th International
Society for Music Information Retrieval Conference,
ISMIR 2019, 2019, pp. 259-267. [Online]. Available:
https://aclweb.org/aclwiki/POS_

G. Micchi, M. Gotham, and M. Giraud, “Not
All Roads Lead to Rome: Pitch Representation
and Model Architecture for Automatic Harmonic
Analysis,” Transactions of the International Society
for Music Information Retrieval, vol. 3, no. 1,
pp. 42-54, may 2020. [Online]. Available: http:
//transactions.ismir.net/articles/10.5334/tismir.45/

T.-P. Chen and L. Su, “Attend to Chords: Improv-
ing Harmonic Analysis of Symbolic Music Using
Transformer-Based Models,” Transactions of the In-
ternational Society for Music Information Retrieval,
vol. 4, no. 1, pp. 1-13, feb 2021. [Online]. Available:
http://transactions.ismir.net/articles/10.5334/tismir.65/

Y. Ju, N. Condit-Schultz, C. Arthur, and I. Fujinaga,
“Non-chord tone identification using deep neural net-
works,” in Proceedings of the 4th International Work-

shop on Digital Libraries for Musicology, 2017, pp.
13-16.

D. Temperley, “What’s key for key? the krumhansl-
schmuckler key-finding algorithm reconsidered,” Mu-
sic Perception, vol. 17, no. 1, pp. 65-100, 1999.

S. T. Madsen, G. Widmer, and J. Kepler, “Key-finding
with interval profiles,” in In Proceedings of ICMC,
2007.



Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

[23] N. Népoles Lopez, C. Arthur, and I. Fujinaga, “Key-
finding based on a hidden markov model and key pro-
files,” in 6th International Conference on Digital Li-
braries for Musicology, 2019, pp. 33-37.

[24] N. Népoles Lopez, L. Feisthauer, F. Levé, and 1. Fuji-
naga, “On local keys, modulations, and tonicizations,”
in Digital Libraries for Musicology (DLfM 2020),
2020.

[25] H. Larochelle and I. Murray, “The neural autoregres-
sive distribution estimator,” Journal of Machine Learn-
ing Research, vol. 15, pp. 38-39, 2011.

[26] B. Uria, I. Murray, and H. Larochelle, “A deep
and tractable density estimator,” 3Ist International
Conference on Machine Learning, ICML 2014,
vol. 1, pp. 719-727, 10 2014. [Online]. Available:
http://arxiv.org/abs/1310.1757

[27] B. Uria, M.-A. Co6té, K. Gregor, I. Murray, and
H. Larochelle, “Neural autoregressive distribution es-
timation,” Journal of Machine Learning Research,

vol. 17, pp. 1-37, 2016.

[28] G. Micchi, accessed 2021-07-29. [Online]. Available:
https://gitlab.com/algomus.fr/functional-harmony

[29] D. Tymoczko, M. Gotham, M. S. Cuthbert, and
C. Ariza, “The romantext format: A flexible and stan-
dard method for representing roman numeral analy-
ses,” in Proceedings of the 20th International Soci-
ety for Music Information Retrieval Conference, ISMIR
2019, 2019, pp. 123-129.

[30] S. Kostka and D. Payne, Tonal harmony. McGraw-
Hill Higher Education, 2013.

[31] N. Népoles Lopez, “Automatic harmonic analysis of
classical string quartets from symbolic score,” Master’s
thesis, Universitat Pompeu Fabra, 2017.

[32] J. Devaney, C. Arthur, N. Condit-Schultz, and
K. Nisula, “Theme and variation encodings with roman
numerals (TAVERN): A new data set for symbolic mu-
sic analysis,” in Proceedings of the 16th International

Society for Music Information Retrieval Conference,
ISMIR 2015, 2015, pp. 728-734.

[33] T.-P. Chen, S. Fukayama, M. Goto, and L. Su, “Chord
jazzification: Learning jazz interpretations of chord
symbols,” in Proceedings of the 21st International So-

ciety for Music Information Retrieval Conference, IS-
MIR 2020, 2020.

[34] C.Harte, M. B. Sandler, S. A. Abdallah, and E. Gémez,
“Symbolic representation of musical chords: A pro-
posed syntax for text annotations.” in ISMIR, vol. 5,
2005, pp. 66-71.

[35] C. Raffel, B. McFee, E. J. Humphrey, J. Salamon,
O. Nieto, D. Liang, and D. P. W. Ellis, “mir_eval:

450

(36]

(37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

A Transparent Implementation of Common MIR Met-
rics,” in Proc. of the 15th International Society for Mu-
sic Information Retrieval Conference (ISMIR), 2014,
pp. 367-372.

M. Gotham, accessed 2021-07-29. [Online]. Available:
https://github.com/MarkGotham/When-in-Rome

M. Neuwirth, D. Harasim, F. C. Moss, and
M. Rohrmeier, “The Annotated Beethoven Cor-
pus (ABC): A Dataset of Harmonic Analyses of
All Beethoven String Quartets,” Frontiers in Dig-
ital Humanities, vol. 5, p. 16, 2018. [Online].
Available: https://www.frontiersin.org/article/10.3389/
fdigh.2018.00016

N. Boulanger-Lewandowski, Y. Bengio, and P. Vin-
cent, “Modeling temporal dependencies in high-
dimensional sequences: Application to polyphonic
music generation and transcription,” in Proceedings
of the 29th International Conference on Machine
Learning, ICML 2012, vol. 2, 6 2012, pp. 1159-1166.
[Online]. Available: http://arxiv.org/abs/1206.6392

G. Huang, Z. Liu, L. Van Der Maaten, and
K. Q. Weinberger, “Densely connected convolutional
networks,” in Proceedings - 30th IEEE Conference
on Computer Vision and Pattern Recognition, CVPR
2017, vol. 2017-Janua, 2017, pp. 2261-2269. [Online].
Available: https://github.com/liuzhuang13/DenseNet.

K. Cho, B. van Merriénboer, C. Gulcehre, D. Bah-
danau, F. Bougares, H. Schwenk, and Y. Ben-
gio, “Learning phrase representations using RNN
encoder—decoder for statistical machine translation,”
in Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP).
Doha, Qatar: Association for Computational Linguis-
tics, Oct. 2014, pp. 1724-1734. [Online]. Available:
https://www.aclweb.org/anthology/D14-1179

J. Bergstra, D. Yamins, and D. D. Cox, “Making a sci-
ence of model search: Hyperparameter optimization
in hundreds of dimensions for vision architectures,” in
30th International Conference on Machine Learning,
ICML 2013, vol. 28, 2013, pp. 115-123.

C. Harte, M. Sandler, and M. Gasser, ‘“Detecting har-
monic change in musical audio,” in Proceedings of the
ACM International Multimedia Conference and Exhi-
bition, 2006, pp. 21-26.

S. Lattner, M. Grachten, and G. Widmer, “Learning
transposition-invariant interval features from symbolic
music and audio,” in Proceedings of the 19th Interna-
tional Society for Music Information Retrieval Confer-
ence, ISMIR 2018, 2018, pp. 661-667. [Online]. Avail-
able: https://github.com/SonyCSLParis/cgae-invar

——, “A predictive model for music based on learned
interval representations,” in Proceedings of the 19th
International Society for Music Information Retrieval
Conference, ISMIR 2018, 2018, pp. 26-33.



Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

[45] R. Abecidan, M. Giraud, and G. Micchi, “Towards cus-
tom dilated convolutions on pitch spaces,” in Interna-
tional Society for Music Information Retrieval Con-
ference (ISMIR 2020), Late-Breaking Demo Session,
2020.

[46] G.Medeot, S. Cherla, K. Kosta, M. McVicar, S. Abdal-
lah, M. Selvi, E. Newton-Rex, and K. Webster, “Struc-
turenet: Inducing structure in generated melodies.”
in Proceedings of the 19th International Society for
Music Information Retrieval Conference, ISMIR 2018,
2018, pp. 725-731.

451



