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ABSTRACT 

Audio features such as inharmonicity, noisiness, and spec-
tral roll-off have been identified as correlates of “noisy” 
sounds; however, such features are likely involved in the 
experience of multiple semantic timbre categories of var-
ied meaning and valence. This paper examines the rela-
tionships among audio features and the semantic timbre 
categories raspy/grainy/rough, harsh/noisy, and 
airy/breathy.  

Participants (n = 153) rated a random subset of 52 stim-
uli from a set of 156 ~2-second orchestral instrument 
sounds from varied instrument families, registers, and 
playing techniques. Stimuli were rated on the three seman-
tic categories of interest and on perceived playing effort 
and emotional valence. With an updated version of the 
Timbre Toolbox (R-2021 A), we extracted 44 summary 
audio features from the stimuli using spectral and har-
monic representations. These features were used as input 
for various models built to predict mean semantic ratings 
(raspy/grainy/rough, harsh/noisy, airy/breathy) for each 
sound.  

Random Forest models predicting semantic ratings 
from audio features outperformed Partial Least-Squares 
Regression models, consistent with previous results sug-
gesting non-linear methods are advantageous in timbre se-
mantic predictions using audio features. In comparing Rel-
ative Variable Importance measures from the models 
among the three semantic categories, results demonstrate 
that although these related semantic categories are associ-
ated in part with overlapping features, they can be differ-
entiated through individual patterns of feature relation-
ships.  

1. INTRODUCTION 

Several audio features have been identified as correlates of 
“noisy” sounds, including inharmonicity, spectral flatness, 
spectral centroid, and spectral roll-off. However, not all 
types of noise are semantically equal: when timbre catego-
ries are nuanced, “noisy” features may be correlates of 

multiple semantic categories with varied meanings and 
even varied valence. Through interviews and rating tasks, 
Reymore and Huron [1] built a 20-dimensional model of 
musical instrument timbre qualia. Intriguingly, the final 
model included three timbre dimensions plausibly related 
to noise components—shrill/harsh/noisy, raspy/grainy 
and airy/breathy—while a further two dimensions ap-
peared to potentially refer to harmonicity and/or a lack of 
“noisy” features—pure/clear and focused/compact. Spec-
ulating on correlates of these semantic categories, Rey-
more and Huron [1] noted that while noise has been often 
associated with negative valence and high physical exer-
tion as in Wallmark, Iacoboni, Deblieck, and Kendall [2], 
noise components in breathy timbres, typically measured 
in speech research with harmonic-to-noise ratio (HNR), 
may convey a sense of proximity or intimacy that carries 
positive valence. Thus, a feature such as HNR may be im-
portant for multiple semantic categories. Although seman-
tic categories can share acoustic correlates, varying rela-
tionship strengths with audio features may create distinc-
tive, perceptible patterns for listeners that are associated 
with varying semantic content. 

The current study examined three semantic categories 
derived from Reymore and Huron’s model: 
raspy/grainy/rough, harsh/noisy, and airy/breathy. The 
aim was to determine how these semantic categories may 
be distinguished based on their relationships with audio 
features. We used linear and non-linear approaches to 
model semantic ratings using audio features, with the goal 
of uncovering distinctive acoustic signatures for each se-
mantic category. Predictors included spectral and har-
monic features from a recently updated version of the Tim-
bre Toolbox (R-2021A) [3]. Among these features, several 
have been associated with noise in previous literature and 
so were of particular interest for the interpretation of our 
results (see Section 2.2). 

We first describe the methods used in the rating study 
and in audio feature extraction. These features are then 
used in models to predict semantic ratings. McAdams et 
al. [4] used Timbre Toolbox audio features to model affec-
tive qualities of timbre using both linear and nonlinear 
modeling approaches and found that the nonlinear ap-
proach was more successful. Accordingly, we compare 
linear and nonlinear methods for analysis to assess whether 
this observation holds in a similar dataset. We consider our 
findings with regard to comparative relative importance 
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values of features for each of the semantic categories. Our 
results illustrate in detail relationships between low-level 
features extracted using MIR techniques and high-level se-
mantic features whose validity and reliability have been 
established through perceptual studies [1, 5-6].  

2. METHODS 

2.1 Semantic Ratings 

2.1.1 Participants 

Participants (n = 153; F = 95, M = 57, other = 1), were 
recruited using the internet platform Prolific. Participants 
were on average 32 years of age (SD = 11.2, range = 18–
68); 41 of the 153 self-identified as musicians using the 
single-question measure from the Ollen Musical Sophisti-
cation Index [7]. As identified through Prolific’s screening 
process, all participants were native English speakers. Par-
ticipants provided informed consent and were compen-
sated for their participation. 

2.1.2 Materials 

Stimuli consisted of 156 approximately 2-second sound 
clips of single notes (pitch class C) played by various or-
chestral instruments, normalized and matched for loudness 
by the researchers. Stimuli were taken from three sound 
banks: Vienna Symphonic Library (VSL) [8], McGill Uni-
versity Master Samples (MUMS) [9] and conTimbre [10]. 
The stimulus set included 42 instruments playing in 5 reg-
isters (C2–C6) using both traditional and unconventional 
playing techniques. The unconventional playing tech-
niques that were selected generated additional noise com-
ponents (such as bowing a violin at the bridge). In select-
ing stimuli, we aimed to sample as widely as possible from 
the semantic space of interest—that is, to sample sounds 
representing high, moderate, and low ratings on all given 
categories of interest. To help achieve this goal, the final 
stimulus selection process was guided by the results of a 
pilot study (n = 10) of 46 sounds. 

Principal Component Analysis of the pilot results, in 
which sounds were rated on individual rather than grouped 
terms (e.g., separate ratings were made for “airy” and 
“breathy”) confirmed the appropriateness of grouped 
terms. Specifically, a three-component PCA model with 
promax rotation demonstrated strong loadings which 
aligned with the groupings of terms used in the main study 
(raspy/grainy/rough, harsh/noisy, airy/breathy).   

2.1.3 Procedure 

To avoid an overly long experiment, the stimulus set was 
partitioned into three subsets for each group of three par-
ticipants, each of whom rated one-third of the stimulus set 
(52 sounds). This resulted in 51 complete sets of rating 
data on the entire stimulus set. 

Participants rated how applicable each semantic cate-
gory was to a given stimulus using a continuous sliding 
scale from 1 (does not describe at all) to 7 (describes ex-
tremely well), where the midpoint was labeled describes 
moderately well. Participants also rated valence (negative 
to positive) and perceived playing effort (little to no exer-
tion to high exertion).  

Ratings were made in separate blocks for each scale; 
participants thus rated their subset of 52 stimuli a total of 
five times. At the beginning of each trial (except the first 
in each block), the stimulus was automatically played, and 
participants could play the stimulus again as many times 
as desired. The presentation order of the scales and the 
presentation order of stimuli within each block were ran-
domized. The experiment took approximately 30 minutes 
to complete. 

2.2 Audio Feature Extraction 

To investigate relationships between semantic timbre cat-
egories and acoustic features, we used an updated version 
of the Timbre Toolbox [3]. The Timbre Toolbox calculates 
spectral, temporal, and spectrotemporal acoustic features 
from an audio signal in Matlab [11]. First, input represen-
tations of the signal are computed. Then, both scalar and 
time-series features are extracted from different input rep-
resentations. Lastly, the Timbre Toolbox calculates inter-
quartile range (IQR) and median values of time-series fea-
tures. These values represent the central tendency and var-
iability of the audio features, respectively [12].  

For this study, we used the STFT (Short-Time Fourier 
Transform) and HARM (Harmonic) input representations. 
The STFT is a spectrotemporal representation obtained us-
ing a sliding-window analysis over the audio signal. Then, 
the amplitude spectrum of the STFT is used as one of the 
representations to derive the audio features. HARM (sinus-
oidal harmonic model) is a harmonic representation that 
uses frame analysis to estimate slowly varying amplitude 
and frequency of individual harmonics [12]. 

Each stimulus was analyzed in the Timbre Toolbox to 
determine the median and IQR of audio features. Several 
features are derived from both the STFT and HARM rep-
resentations. Results reported here for these overlapping 
features were taken from the STFT representation. In total, 
we used medians and IQRs of 22 features provided by the 
Timbre Toolbox [3], listed in Table 1.  

Several of the features provided by these two represen-
tations in the Timbre Toolbox have been previously asso-
ciated with noise, including inharmonicity, noise energy, 
noisiness, spectral flatness, HNR, and spectral centroid.  

 
Audio Features from Timbre Toolbox 
Inharmonicity Spectral Spread  
Noisiness Spectral Centroid  
Noise Energy Spectral Variation 
Harmonic Energy Spectral Roll-Off 
Pitch Spectral Decrease 
Harmonic-to-Noise Ratio Spectral Skewness  
Tristimulus 1 Spectral Flux  
Tristimulus 2 Spectral Kurtosis 
Tristimulus 3  Spectral Flatness 
Harmonic Odd-to-Even Ratio Spectral Crest 
Harmonic Spectral Deviation Spectral Slope 

 
Table 1. List of Timbre Toolbox audio features; median 

and IQR values were extracted for each feature. 
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Inharmonicity is the degree to which the frequencies of 
overtones depart from multiples of the fundamental fre-
quency; inharmonicity within the auditory signal manifests 
as noise [2], [13]. Noise energy is calculated as the energy 
of the signal not explained by stable partials [3]. (Note that 
this definition differs from that of the feature in previous 
versions of Timbre Toolbox, which calculates noise en-
ergy based only on stable harmonic partials [12]).  Noisi-
ness refers to the ratio of noise energy to total energy; high 
noisiness values indicate a signal that is mainly nonhar-
monic. Spectral flatness, which has also been associated 
semantically with “noisy” timbres [2], [14], roughly dis-
criminates noise from harmonic content because sinusoi-
dal components produce a peak in the spectrum, whereas 
white noise produces a flat spectrum [12].  

Phonetic processes, such as breathy and creaky voice, 
may also offer insight into the acoustic correlates that un-
derlie semantic timbre categories. Keating et al. [15] found 
that different acoustic features or combinations of these 
features, including HNR, characterized different varieties 
of creaky voice. HNR is an assessment of the ratio between 
periodic and non-periodic components comprising a seg-
ment of an acoustic signal [15]. 

Spectral centroid is the center of mass of the power 
spectrum of an acoustic signal and is related to the percep-
tion of brightness [16]. Because Wallmark [14] suggests 
that increased brightness is associated with the perception 
of physical exertion, and because we anticipate that our se-
mantic categories of interest will be related to perceived 
exertion, spectral centroid may be a relevant correlate for 
one or more categories. 

3. ANALYSIS 

3.1 Semantic Ratings 

All analyses reported in this paper were carried out in R, 
version 4.0.5 [17]. Cronbach’s alpha was calculated 
among complete sets of ratings using the alpha function in 
the psych package [18], where each set of ratings was com-
pleted by three participants (see 2.1.3). All alpha values 
were greater than .9, indicating excellent internal con-
sistency. Mean semantic ratings were distributed over a 
large portion of the 1–7 rating scale for each category, sug-
gesting that our stimulus set was successful in representing 
the semantic space of interest. Ranges among mean ratings 
and Cronbach’s alpha values are reported in Table 2. 

With Holm corrections implemented by the corr.test 
function in the psych package [18],1 we observed signifi-
cant Pearson correlations between harsh/noisy and 
rough/raspy/grainy, r(154) = .53 and between harsh/noisy 
and airy/breathy, r = -.54. The correlation between 
rough/raspy/grainy and airy/breathy was not significant. 
 

Semantic category Min Max  Cronbach’s a 
Raspy/grainy/rough 1.63 6.72 .97 
Harsh/noisy 2.12 6.45 .95 
Airy/breathy 1.50 5.65 .93 

 

Table 2. Range of mean ratings among stimuli and 
Cronbach’s alpha for each semantic category. 

 
1 This method is used for all correlations reported in this paper. 

3.2 Models 

Following McAdams et al. [4], we performed both linear 
and nonlinear modeling. Scaled and centered values for the 
audio features from the Timbre Toolbox were used to pre-
dict mean semantic ratings; separate models were gener-
ated for each of the three semantic categories.  The linear 
method of analysis used was partial least-squares regres-
sion (PLSR), a supervised learning algorithm that takes a 
dimension-reduction approach including a Principal Com-
ponent Analysis process. Unlike principal component re-
gression, however, PLSR takes both the predictor and out-
come variables into account when building the linear 
model. This kind of statistical approach can handle data 
that exhibit multicollinearity and thus was appropriate for 
our dataset. Random forest regression was used as the non-
linear method of analysis. A random forest (RF) is a super-
vised machine learning algorithm that builds multiple de-
cision trees by randomly selecting observations and spe-
cific variables and then averaging the results [19]. Both 
types of models were built with the caret package [20]. 

R2 was computed on the complete dataset using ten-fold 
cross-validation repeated three times. To obtain Q2, we ap-
plied a further five-fold cross-validation to each model. 
The observations were divided into five subsets; the model 
was trained on four out of the five subsets and then pre-
dicted the last remaining subset. The subsets were rotated 
to ensure that the training and prediction steps were ap-
plied to every combination of the subsets. Within each of 
the train-test subsets, models were trained using a 10-fold 
cross-validation repeated three times. This process also 
produced the RMSE values that are reported below. Table 
3 contains values for R2, Q2, and RSME for each model.  
 

Semantic category Model 
Type 

R2 Q2 RMSE 

Raspy/grainy/rough RF .82 .78 .47 
 PLSR .64 .56 .70 
Harsh/noisy RF .56 .54 .69 
 PLSR .43 .28 .93 
Airy/breathy RF .45 .43 .78 
 PLSR .36 .29 .89 

 

Table 3. Average R2 and RMSE values from PLSR and RF 
models for all three semantic categories.  

3.3 Relative Variable Importance 

We calculated Relative Variable Importance (RVI) using 
the varImp function from the caret package [20]. RVI val-
ues are reported in Tables 4 and 5. RVI for the PLSR is 
based on the weighted sums of the absolute regression co-
efficients. The weights are a function of the reduction of 
the sums of squares across the number of PLS components 
and are computed separately for each outcome [20]. For 
the RF, the mean squared error is recorded on the out-of-
bag portion of the data and after permuting each predictor 
variable. Differences between these values are averaged 
across all trees and normalized by the standard deviation 
of the differences [21]
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 Airy/breathy Harsh/noisy Raspy/grainy/rough 
 Feature Value Feature Value Feature Value 

1. Harm Spec Dev IQR 100.00 Spectral Decrease Med 100.00 HNR Med 100.00 
2. Harm Spec Dev Med 72.27 Spectral Centroid Med 64.79 Noisiness Med 92.05 
3. Spectral Roll-Off Med 68.76 Pitch Med 54.92 Spectral Variation IQR 74.63 
4. Spectral Spread Med 64.50 Spectral Spread Med 50.88 Harmonic Energy Med 73.24 
5. Spectral Centroid Med 62.17 Spectral Roll-Off Med 50.03 Inharmonicity Med 73.17 
6. Spectral Flux IQR 58.61 Spectral Variation IQR 46.63 Pitch Med 72.26 
7. Spectral Slope IQR 58.24 Harm Spec Dev IQR 40.62 Spectral Slope Med 70.63 
8. Tristimulus 1 Med 56.17 Harm Spec Dev Med 39.97 Spectral Crest Med 66.84 
9. Spectral Flux Med 52.86 HNR Med 31.52 Tristimulus 3 Med 63.57 

10. Spectral Skewness Med 48.44 Spectral Decrease IQR 31.36 Spectral Variation Med 59.95 

Table 4. Top 10 important variables and their respective relative variable importance values for each semantic category 
using partial least-squares regression. 
 
 

 Airy/breathy Harsh/noisy Raspy/grainy/rough 
 Feature Value Feature Value Feature Value 

1. Odd:Even Ratio Med 100.00 Spectral Decrease Med 100.00 HNR Med 100.00 
2. Odd:Even Ratio IQR 72.34 Spectral Spread Med 87.68 Inharmonicity IQR 62.11 
3. Harm Spec Dev IQR 71.73 Spectral Roll-Off Med 72.04 Spectral Variation Med 54.34 
4. Spectral Roll-Off Med 49.60 Spectral Centroid Med 71.21 Noisiness Med 40.84 
5. Spectral Flux IQR 40.98 Spectral Spread IQR 62.49 Spectral Variation IQR 39.43 
6. Spectral Spread Med 30.97 Spectral Variation IQR 37.58 Tristimulus 3 Med 21.00 
7. Spectral Centroid Med 29.13 Spectral Flatness IQR 31.09 Inharmonicity Med 18.98 
8. Spectral Variation IQR 27.13 Spectral Variation Med 26.13 Pitch Med 18.81 
9. Spectral Skewness IQR 19.02 Spectral Flatness Med 24.44 Harmonic Energy Med 5.11 

10. Tristimulus 1 IQR 16.67 Noisiness IQR 24.24 Tristimulus 1 Med 3.13 

Table 5. Top 10 important variables and their respective relative variable importance values for each semantic category 
using random forest regression. 
 

4. DISCUSSION 

4.1 Relative feature importance profiles for semantic 
categories 

Partial least-squares and random forest models were built 
to predict mean semantic ratings from extracted audio fea-
tures. These models were most successful in predicting rat-
ings of raspy/grainy/rough (Q2: RF .78, PLSR .56); mod-
els predicting harsh/noisy (Q2: RF .54, PLSR .28) and 
airy/breathy (Q2: RF .43, PLSR .29) were also moderately 
successful. McAdams et al. [4] found that a nonlinear ap-
proach produced better models than a linear approach 
when modeling affective qualities using Timbre Toolbox 
audio features. We also observed an advantage for the non-
linear method, as random forest models consistently 
yielded higher Q2 values and lower RMSE values than the 
linear PLSR models. Because random forest regression of-
fered the more successful models, the current discussion of 
results focuses on the random forest models unless other-
wise noted. 

HNR median was the most important variable in pre-
dicting ratings of raspy/grainy/rough. Spectral decrease 
median was the most important feature for predicting 
harsh/noisy, and harmonic odd-to-even ratio median was 
the most important feature for airy/breathy. Spectral vari-
ation IQR was in the top ten important features predictive 
of ratings for all three semantic categories.  

Patterns of variable importance were distinct for each 
semantic category. Particularly among the RF models, fea-
tures ranking especially high in relative importance were 
often unique to one of the three semantic categories, 
though some important features were overlapping between 
categories. This suggests that specific combinations of fea-
tures may be important for the perception of varying se-
mantic information.  

One method of comparing feature importance among 
the three semantic categories is to choose a minimum im-
portance value in order to define what constitutes a “rele-
vant” feature. Relevant features—i.e., the features exceed-
ing that threshold for each category—can then be com-
pared across models. For example, spectral variation IQR 
is the only feature with an RVI value over 25 for all three 
semantic categories, suggesting that it is at least moder-
ately relevant for models of all three categories.  

In this manner, we can identify which features are 
uniquely “relevant” to each semantic category, where “rel-
evant” is defined by the researcher as referring to features 
with RVI greater than a given value. A threshold of 25 was 
set for the purpose of this analysis, based on the distribu-
tion of RVI values and tractability for discussion. Defini-
tions of “relevance” in similar interpretations can be de-
fined with respect to the goals of the interpretation.  

With this definition in mind, uniquely relevant features 
for raspy/grainy/rough include the HNR median, inhar-
monicity IQR, and noisiness median. Of these features, 
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Pearson correlations (r) demonstrate that median HNR and 
median noisiness were strongly negatively correlated in 
the dataset, r(154) = -.96, p < .001. 
 

  
 
Figure 1. Radar plots of Relative Variable Importance 
measures for random forest models of each semantic cate-
gory. 
 

For harsh/noisy, uniquely relevant features include the 
spectral decrease median, spectral spread IQR, and spec-
tral flatness IQR. Unique features for airy/breathy include 
the harmonic odd-to-even ratio (median and IQR, which 
are intercorrelated at r = .99), harmonic spectral deviation 
IQR, and spectral flux IQR.  

The spectral variation median was relevant for both 
raspy/grainy/rough and harsh/noisy. Harsh/noisy and 
airy/breathy also shared relevant features—spectral roll-
off median, spectral spread median, and spectral centroid 
median; these three features were strongly correlated 
among our stimuli set (roll-off/spread, r = .97; roll-off/cen-
troid, r = .95, centroid/spread, r = .91). 

RVI values for the 14 most important features across 
semantic categories from the random forest models are il-
lustrated in the radar plots of Figure 1. The radius repre-
sents RVI; features are listed in the same order around the 
circles for all three plots in order to facilitate visual com-
parisons of semantic categories. 

4.2 Noise-related features 

In Section 2.2, we reviewed several features which previ-
ous literature suggests may be relevant for our semantic 
categories of interest, including inharmonicity, noisiness, 
noise energy, spectral flatness, spectral centroid, and 
HNR. We will now consider these specific features in re-
lation to our semantic rating results.  

Inharmonicity IQR was of particular relative im-
portance in both linear and nonlinear models predicting 
raspy/grainy/rough, but neither the IQR nor the median 
were ranked highly in importance for either of the other 
semantic categories. Spearman correlations (ρ) suggest a 
robust monotonic relationship between mean ratings of 
raspy/grainy/rough and inharmonicity IQR, ρ(154) = .78; 
correlation with the median is ρ = .59. Harsh/noisy values 
demonstrate a moderate correlation with inharmonicity 
IQR, ρ = .40, but not with the median.  

The noisiness median also received high RVI values for 
both linear and nonlinear models predicting 
raspy/grainy/rough, but this feature (and the correspond-
ing IQR) received relatively low RVI values for the other 
semantic categories. However, both the noisiness median 
and noisiness IQR correlated positively with ratings of all 
three semantic categories. Spearman correlations were 
strongest for raspy/grainy/rough: median, ρ = .75; IQR, ρ 
= .55. Harsh/noisy demonstrated moderate correlations, 
median, ρ = .39; IQR, ρ = .38, and airy/breathy was weakly 
correlated but not significant, median, ρ = .15, p = .06; 
IQR, ρ = .14, p = .08.  

Noise energy somewhat unexpectedly was not given 
particular importance in any of the models and demon-
strated relatively weak correlations with semantic ratings. 

HNR was the most important contributor to models of 
raspy/grainy/rough. Neither median nor IQR were signif-
icantly correlated with airy/breathy, but both were corre-
lated with raspy/grainy/rough, median, ρ = -.77; IQR, ρ = 
.40, and harsh/noisy, median, ρ = -.42; IQR, ρ =.35, where 
higher ratings in these categories were associated with a 
lower HNR median but a higher HNR IQR. Given this fea-
ture’s use in speech research in relation to breathy voice, 
the lack of significant correlation with airy/breathy was 

raspy/grainy/rough

airy/breathy

harsh/noisy
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surprising. Because higher HNR is also associated with 
higher ratings for raspy/grainy/rough and harsh/noisy, one 
explanation for this may be that our dataset contained 
many stimuli with high HNR that were very 
raspy/grainy/rough and/or very harsh/noisy but not 
airy/breathy. While the HNR-airy/breathy correlation was 
not significant, it was in the anticipated direction, ρ = -.11, 
p = .17. 

Spectral flatness figured in harsh/noisy models but was 
not highly important for any of the three categories. Spear-
man correlations suggest positive monotonic relationships 
between spectral flatness (both median and IQR) with 
rough/raspy/grainy, median, ρ = .34; IQR, ρ = .39, and 
harsh/noisy, median, ρ = .49; IQR, ρ = .50. These relation-
ships with airy/breathy were both weaker and in the oppo-
site direction, median, ρ = -.26; IQR, ρ = -.22. 

Spectral centroid, the correlate for semantic brightness, 
figured as relatively important in models for harsh/noisy 
and airy/breathy, but not for raspy/grainy/rough. The me-
dian correlated positively with ratings of harsh/noisy, ρ 
=.58, and negatively with airy/breathy, ρ = -.45. The IQR 
correlated positively with both harsh/noisy, ρ = .43, and 
raspy/grainy/rough, ρ = .36. 

In summary, among our features of interest, we found 
that inharmonicity IQR, noisiness median, and HNR me-
dian seemed to be most specifically associated with 
raspy/grainy/rough, although some moderate relationships 
among these features can also be identified with 
harsh/noisy. Spectral flatness was weakly to moderately 
correlated to all three categories but did not figure promi-
nently in models. Spectral centroid was primarily associ-
ated with harsh/noisy and airy/breathy. Both median and 
IQR for noisiness were correlated positively with all three 
categories, whereas for roll-off, flatness, and centroid, cor-
relations for raspy/grainy/rough and harsh/noisy were in 
the opposite direction than those for airy/breathy. 

4.3 Variance in valence and perceived exertion associ-
ated with semantic categories 

Rating results demonstrated that the three semantic cate-
gories varied in perceived valence and playing exertion. 
While ratings of raspy/grainy/rough and harsh/noisy were 
negatively correlated with valence, r(154) = -.90 and r = -
.61, respectively, ratings of airy/breathy were positively 
correlated with valence, r = .31. Raspy/grainy/rough and 
harsh/noisy were also moderately correlated with in-
creased exertion, r = .50 and r = .46, respectively; how-
ever, ratings of airy/breathy did not correlate significantly 
with perceived playing exertion. Thus, we can consider 
rough/raspy/grainy to be associated strongly with negative 
valence and moderately with perceived exertion. 
Harsh/noisy is moderately associated with negative va-
lence and perceived exertion, and airy/breathy is moder-
ately associated with positive valence but not associated 
with exertion. 

These descriptive statistics demonstrate how two se-
mantic categories with relatively similar perceptual rela-
tionships to emotional valence and exertion may be differ-
entiated by patterns of relationships with audio features; 
for example, the most important predictors of 
raspy/grainy/rough include HNR, inharmonicity, and 

noisiness, while the most important predictors of 
harsh/noisy include spectral decrease, spread, roll-off, and 
centroid. We can also see that categories with differing re-
lationships to emotional valence and perceived exertion 
may both have relevant relationships with a given feature. 
Such overlapping relationships may be in either opposite 
directions—for example, harsh/noisy is positively associ-
ated with spectral roll-off median and spectral flatness me-
dian—or in the same direction—for example, noisiness 
median and HNR median. 

5. CONCLUSION 

This research examined associations between spectral and 
harmonic audio features and the timbre semantic catego-
ries raspy/grainy/rough, harsh/noisy, and airy/breathy. 
We collected semantic ratings from 153 participants for 
156 orchestral instrument sounds varying in register, in-
strument family, and playing technique. Ratings confirmed 
that the three semantic categories were distinct, and that 
categories differed in their relationships with exertion and 
valence. 

We built partial least-squares and random forest models 
predicting mean semantic ratings for each category. 
Across the three categories, nonlinear random forest re-
gression models outperformed linear partial least-squares 
regression models. The spectral and harmonic features 
used in this paper were most successful for predicting 
rough/raspy/grainy, followed by harsh/noisy. Models 
were least successful in predicting ratings for airy/breathy. 

In comparing Relative Variable Importance measures 
from the models among the three semantic categories, re-
sults demonstrate that although these semantic categories 
are associated in part with overlapping features, they can 
be differentiated through individual patterns of feature re-
lationships. Among plausibly noise-related features, we 
observed that inharmonicity IQR, noisiness, and HNR 
were in general related strongly to raspy/grainy/rough and 
moderately to harsh/noisy. Spectral roll-off, flatness, and 
centroid demonstrated moderate relations to harsh/noisy 
and airy/breathy, but in opposite directions. Finally, the 
directions of associations with HNR and noisiness were 
the same across all three semantic categories but varied in 
strength. 

These results contribute to efforts to bridge understand-
ings of timbre in MIR and music cognition by clarifying 
the relationships between low-level audio features and nu-
anced semantic categories generated from perceptual stud-
ies. The methods presented here may be used to build fea-
ture profiles of other semantic categories beyond those re-
lated to noise. Furthermore, our findings may be useful in 
timbre synthesis, in that they can help guide the creation 
of sounds with specific semantic content. Such applica-
tions to synthesis may be especially relevant to audio 
branding and electroacoustic composition. 
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