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ABSTRACT

Renaissance music constitutes a resource of immense rich-
ness for Western culture, as shown by its central role in
digital humanities. Yet, despite the advance of computa-
tional musicology in analysing other Western repertoires,
the use of computer-based methods to automatically re-
trieve relevant information from Renaissance music, e. g.,
identifying word-painting strategies such as madrigalisms,
is still underdeveloped. To this end, we propose a score-
based machine learning approach for the classification of
texture in Italian madrigals of the 16" century. Our out-
comes indicate that Low Level Descriptors, such as inter-
vals, can successfully convey differences in High Level
features, such as texture. Furthermore, our baseline re-
sults, particularly the ones from a Convolutional Neural
Network, show that machine learning can be successfully
used to automatically identify sections in madrigals asso-
ciated with specific textures from symbolic sources.

1. INTRODUCTION

The ‘classical’ Italian madrigal is a secular vocal composi-
tion from the 16" century, typically for 4 to 6 vocal parts,
characterised by a close relationship between music and
text [1]. Due to the great historical value of madrigals for
the Western cultural heritage, many initiatives aiming to
preserve and investigate this repertoire through computa-
tional means have been presented, such as The Marenzio
Online Digital Edition (MODE) ' and the Tasso in Music
Project [2], amongst others [3—-6]. Nevertheless, in com-
parison to other relevant genres from Western repertoires,
such as Bach’s chorales [7-9] or operas [10-12], the appli-
cation of machine learning (ML) to the understanding of
Renaissance music is still rare [13, 14]. Indeed, the inves-
tigation of madrigalisms, i.e., the word-painting strategy
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typical of madrigals [1], has not yet been automatised — a
subject identified as of great interest [15].

In the ‘classical’ Italian madrigal, unlike the madrigal
of the 17" century, the meaning of the lyrics is often
expressed through textural changes. Due to the promi-
nent role of texture in the madrigalisms of these specific
madrigals, as a first step to approach this topic, we sta-
tistically assess which musical features are involved in
different textures. Furthermore, we present baseline re-
sults for their classification. The experiments were car-
ried out on the SEILS dataset [16], from which a vari-
ety of features related to the time, frequency, and time-
frequency dimensions were extracted with the music21
toolkit [17]. The performance of four ML models, i.e.,
Support Vector Machines (SVM), Multi-layer Perceptrons
(MLP), Convolutional Neural Networks (CNN), and Bidi-
rectional Long-Short Term Memory Recurrent Neural Net-
works (BLSTM-RNN), was evaluated for recognition of
three types of texture: antiphonal (ANT), contrapuntal
(coN), and homorhythmic (HOM).

The goal of our study is three-fold: (i) Identify the fea-
tures characteristic of different textures through the extrac-
tion and evaluation of symbolic Low Level Descriptors and
statistical functionals; (ii) initialise a research path for au-
tomatic recognition of word-painting, as a first step fo-
cussed on texture, which later should be followed by the
evaluation of madrigalisms’ textual content; (iii) increase
the interest within the ML community in applying artificial
intelligence (Al) to digital humanities.

The rest of the manuscript is laid out as follows: Sec-
tion 2 gives an overview of the related work; Section 3
introduces the considered repertoire; Section 4 and Sec-
tion 5 outline the feature extraction and evaluation; Sec-
tion 6 and Section 7 describe the experimental set-up and
the ML baseline; Section 8 concludes the paper. To pro-
mote further improvements in the field, the source code
which enables researchers to replicate the statistical assess-
ment and the baseline results are freely released. >

2. RELATED WORK

With the advent of digital humanities in general and com-
putational musicology in particular, more and more sym-

2github.com/SEILSdataset/Texture_Recognition
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bolic musical corpora have been presented in the literature.
Some of these are the ELVIS database,> the Kernscores
database [18], the MUTOPIA project* database, or the
Digital Interactive Mozart Edition [19]. The potential of
preserving music in a codified syntax has prompted well-
defined crowdsourcing initiatives aimed to encode and
share symbolic music [20]. In parallel to these, projects fo-
cusing on the symbolic codification of Renaissance music,
such as the Tasso in Music Project [2] have been carried
out. Furthermore, given the inherent complexity of codi-
fying early music, specific guidelines, aimed to minimise
encoding inconsistencies [21] that may lead to bias in the
data and therefore distort the ML outcomes [22], have been
presented [23].

Nevertheless, when we consider the symbolic corpora
containing annotations, these are considerably reduced
[24]; therefore, systems such as Dezrann [25], designed to
collaboratively collect analytic annotations, have been de-
veloped. Concerning Western music in general, annotated
symbolic corpora have been presented, e. g., to enable the
automatic analysis of harmony [24,26] and musical struc-
ture [27,28]. Although annotated corpora of Renaissance
music have also been presented, these are still much more
limited [29-31]. Similarly, computational methods aim-
ing to investigate early music have also been developed,
such as the online analysis search functionalities of the
Josquin Research Project [32] and the SIMSSA Project
[6], amongst others [14,33,34]. However, to the best of our
knowledge, approaches to automatically extract or retrieve
specific attributes typical of early music, such as madri-
galisms, have not yet been presented.

3. DATA DESCRIPTION

The word-painting strategy used in madrigals to musically
imitate the meaning of particular words is known as madri-
galism [1]. In the ‘classical’ Italian madrigals of the 16"
century, madrigalisms can involve rhythm or pitch but are
in particular defined by changes in polyphonic texture, for
example the alternation between imitative and homophonic
counterpoint. Specifically, we will consider three types of
texture typically associated to madrigalisms: antiphonal
texture (ANT), i. e., alternating a musical-linguistic pattern
between two parts; contrapuntal texture (CON), i.e., stag-
gering a musical-linguistic pattern along the timeline over
the different parts; and homorhythmic texture (HOM), i.e.,
musical-linguistic patterns occur simultaneously in the dif-
ferent parts. For musical examples and further details on
each texture, the reader is referred to [29].

The experiments were carried out on the SEILS dataset
[16], a corpus containing 30 symbolically codified madri-
gals from the Il Lauro Secco anthology. This collection
is particularly suited to evaluate madrigalisms, since this
word-painting technique is common for its composers,
e. g., Luca Marenzio [1]. All the madrigals in the corpus
are written for five parts: Canto, Alto, Quinto, Tenor, and
Basso, from the higher to the lower. The modern notated

3 database.elvisproject.ca/
4 www.mutopiaproject.org/
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Group LLD Description

Time BEAT Note’s position
(parsed into time-signature units)
OFFSET Note’s position
(parsed into crotchet units)
RHYTHM Note’s rhythm

(as a fraction of crotchet notes)
Pitch space representation
(e. g., 60.0 stands for C4)

Frequency PS

Time-freq. INTERVAL Interval between two notes
(expressed in semitone units)
MUS-TEXT Binary music-text relationship
(syllabic and melismatic)
Table 1. Description of the 6 Low Level Descriptors

(LLDs) and their corresponding feature groups.

transcriptions codified in **kern syntax were considered.
Although four kinds of texture are annotated in the corpus
— CON, HOM, ANT, and COMB (combined) — the COMB
one, which is a combination of the previous ones, was dis-
carded due to its ambiguity. For simplicity, from now on
we will refer to the annotated sections as madrigalisms.

4. FEATURE EXTRACTION

The extracted features can be grouped into three classes
related to three dimensions: Time, Frequency, and Time-
freq., i.e., the combination of the first two. This formu-
lation relates to the ‘standard’ 2-dimensional score repre-
sentation typical of written Western music, where Time is
encoded on the x axis and Frequency (pitch in music the-
ory) on the y axis, as shown in piano-rolls [35].° For
each dimension, specific Low Level Descriptors (LLDs),
i.e., “Unambiguously defined and objectively verifiable
concepts” [36], were extracted with the python library
music21 [17]. Note that other formulations of LLDs in
symbolic music differing from the herein considered have
also been presented [37]. Subsequently, statistical func-
tionals were computed from the LLDs (cf. Section 4.2).

4.1 Low Level Descriptors (LLDs)

For each annotated madrigalism, six LLDs, chosen from
those most representative of each feature group, were ex-
tracted over time considering the ‘note’ as frame unit:
Three LLDs relate to Time (BEAT, OFFSET, and RHYTHM);
one to Frequency (PS); two to Time-freq. (INTERVAL and
MUS-TEXT); cf. Table 1. BEAT indicates the position of
each note according to the time-signature.® OFFSET gives
the position of each note according to crotchets (stan-
dard length unit).” RHYTHM is indicated as a fraction of
crotchets (represented as 1). PS (pitch space) represents ab-
solute pitches according to the chromatic scale.® INTER-

5 Although this representation applies to most of the Western musical
notation, exceptions should be considered, e. g., contemporary notation.
Note that we are not referring to the musical syntax, e. g., Humdrum.

6A3/4,ie.,a triple simple meter, would be parsed into three crotchet
units; a 6/8, i. e., a binary compound meter, into two dotted crotchet units.

7 For coherence with respect to BEAT and to avoid biasing the features
by the score length, the OFFSET was computed within bars’ boundaries.

8 As in MIDI, 60 stands for C4; yet, PS contemplates also microtones
and values beyond 0-127, although not present in the evaluated repertoire.
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47 f 47 A o
CANTO " - : CANTO :
NV . j () :
v v v v v v v v v v v v
BEAT 1 1.5 2 2.5 3 4 BEAT 1 1 1.51.5 2 2 2.52.5 3 4 4 4 4 |
A BEAT -3 0.5 0.5 0.5 0.5 1 A BEAT -3 -3 0.50.50.50.50.50.50.50.50.50.5 1 1 1 1
OFFSET 0 0.5 1 1.5 2 3 OFFSET ® 0 0.50.5 1 1 1.51.5 2 3 3 3 3
A OFFSET -3 0.5 0.5 0.5 0.5 1 A OFFSET 3 -3 0.50.50.50.50.50.50.50.50506.5 1 1 1 1
RHYTHM 0.5 0.5 0.5 0.5 1 1 re-sample | RHYTHM 0.5 0.50.50.50.5050.506,5 1 1 1 1 1 1 1 1
A RHYTHM _ -0.5 0 0 0 0.5 0 ———— | ARHYTHM _ -0.5-6.5 6 6 06 6 0 0 0.50.50.50.5 6 0 0 0
PS 72 74 76 77 79 74 PS 72 72 74 74 76 76 77 77 79 79 79 79 74 74 74 74
A PS -2 2 2 1 2 -5 A PS 2 -2 2 2 2 2 1 1 2 2 2 2 -5 -5 -5 -5
INTERVAL -2 2 2 1 2 -5 INTERVAL 2 -2 2 2 2 2 1 1 2 2 2 2 -5 -5 -5 -5
A INTERVAL @ 4 0 -1 1 -7 AINTERVAL _® 0 4 4 0 ©® -1 -1 1 1 1 1 -7 -7 -7 -1
canTto |_MUS-TEXT MEL MEL MEL MEL MEL SYL canTo | MUS-TEXT MEL MEL MEL MEL MEL MEL MEL MEL MEL MEL MEL MEL SYL SYL SYL SY|
acro [
QuinTo [

TENOR
BASSO [

Figure 1. For each part, the Note Level Descriptor (NLD) matrix (on the left) is re-sampled and subsequently ‘assembled’
into a multi-dimensional NLD (on the right). The example corresponds to bar 47 (Canto part) of Alberti’s madrigal.

VAL indicates musical intervals in semitones, where neg-
ative values indicate downward intervals, positive upward
intervals. MUS-TEXT expresses the (categorical) music-
text relationship: either syllabic (one-to-one correspon-
dence between pitches and text syllables) or melismatic
(more than one pitch corresponding to each text syllable).

Although in Figure 1, MUS-TEXT is encoded categor-
ically for comprehensibility (SYL as syllabic, MEL as
melismatic), in the LLDs, it is encoded as: O for no text,
i.e., rests; 1 for syllabic; —1 for melismatic. As standard
procedure in over-time feature extraction [38], for the 5
continuous LLDs (all except for MUS-TEXT), Delta coef-
ficients (A), i.e., the differences between two consecutive
values, were computed. From now on, we refer to the 6
LLDs and the 5 A as Note Level Descriptors (NLDs). A ps
and INTERVAL are redundant; yet, they were extracted be-
cause they belong to different groups and are thus needed
in the statistical analysis. Note that A BEAT and A OFF-
SET are only redundant when the subdivision unit of the
time-signature is a crotchet note.

The NLDs were extracted (i) for all the parts together,
i.e., 1 NLD matrix per madrigalism; (ii) for each part in-
dividually, i.e., 5 NLD matrices per madrigalism. The
former were extracted through the .flat property of
music21 (which disregards the vertical alignment across
parts) with the only purpose of computing the statistical
functionals; ® the latter are assembled together into multi-
dimensional NLDs, by this preserving the correspondence
between parts over time, which is relevant to musical tex-
ture, thus, also to madrigalisms. Since each part presents a
unique note’s configuration, considering the note as frame
unit leads to NLD matrices with different lengths across
parts. Thus, in order to assemble them, the NLD matrices
were re-sampled to the fraction of the shortest note in the
corpus, i. e., a semiquaver (cf. Figure 1).

4.2 Statistical Functionals

For the 10 continuous NLDs, 16 functionals were extracted
(cf. Table 2). Since for INTERVAL and A INTERVAL, the
functionals were extracted considering positive and nega-
tive values separately, a total of 12 continuous descriptors

9 For the functionals the correspondence between parts is irrelevant.

Category  Description

Extremes Maximum, minimum, range

Means Arithmetic, harmonic, geometric

Moments Standard deviation, variance, kurtosis,
skewness, coefficient of variation

Percentiles Median, 1%* quartile, 3" quartile,
interquartile range

Other Mode

Table 2. Description of the 16 statistical functionals ex-
tracted from the continuous NLDs.

were used (i.e., 6 LLDs + 6 A). This is necessary to obtain
a meaningful result, otherwise the upward and downward
intervals are mutually cancelled. For the categorical NLD
(MUS-TEXT), 3 functionals were extracted: N(umber) of
syllabic notes (Ngy;); N of melismatic notes (Nyy¢); and
the ratio between Ngy; and Nye; (SYL-MEL;q50). All in
all, 195 functionals were computed: 192 from the continu-
ous NLDs (16 functionals x 12 continuous descriptors); 3
from the categorical NLD (3 functionals x 1 NLD).

5. FEATURE EVALUATION
5.1 Feature Groups Comparison

To evaluate whether the chosen feature groups are suitable
to differentiate between the madrigalism classes (ANT,
CON, HOM), Welch-ANOVA was considered, an alterna-
tive to the one-way ‘classic’ ANOVA (analysis of vari-
ance), suitable in this case: The data were normally dis-
tributed but the homogeneity assumption was violated
[39]. For the pairwise comparisons across classes, the
Games-Howell post-hoc test was employed. Since p-
values as evaluation criteria have been repeatedly criticised
[40], they will be reported but the statistical outcomes will
be interpreted in terms of effect size [41]: epsilon squared
(€?) for the Welch-ANOVA and Hedge’s g for the post-
hoc test. To enable the comparison across the three feature
groups, Principal Component Analysis (PCA) was applied
as a method for dimensionality reduction to the function-
als’ vectors of each group. Although PCA implies infor-
mation loss, this is a plausible method which enabled us to
perform an overall assessment. The remaining variances
were: 80 % for Time; 67 % for Frequency and Time-freq.
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aroup Fodfl df p & ANT-CON ANT-HOM CON-HOM

Iwr  upr » g Iwr  upr p g Iwr upr P g
Time 6.4 2 410 .002 .02 —1.47 1.67 .988 0.02 —3.51 0.04 .057 0.33 —-3.05 —0.61 .001 0.40
Frequency 1.5 2 410 .216 .01 —-1.08 1.28 .977 0.03 —-0.60 198 413 0.19 —0.24 1.42 220 0.19
Time-freq. 9.9 2 410 .000 .03 —1.27 1.00 .956 0.04 0.68 3.68 .002 0.42 1.08 3.55 .000 0.52

Table 3. Welch-ANOVA and Games-Howell results for the evaluation of the madrigalisms: antiphonal (ANT), contrapuntal
(CON), homorhythmic (HOM); for each feature group: Time, Frequency, Time-freq. F statistic, degrees of freedom (df1 and
df2), p-values, epsilon-squared (e?), Hedge’s g, confidence intervals: lower (Iwr) and upper (upr), are given.

functional H dfl dp p 2 ANT-CON ANT-HOM CON-HOM

Z P d A P d Z D d
Ny (syllabic) 76.6 2 410 .000 .18 —-1.57 167 0.29 4.76 .000 0.87 8.66 .000 0.88
Nimel (melismatic) 26.7 2 410 .000 .06 —0.83 .406 0.10 2.85 .006 0.64 5.04 .000 0.59
SYL-MELyqti0 (ratio) 18.67 2 410 .000 .04 —-0.98 .326 0.19 217 .045 0.26 4.30 .000 0.41

Table 4. Kruskal-Wallis results and Dunn pairwise comparisons for the evaluation of the madrigalism classes: ANT, CON,
HOM; for the three MUS-TEXT statistical functionals: N(umber) of syllabic and melismatic notes, and the ratio between
both. H statistic, degrees of freedom (df1 and df2), p-values, eta-squared (7]2), Z-score, and Cohen’s d, are given.

The statistical analysis shows that the Time-freq. fea-
tures present the most prominent differences across madri-
galism classes, as indicated by a higher (although small)
effect size with respect to the other feature groups (e? =
.03); cf. €2 for Time-freq. in Table 3. This difference is
medium for CON vs HOM (g = 0.52), slightly lower for
ANT vs HOM (g = 0.42), and almost no difference is dis-
played for ANT vs CON (g = 0.04); cf. g for Time-freq.
in Table 3. The same trend is displayed to a lower extent
for Time: higher differences are shown for CON vs HOM
and ANT vs HOM (g = 0.40 and g = 0.33, respectively);
almost no difference is shown for ANT vs CON (g = 0.02);
cf. g for Time in Table 3. Conversely, all the differences
between classes are small for the feature group Frequency
(g < 0.19) which indicates that there is no relationship be-
tween madrigalisms’ texture and specific vocal registers.
Nevertheless, the role of frequency-related features should
be further investigated by considering the meaning and rel-
evance of the words used in each madrigalism class.

Overall, the statistical evaluation indicates that HOM
and CON are the madrigalisms with the highest dissimi-
larity, while ANT and CON are the most similar ones. This
might seem obvious if we think of the madrigalisms’ tex-
ture, i.e., by evaluating them from a High Level perspec-
tive: Contrapuntal and homorhythmic textures are dissim-
ilar; contrapuntal and antiphonal textures are similar. Yet,
our analysis indicates that the functionals related to the
Time and Time-freq. dimensions capture relevant proper-
ties in the definition of the evaluated classes; consequently,
their NLDs are also representative of madrigalisms’ inher-
ent texture. This shows a direct relationship between Low
Level and High Level musical descriptors, meaning that
measuring the former may enable us to predict the latter.

5.2 Music-Text Relationships

Since the relationships between music and lyrics are cru-
cial in madrigalisms, the functionals extracted from the
MUS-TEXT NLD (N, Nyer, and SYL-MEL,q4,) are eval-
vated individually. Note that these are already vectors,
thus, PCA was not performed. Since the assumptions for
normality and homogeneity were both rejected, the rank-
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based non-parametric Kruskal-Wallis test was carried out.
For the pairwise comparisons across classes, the Dunn
post-hoc test with Benjamini-Hochberg (BH) p-value ad-
justment was applied [42]. Again, the statistical outcomes
will be evaluated in terms of effect size: eta-squared (n?)
for Kruskal-Wallis and Cohen’s d for the Dunn test.

Our analysis shows that the functionals related to the
counts of each MUS-TEXT relationship (syllabic and melis-
matic) are relevant to differentiate between madrigalism
classes, as shown by the large and moderate effect sizes,
respectively: 1? = .18 (for Ngy;); n* = .06 (for Nyer);
cf. % in Table 4. Differences between classes are less
prominent for the ratio, as shown by a lower effect size
(n? = .04); cf. n? for SYL-MEL,;;, in Table 4. Simi-
larly to the outcomes from the overall evaluation (cf. Sec-
tion 5.1), HOM shows generally noticeable differences with
respect to the other two classes. The pairwise comparisons
for CON vs HOM and ANT vs HOM indicate big differences
for Ngy; (d = 0.88 and d = 0.87); moderate for Ny,
(d = 0.59 and d = 0.64); smaller (as expected) for SYL-
MEL; a0 (d = 0.41 and d = 0.26); cf. Cohen’s d for
CON-HOM and ANT-HOM, respectively, in Table 4. Again,
ANT vs CON yielded small differences for all the function-
als (0.10 < d < 0.29); cf. d for ANT-CON in Table 4.

Since the music-text relationships might particularly
vary across the different parts, statistical functionals were
also extracted from the MUS-TEXT NLD, considering each
part individually; '° then, the same evaluation was carried
out. The results of the statistical analysis for the individual
parts, although showing smaller effects, display the same
overall trend as described for the parts together. For Ny,
and N,,,; (in all the parts), HOM vs the other two classes
yielded a moderate effect size (0.41 < d < 0.71), for ANT
vs CON a small one (0.03 < d < 0.34). Similarly, for
SYL-MELyq¢, (in all the parts), all the pairwise compar-
isons yielded d < 0.40, except for Canto, which showed a
slightly higher difference for HOM vs the other two classes
(0.45 < d < 0.56). This is due to the Canto’s promi-
nent use of melismas in CON and ANT, which — contrasting

10 The functionals were again extracted before the re-sampling, but in
this case, processing the 5 NLD matrices of each madrigalism separately.
Note that due to space constraints these results are not displayed in a table.
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Fold A Fold B Fold C g
Sp ANT CON HOM ANT CON HOM ANT CON HOM NLDs %
[ 19 58 47 24 7 39 2 64 62 5
o226 33 26 70 60 16 62 55 ; Z
moo16 71 42 19 73 58 20 57 48 Functionals 3
IV 21 72 51 25 60 49 18 69 48

Table 5. Number of madrigalisms per class (ANT, CON,
HOM), in the four splittings (Sp.), performed according to
the 3-fold composer independent partitioning (A, B, C).

with the syllabism typical of HOM — makes the differences
in SYL-MEL,.q¢;, across classes much more prominent for
this part. This suggests that the role of specific features
might be more clearly displayed in some parts, indicating
that a particular weight should be attributed to them.

6. EXPERIMENTAL SET-UP

To create the baseline for the automatic recognition of
madrigalisms’ texture, four ML models were considered:
a Support Vector Machine (SVM) classifier, a Multi-
layer Perceptron (MLP), a Convolutional Neural Network
(CNN), and a Bidirectional Long-Short Term Memory Re-
current Neural Network (BLSTM-RNN). The SVM and
the MLP were fed with the statistical functionals (cf. Sec-
tion 4.2), the CNN and the BLSTM-RNN with the multi-
dimensional NLDs (cf. Section 4.1). Both feature repre-
sentations were z-score normalised according to the mean
and variance, estimated from the respective training set. In
addition, a FUSION approach considering the NLDs and
functionals was investigated (cf. Figure 2).

6.1 Partitions, Experiments, and Evaluation Metrics

The experiments were carried out on a 3-fold composer in-
dependent partitioning, i.e., the madrigalisms were split
into 3 disjunct sub-sets (A, B, C), and no madrigalisms
by the same composer appeared across sub-sets. Note that
each madrigal is by a unique composer. The 30 composers
were randomly '! assigned to the 3 sub-sets (10 for each),
which were considered alternately as training, validation,
and test sets. To generalise the outcomes, the 3-fold parti-
tioning was performed 4 times (cf. Table 5), and the exper-
iments were carried out for each of the 4 splits individually.
Furthermore, the 6 possible permutations between sub-sets
were considered per split; thus, a total of 24 experiments
was carried out: 6 permutations x 4 splits.

As the features from the Frequency group proved not to
be relevant in the statistical analysis, the following experi-
ments were performed: (i) using the whole feature set (All),
i.e., 195 functionals (for SVM and MLP) and 11 NLDs
(for CNN and BLSTM-RNN); (ii) excluding the features
from the Frequency group (Selected), i.e., 163 function-
als and 9 NLDs. Finally, given the high similarity be-
tween ANT and CON, two classification problems were ad-
dressed: (i) 3C(lass), i.e., considering the three types of
madrigalisms; (ii) 2C, i.e., excluding ANT (the minority
class). Thus, the 24 experiments were performed in four
set-ups: 3C with All features; 3C with the Selected ones;

T A fixed random seed was chosen to guarantee reproducibility.
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Figure 2. FUSION model: NLDs are fed into a CNN (1 or
2 convolutional blocks and global pooling over time), con-
catenated with the functionals, and then fed into an MLP.

2C with All features; 2C with the Selected ones; i.¢€., 96
experiments (4 splits X 6 permutations X 4 set-ups) were
carried out per model. To enable a fair comparison, the
models were optimised individually for each set-up.

Since the distribution of madrigalisms across com-
posers is unbalanced (cf. Table 5), the samples belonging
to the minority classes were up-sampled in training by ran-
domly "' duplicating madrigalisms until matching the size
of the majority class, i.e., CON. Unweighted Average Re-
call (UAR) was considered as appropriate metric to evalu-
ate the models’ performance due to the unbalanced classes
in the test set; furthermore, the recall for each class will be
discussed. To report the overall results, mean (y) and stan-
dard deviation (o) across the 24 experiments per set-up and
model will be indicated for both UAR and recall.

6.2 Model Optimisation

We employed an SVM classifier with linear kernel built on
the python library scikit-learn [43]. For the optimi-
sation, five different complexities (C) from 0.00001 to 0.1
(on a logarithmic scale, with a factor of 10 between steps)
were considered. The C which yielded the highest UAR
on the validation set was chosen to re-train the SVM con-
sidering the samples from the training and validation sets
together. The MLP, CNN, and BLSTM-RNN were built on
TensorFlow 2.3 [44] through the API Keras [45]. For
all of them, Adam optimiser, Softmax activation function
in the output layer, a maximum of 200 epochs, and early
stopping with a patience of 15 were used.

For the MLP, an architecture of two hidden layers with
an optimised number of neurons for each given as 25, 75,
or 175 and Sigmoid activation, with a dropout of 20 % af-
ter the first hidden layer, was considered. The batch size
was optimised choosing the optimum of 10, 25, and 75;
the learning rate was fixed as 0.001. All optimisations and
the early stopping were done on the validation set. For the
CNN and BLSTM-RNN models, the multi-dimensional
NLDs (time x part x NLD) were first reshaped fusing the
part and NLD dimensions. !> Both front-ends were fol-
lowed by a fully-connected network where the same archi-
tecture and hyperparameters as for the MLP were used.

The CNN front-end consisted of convolutional blocks
with a 1D-convolutional layer of 150 filters followed by
batch normalisation, ReLU, and a max-pooling layer. For
the convolutional layer, the filter length was 3 and the shift
2; for the max-pooling layer, both the filter length and the
shift were 2. The number of convolutional blocks was op-
timised between one and two. The sequential represen-

12 Using different heads for each part was also tried in initial experi-
ments, but the performance was found to be worse.
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All (Time + Freq. + Time-freq.)

Selected (Time + Time-freq.)

3C SVM MLP CNN BLSTM-RNN SVM MLP CNN BLSTM-RNN  FUSION
ANT 13.0£85 143+£104 82+ 7.5 24.0 +20.8 13570 944+ 94 96+ 7.1 19.7 £ 14.8 10.2£8.5
CON 61.5+72 57.0£11.8 743+11.3 51.1+16.5 623+£75 655+11.9 724+ 9.6 55.9+13.3 68.1£8.1
HOM 584+59 594+ 79 705+11.8 69.7 £ 16.7 59.7+£59 599+ 88 708+12.0 69.8+ 9.7 67.1£9.0
UAR 443+3.0 436+ 4.0 510+ 4.6 483+ 5.6 45.2+33 449+ 40 508+ 4.4 484+ 5.0 48.5+3.9

2C SVM MLP CNN BLSTM-RNN SVM MLP CNN BLSTM-RNN  FUSION
CON 744+6.0 728+6.1 80.0+10.3 74.0+11.6 75.9+6.7 75.0£59 77.5£10.0 73.0+£11.2 803+ 8.6
HOM 614482 621£82 710+ 9.6 69.3 £ 11.5 62.7+84 61.3+81 742+ 9.2 70.3+ 8.0 68.1+10.2
UAR 679436 674+38 755+ 4.5 71.7£ 6.3 69.3+35 682+46 759+ 44 717+ 56 742+ 5.0

Table 6. Baseline results for the 3C(lass) and 2C classification of madrigalisms (ANT, CON, HOM) for All and Selected
features. Recall per class and Unweighted Average Recall (UAR) are given (highest values marked in bold) for SVM, MLP,
CNN, BLSTM-RNN, and FUSION approaches. Mean and standard deviation (% o) [%] across experiments are indicated.

tations extracted by the CNN front-end are subject to a
global max-pooling (over time). The BLSTM-RNN front-
end consisted of BLSTM layers of 150 units, a dropout
of 20 %, and Tanh activation. The number of layers was
again optimised between one and two. When using two
layers, the first layer returned a sequential output, followed
by self-attention (SegSelfAttention layer).

7. BASELINE RESULTS

In Table 6, the baseline results are given. Generally, the
experiments with Selected features present a higher UAR
than those with All features, which confirms the outcomes
of the statistical evaluation (cf. Section 5.1); still, the dif-
ferences for Selected vs All for any classifier are small
(£ 1.4 %). The model reaching the highest UAR was the
CNN (cf. UAR for CNN in Table 6), generally showing a
statistically significant difference with respect to the oth-
ers. Pairwise comparisons with Tukey post-hoc for CNN
vs SVM and CNN vs MLP, in all the set-ups, yielded:
p < .0001, Cohen’s d > 1.3; for CNN vs BLSTM-RNN,
in 2C: p < .05, Cohen’s d > 0.7; while in 3C, no signifi-
cant difference was shown: p > .05, Cohen’s d < 0.5.
The higher performance of the CNN, and to some ex-
tent BLSTM-RNN, might be due to the use of the NLDs,
which unlike the functionals contain the correspondences
across parts over time, which is relevant in madrigalisms.
While the CNN generally performed best with one convo-
lutional block (chosen in 84 out of the 96 experiments),
the BLSTM-RNN performed best with two layers (65 out
of 96). Yet, the BLSTM-RNN generally shows more un-
stable results across experiments, as displayed by a higher
std. dev. (cf. o in Table 6), which indicates that a simpler
architecture can more reliably model the considered data.
The class recognised worst was, as expected, ANT,
showing a recall, for all the models, at chance level (cf. i
for ANT in Table 6). This is due to ANT madrigalisms be-
ing much fewer than the others and very similar to CON, as
shown in the features evaluation. The confusion between
both classes particularly reduces the recall of CON in the
3C problem, whose improvement is much more prominent
than the one shown for HOM when comparing the 3C and
the 2C experiments (cf. the upper with respect to lower half
of Table 6 for CON and HOM): Across all the models and
feature sets, the average recall difference for CON between
2C and 3C is 12.85 %, while for HOM, it is only 1.76 %.
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To evaluate whether a FUSION between the multi-
dimensional NLDs and the functionals might yield a bet-
ter performance, the best performing architecture, i. e., the
CNN, was concatenated with the functionals, using the
same architecture for the MLP as before (cf. Figure 2).
The whole network was trained from scratch to enable
the model to learn complementary representations. Ex-
periments were carried out considering the same hyperpa-
rameter optimisation as previously described and the same
four set-ups: 3C and 2C, for All and Selected features.
The same pairwise combinations between functionals and
NLDs were used: Selected functionals were concatenated
with the output of the CNN trained with Selected multi-
dimensional NLDs, and correspondingly for All. In Ta-
ble 6, the best results for 3C and 2C problems with the
FUSION model, i.e., considering the Selected features,
are given. While FUSION’s recall on CON (2C) increased
over the one from the CNN, no consistent improvement is
shown, which indicates that multi-dimensional NLDs are a
good representation of madrigalisms’ texture on their own.

8. LIMITATIONS & CONCLUDING REMARKS

Our research outcomes indicate that symbolic features and
ML methods are both appropriate to further investigate
word-painting strategies in madrigals. They also highlight
the potential of applying Al in the study of Renaissance
music. Yet, since this study was the first of its kind, at
this stage we evaluated the lyrics only in terms of syllabic
and melismatic relationship, while the importance of spe-
cific words, which might be given by their meaning (both
linguistic/metaphorical) within and across madrigals, typi-
cally highlighted through specific word-painting strategies,
was not yet considered. A deeper evaluation of the lyrics
is indeed one of the next priorities in our future work,
by this systematically identifying the connections between
music and poetry in the Italian madrigal. Furthermore, we
will also compare the ML outcomes from the feature-based
methods with those achieved through humdrum-based end-
to-end approaches already presented in the literature [46].
Our work shows that symbolic Low Level Descriptors
are suitable to automatically identify different textures in
Italian madrigals. In addition, the presented baseline will
hopefully stimulate further research advances in the appli-
cation of ML to early music, by this promoting a deeper
understanding of the Renaissance musical heritage.
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