CRASH: RAW AUDIO SCORE-BASED GENERATIVE MODELING FOR
CONTROLLABLE HIGH-RESOLUTION DRUM SOUND SYNTHESIS

Simon Rouard
Sony CSL - CentraleSupélec
simon.rouard@student—-cs.fr

ABSTRACT

In this paper, we propose a novel score-base generative
model for unconditional raw audio synthesis. Our pro-
posal builds upon the latest developments on diffusion pro-
cess modeling with stochastic differential equations, which
already demonstrated promising results on image genera-
tion. We motivate novel heuristics for the choice of the
diffusion processes better suited for audio generation, and
consider the use of a conditional U-Net to approximate the
score function. While previous approaches on diffusion
models on audio were mainly designed as speech vocoders
in medium resolution, our method termed CRASH (Con-
trollable Raw Audio Synthesis with High-resolution) al-
lows us to generate short percussive sounds in 44.1kHz
in a controllable way. Through extensive experiments, we
showcase on a drum sound generation task the numerous
sampling schemes offered by our method (unconditional
generation, deterministic generation, inpainting, interpola-
tion, variations, class-conditional sampling) and propose
the class-mixing sampling, a novel way to generate “hy-
brid” sounds. Our proposed method offers flexible gen-
eration capabilities with lighter and easier-to-train models
than GAN-based methods.

1. INTRODUCTION AND RELATED WORK

After multiple works in the spectral domain [1, 2], deep
generative models in the waveform domain have recently
shown the ability to produce high fidelity results with
different methods: autoregressive [3, 4], flow-based [5],
energy-based [6] or based on Generative Adversarial Net-
works [7].

In the task of generating drum sounds in the wave-
form domain, GAN-based approaches have been explored
in [7], [8] and [9]. Interactive sound design is often a ma-
jor motivation behind these works: in [10] the authors use
Variational Autoencoders (VAE) in order to generate spec-
trograms of drums apply a principal component analysis
on the latent space of the VAE in order to explore the drum
timbre space. One of the disadvantages of this model is

© Simon Rouard, Gaétan Hadjeres. Licensed under a Cre-

ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: ~ Simon Rouard, Gagtan Hadjeres, “CRASH: Raw Audio
Score-based Generative Modeling for Controllable High-resolution Drum
Sound Synthesis”, in Proc. of the 22nd Int. Society for Music Information
Retrieval Conf., Online, 2021.

Gaétan Hadjeres
Sony CSL
gaetan.hadjeres@sony.com

that the reconstruction of the sounds by the VAE tends to
be blurry. In [11], the authors use a VQ-VAEZ2 [12] in order
to perform inpainting on instrument sound spectrograms.

Score-based generative models [13—-16] propose a dif-
ferent approach to generative modeling, which consists
in estimating the gradient of noise-corrupted data log-
densities (score function): by iteratively denoising a sam-
pled noise, these approaches obtained promising results,
but mainly on image data.

To this day, only two score-based generative models in
the waveform domain have been published [17, 18] and
they are mostly focused on the task of neural vocoding with
conditioning on a mel-spectrogram. In [17], the authors
achieved the task of generating audio with an uncondi-
tioned model trained on the speech command dataset [19].
The inference scheme of [17] does not provide a flexible
sampling scheme because it is trained on a fixed discrete
noise schedule whereas [18] is trained on a continuous
scalar indicating the noise level.

In the image domain, [16] generalizes the works of
[14,15,20] by framing the noise corruption procedure as
stochastic differential equation.

Score-based generative models offer the following ad-
vantages over GAN-based approaches:

* Training time is reduced and training is more stable
since there is only one network to train.

* Class-conditioning generation can be achieved by
training a classifier a posteriori, which lets us train
a model only one time.

* Data can be mapped to a latent space without the
need to train an additional encoder compared to
GANSs [21], which makes the interpolation between
two given input data readily available with only one
model.

These properties alleviate us to search for directions in the
latent space as in [22] or to directly hardcode conditional
features in the architecture as in [23]. This easily con-
trollable latent space permits sound design applications.
One downside of score-based models compared to GANs
is their higher inference times to generate new samples.

In this work, we extend the approach of [16] and pro-
pose CRASH (Controllable Raw Audio Synthesis with
High-resolution), a score-based generative model adapted
to the waveform domain. On a drum sound dataset, the nu-
merous capabilities offered by this architecture allows for

579

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

musically-relevant sound design applications. Our contri-
butions are the following:

* A score-based model for unconditional generation
that can achieve high fidelity 44.1 kHz drum sounds
directly in the waveform domain,

¢ The use of a noise-conditioned U-Net to estimate the
score function,

* A novel class-mixing sampling scheme to generate
"hybrid" sounds.

» Experimental and practical insights about the choice
of the stochastic differential equation used to corrupt
the data.

2. BACKGROUND

2.1 Score Based Modelling through Stochastic
Differential Equations

z(0) Forward SDE vz(T)
2(0) Backward SDE z(T)

Figure 1. Illustration of the noising and denoising pro-
cesses of a kick sound with a VP schedule

2.1.1 Forward Process

Let pyata be a data distribution. Diffusion models consist in
progressively adding noise to the data distribution to trans-
form it into a known distribution from which we can sam-
ple from as shown in Fig. 1. In [16], the authors formalize
this noising process as the following forward Stochastic
Differential Equation (SDE):

dx = f(t)xdt + g(t)dw (1)

where f(t) is a continuous negative function from [0, 7] —
R, g(t) a continuous positive function from [0, 7] — R™,
and w is a standard Wiener process. Such approach can
be understood as a continuous-time generalization of De-
noising Diffusion Probabilistic Models (DDPMs) [14, 20]
and denoising Score Matching with Langevin Dynamics
(SMLD) [15]. For x(0) ~ pda, the transition kernel of
Eq. 1 is given by a normal distribution:

pe(x(t) [x(0)) = N (x(t); m(t)x(0), *()T), ()

where m(t) and o (t) follow the system:

{ Gt = f(tm(t)

2 3
90— 2 (2)0%(t) + g1 ®

580

with the following initial conditions m(0) = 1 and
o2(0) = 0. The solutions for m(t) and o () are :

_ of’f(s)ds
{ m(t) = el @

0’2(7';) = efgt 2f(s)ds f(; 92<u)€f0u 72f(s)dsd,uu

In [16], the authors define three types of SDEs which
are presented in Tab. 1. For the Variance Preserving (VP)

f(t) g(t)
VP | —35(t) VB(t)
VE 0 \/d[U;t(t)]
sub-VP | —18(t) | /B(t)(1 — =2 i is)

Table 1. Functions used in the VP, VE and sub-VP SDEs

and sub-Variance Preserving (sub-VP) schedules, m(7") ~
0 and o(7T) ~ 1 which means that the original data dis-
tribution is transformed into a distribution close to a stan-
dard normal distribution i.e. pr ~ N(0,I). For the Vari-
ance Exploding (VE), 0%(T) > m =~ 1 which means
that the original data is not discernable at ¢ = 7" and that
pr ~ N(0,0%(T)I).

2.1.2 Generation with the Reverse Process

In order to sample from the data distribution, we can sam-
ple x7 ~ pp and apply the associated reverse time SDE
[24] given by:

dx = [f(t)x — g°(t) Vi log py(x)]dt + g(t)dW (5)

where W is a standard Wiener process running backwards
from T to 0 and dt is an infinitesimal negative timestep.

It means that by knowing V log p;(x), we can use a
discretization of Eq. 5 to sample x(0) from py = pyata.

In practice, the score function s(x(t),o(t)) =
Vx log p(x) is intractable and it is approximated by a neu-
ral network sy (x(t), o(t)) parameterized by 6. In order to
train the network, [13] shows that for any t, minimizing

Ep,) ll50(x, (1)) = Vi log e (x)5 (6)
is equivalent to minimizing
Ellso(x, (1)) — Vi logp:(x(t) [x(0)[5 (7

where the expectation is over x(0) ~ pga, x(t) ~
pi(x(t) | x(0)), and the latter distribution is given by
Eq. 2.

Now, in order to train the network for all t € [0,7]
we consider the following mixture of Eq. 7 losses over all
noise levels:

L(0) = BA®) |50 (x(2), (1)) = Vet log pe(x(t) | x(0))]5 (8)

where we sample ¢ ~ [0,7], x(0) ~ paaas X(t) ~
p+(x(t) | x(0)) and where A(t) is a weighting function.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

In [14-16], A(t) is empirically set such that A(#)~1 o
E|| V() log pe(x(t) | x(0))|[5 o o(t)~" while in [25]
the authors show that the maximum likelihood estimator
is obtained with A(t) = ¢2(t) in L(6).

The training procedure is described in Alg. 1, where
we reparameterize our neural network as eg(x(t), o (t)) :=
—o(t)se(x(t),o(t)) in order to estimate €.

Algorithm 1 Training procedure
while Training do

Sample ¢ ~ U([0,T7]),x(0

Compute x(t) = m(t)x(0)

~

~ Pdata, € ™~ N(07 I)
o(t)e

Gradient descent on Vg

end while

Once the network is trained, a N-step discretization of
the backward SDE is done in order to unconditionally
generate samples. This process is described in Alg. 2, it is
non-deterministic since we obtain various sounds by start-
ing from the same sample x(7').

Algorithm 2 Sampling via SDE
Choose N, sample xy ~ N(0,0%(T)I)

fori=N—1,...,0do
ti=Tx, fi=f(ti),9i = Q(t), 05 = o(t;)
=(1- &) -]\/?;lee@(xl-‘rlvo-l-‘rl)
if i > 0O then
Sample z;1 ~ N (0,I)
X; = X; + g\}%zm
end if
end for

2.2 Deterministic Sampling via Score based Ordinary
Differential Equation

As mentioned in [16], for any SDE, there exists a corre-
sponding deterministic process which satisfies an ordinary
differential equation (ODE):
Ly

dx = [f(t)x — 597(t) Vx log py (x)]dt ()
This defines a flow ¢! such that the marginal distributions
@! (paara) are identical to the ones obtained by applying the
SDE of Eq. 1. This mapping is interesting because it pro-
vides a latent representation for each X ~ Pgaa.

The procedure of sampling via the N-step discretization
of the ODE is described in Alg. 3.

Algorithm 3 Sampling via ODE
Choose N, sample x ~ N(0,02(T)1)

fori=N—1,...,0do
Ty, fi=[(ti),9i = g(ti), 00 = o(t;)
x; = (1— fij\J/rl)Xiy1 — 21@21169(&4-170“1)
end for

581

2.3 Inpainting

Let’s imagine that we don’t like the attack of a kick (or any
other part of a sound), the method of inpainting permits us
to regenerate the desired part. In order to do that, we apply
a reverse-time SDE or ODE discretization to an isotropic
Gaussian and fix the part that we want to keep (with the
associated noise corruption) after each denoising timestep.
As presented in section 6, we obtain very diverse and co-
herent results.

2.4 Interpolations

The flexibility of SDEs and ODEs allows to compute inter-
polations between sounds. In fact, there exists an infinity
of latent spaces indexed by ¢ € [0,7]. We present here
two types of interpolations: ODE interpolation in the la-
tent space of isotropic Gaussians and SDE interpolation in

any t-indexed latent space.

Forward ODE
Compute .

Reconstruction of
spherical

: k7r |nterpo|a1|on krr
L cos(—)e1 + sin(— 20

X1

Forward ODE

Reconstruction of
X1

k =0,1,.
Backward ODE Backward ODE

Hm»m

9 interpolations between the two sounds

Figure 2. Interpolation of two sounds via Forward and
Backward ODE

2.4.1 ODE interpolation in the latent space of isotropic
Gaussians

Let ¢; and €5 be two samples from a standard normal
distribution of R” where L is our space dimension and
0 < A < 1. We consider the spherical interpolation
€x = Aep + V1 — A?e; and then apply the ODE sampling
to it. We choose a spherical interpolation in order to pre-
serve a variance close to 1 for €.

Morever, if we want to interpolate two sounds x; and
X3, we can apply the Forward ODE in order to obtain the
corresponding latent codes €; and €2, apply the desired
spherical interpolation and then apply an ODE sampling.

2.4.2 ODE interpolation in a t-indexed latent space

In [17], the authors perform a linear interpolation between
two sounds at a corresponding intermediate t-indexed la-
tent space before applying Denoising Diffusion Probabilis-
tic Model (DDPM is the discrete equivalent of a VP SDE).
We adapt the method to the continuous framework with

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

SDE and ODE. Here again, the interpolation can be done
between two t-indexed latent codes or between sounds cor-
rupted using the transition kernel of Eq. 2.

2.5 Class-Conditional sampling with a classifier

For any class y, we can train a noise-conditioned classifier
on corrupted data x(¢). As a consequence, the output of
the classifier gives us p;(y | x(¢)) for each class y. We can
use automatic-differentiation to differentiate this quantity
and by the Bayes Formula, since p(y) is constant for each
class y, we have the following formula:

Vxlogpi(x | y) = Vxlogpi(x)+ Vi log pi(y | x) (10)
As a consequence, we can generate samples of one class
by solving this reverse time SDE:

dx = [f(t)x — g*(t)Vxlog p(x | y)ldt + g(t)dWw (11)

This approach is flexible since it only requires to train a
noise-conditioned classifier: there is no need to design and
train a class-conditional score-based model as done in [17].

3. A DISCUSSION ABOUT CHOOSING THE
RIGHT SDE: A GENERALIZATION OF THE
SUB-VP SDE

In this section T' = 1.

3.1 About the relation relation between m(t) and o ()

The VP SDE is the continuous version of the Denoising
Diffusion Probabilistic Model (DDPM) used in [14] [17]
[18]. One of the main features of this model is that the
mean coefficient m(¢) of the perturbation kernel is linked
to the standard dev1at10n o(t) (or noise-level) by the fol-
lowing equation m(t) = /1 —o?(t). Because the de-
crease of m is relatwely small on a large range of values
for o, this means that a (very-noisy) drum sound audio
must begin to appear after only a few steps of denoising
during the sampling algorithm. (For instance if o = 0.8,
m = 0.6). We believe that this fast decay of the signal-to-
noise ratio can be detrimental when sampling with Alg. 2
and 3.

Moreover, without mentioning this fact, in [16] the au-
thors introduce the sub-VP SDE which is characterized by
the following formula m(¢) = /1 — o(t). The authors
obtained state of the art results on the image generation
task which corroborates our intuition that m might be too
large for values of ¢ near 1 tends to be right.

In this work, we explore the four relations between m
and o plotted in Fig. 3. The blue one corresponds to the VP
SDE, the yellow is the sub-VP SDE and the green and red
ones corresponds to a generalization of the sub-VP sched-
ule. In Tab. 2 we write the functions f(¢) and g(t) for each
of these 4 relation. For the rest of the paper we take the
convention f(t) := —34(t) in order to compare the VP
and sub- VP schedules with ours.

582

m
06 should not
be too high
m in this zone
0.4
= V1% (vp)
02 m = /1 — o (sub-VP)

m=1-o
— m=(1-0)?

0.0 02 04 (o 06 08 10

Figure 3. Different relations between m and o

m-o relation f(t) g(t)
m =+/1—02(VP) —1B(t) B(t)
m = /T — o (sub-VP) —1B(t) \//J(t 20 *(s)«fs)
m=1-0(sub-VP 1-1) | —15(t) \//3(# 1— =% Jg Ble)ds)
m=(1-0)2 (sub-VP 12) | ~18(t) | \/B()(1L — Jem I A(Is 4 Lo=fiAls)

Table 2. Functions used in the VP, sub-VP and generalized
sub-VP SDEs.

3.2 Choosing the right functions for the SDE

Choosing a particular relation between m and o, imposes a
relation between g and 5. The remaining free parameter is
the function 3, needed to fully define the SDE. In [16], the
authors use a linear schedule for 5(t) because it is the con-
tinuous generalization of DDPMs. As presented in Fig. 4,
this choice leads to a o(t) function that rapidly grows to
its maximum. In [26], the authors mention this fast grow-
ing o function as a potential shortcoming and propose a
smoother function (the green one in Fig. 4).

08

~— VP (Song)

sub-VP (Song)

VP-like (Nichol)
ours

0.0

0.0 02 04 t 06 08 10
Figure 4. Different choices for the o (¢) function

Our approach differs from [16] in that the definition of
our SDE is motivated by choosing a relatively smooth in-
creasing function o(t) suchas 0(0) =0and o(1) =1 —¢
(where € is a small constant), together with a m-o relation,
from which all other quantities can be computed as shown
in Tab. 2. If the two approaches are equivalent, we believe
that these quantities are more interpretable. In the regime
of a small number of discretization steps, a slow increasing

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

function may induce less approximation errors. For our ex-
periments we propose o(t) = $[1 — cos((1 — s)7t)] with
s = 0.006 which is the red plot in Fig. 4. We also sample
t in the interval [n), 1] during the training where 7 is chosen
such that o(n) = 10~* because 10~* is imperceptible.

4. CLASS-MIXING SAMPLING WITH A
CLASSIFIER

Drum classes are not perfectly distinct. For instance, the
dataset contains drum sounds that are percussive enough to
be seen as kicks but also sufficiently brilliant to be seen as
snares and some kicks are combined with a hi-hat sound.
We observe that our classifier (at the noise-level o = 0)
sometimes outputs a mixed classes such as [0.3, 0.3, 0.4]
and that it aligns well with our feeling when hearing the
sound.

We introduce the Class-Conditional sampling to a mix-
ture of classes: For a given noisy sound x(¢), the vector
Vi) logpe(y: | x(t)) points out to the direction of the
class y; in the noisy t-indexed latent space. Now, assuming
that we have N classes (y;)i=1,... n, let (X;)i=1,... n be
positive real numbers such as Zf\il Ai = 1, we define a
mixture of classes that we note {(y;, \;)} and the associ-
ated vector:

N
Viclog pe({(yis M)} [%) := Y AiVilog py (i | x)

i=1
12)
In practice, we put this term in equation 10 in replacement
of the last term and use equation 11 to sample class-mixed
audios. It gives us interesting results with a great palette of
sounds.

5. ARCHITECTURE
5.1 Conditioned U-Net

Our model architecture is a conditioned U-Net [27], orig-
inally proposed for source separation. It takes two inputs:
the noise level o(t) and the noisy audio x(¢). The noise-
level is encoded by Random Fourier Features [28] followed
by a Multi-Layer Perceptron. The noisy audio goes into
FiLM-conditioned [29] Downsampling Blocks. Then, the
signal goes into Upsampling Blocks that receive skip con-
nections from the DBlocks of same levels. The output of
the network is the estimated noise €qgimated-

This bears similarities with the architecture from [17]
which has a similar succession of blocks with dilated
convolutions but no downsampling or upsampling layers,
which makes it slow in terms of computation. The archi-
tecture from [18] has a U-Net-like shape [30], but heavily
depends on the spectrogram conditioning and relies on a
different noise-conditioning scheme. The o-conditioned
U-Net architecture seems to retain advantages from both
approaches and is particularly suited for unconditional
generation (see Fig. 5).

583

€estimated
x(t) = m(t)x(0) + o(t)e
o(t)

—>FiLM—>5 x 1 Conv (32) 3x 1 Conv (32)
[RFF embeldding (64)|

——>{FiLM->DBlock (128, /2) >{ Cat ->UBlock (128, x2)|
MLP l 41;
——>FiLM->DBlock (128, /2) > Cat ->UBlock (128, x2)
+——FiLM~{DBlock (256, /3)}-> Cat }->UBlock (128, x3)
——>FiLM->DBlock (512, /5) > Cat >UBlock (256, x5)

L—{FiLM->DBlock (512, /5) > Cat ->UBlock (512, x5)
e

Figure 5. Architecture of the Conditioned U-Net

5.2 Noise conditioned classifier

Our noise-conditioned classifier closely mimics the archi-
tecture of our Conditioned U-Net presented in in Sect. 5.1.
The classifier is composed of a succession of FiLM-
conditioned DBlocks followed by a projection layer and
a softmax.

6. EXPERIMENTS AND RESULTS

Code is available at:
simonrouard/CRASH

https://github.com/

6.1 Dataset

For this work, we use an internal non-publicly available
dataset of drum sounds which has also been used in [8].
It is composed of approximately 300.000 one-shot kick,
snare and cymbal sounds in equal proportions. The sam-
ples have a sample rate of 44.1kHz and are recorded in
mono. We restricted and padded the audio to 21.000 time-
steps because most sounds last less than 0.5 second. We
used 90% of the dataset in order to train our model.

6.2 Models and process

We evaluate the influence of o (¢) and four m-o schedules.
The training of the network is done with a learning rate
of 2.10~* and the Adam optimizer. In parallel, smoothed
weights with exponential moving average (EMA) with a
rate of 0.999 are computed and saved at each step. For
each model, the network is trained for about 120 epochs
and the weights are saved each 8 epochs. We generated
drum sounds with the regular weights and with the EMA
weights and we observed the same phenomenon as in [31]:
for the regular weights the quality of the sounds is not nec-
essarily increasing with the training time whereas the EMA
weights provide better and more homogeneous Fréchet
Audio Distance [32] (FAD) during training ' .

' We use the original implementation [32] available at https:
//github.com/google-research/google-research/
tree/master/frechet_audio_distance

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

After generating 2700 sounds for each checkpoint of
each model, we choose the best checkpoints and generate
27000 drum sounds for each. It takes 12 hours to generate
27000 drum sounds on a Nvidia RTX-3090 GPU with an
ODE or SDE schedule of 400 steps and batches of 180
sounds per generation (maximum memory capacity).

6.3 Quantitative Results

We report the FAD (lower is better) between the 27000
generated drum sounds and the test set for each uncondi-
tional generation with SDE and ODE (with a discretization
of 400 steps) in the table 6.3. The cos schedule refers to
the function o (¢) = 1[1 — cos((1 — s)7t)] (the red one in
Fig. 4) and the exp schedule corresponds to the function
o(t) = V1 — e=0-11=9.95t% yged in [16] (the blue one in
Fig. 4).

Schedule SDE 400 steps | ODE 400 steps
VP exp schedule (as in [16]) 4.30 4.03
VP cos schedule 2.32 1.79
sub-VP cos schedule 2.46 2.07
sub-VP 1-1 cos schedule 2.62 1.73
sub-VP 1-2 cos schedule 2.56 1.75

Table 3. FAD comparison (lower is better)

Choosing a smoother o function indeed improves the
FAD of the generated sounds for a fixed number of dis-
cretization steps.

By using the classifier that we trained, we observe that
all models generate kicks, snares and cymbals in equal pro-
portions but the generated samples are less diverse than in
the original dataset. For a fixed number of discretization
steps, we think that the cos schedule performs better be-
cause it is smoother than the exp schedule.

6.4 Interactive sound design

Audio samples for all experiments described in this section
can be heard on the accompanying website: https://
crash-diffusion.github.io/crash/.

6.4.1 Interpolations

The relative lack of diversity of the unconditional genera-
tion is not dramatic since the model can still perform inter-
active sound design by modifying existing samples from
the dataset. In order to do that, we apply the forward ODE
to an existing sound and obtain its corresponding noise in
the latent space of isotropic Gaussians. As presented in
Fig. 7, we can perform spherical combinations on the la-
tent codes and apply the backward ODE to obtain interpo-
lations. Moreover the reconstructed sounds (at the left and
right of the schema) are accurate.

6.4.2 Obtaining Variations of a Sound by Noising it and
Denoising it via SDE

Let’s take a sound x(0). We can noise it at a desired noise
level o(t) via x(t) = m(¢)x(0) + o(t)e and then denoise

584

it with a SDE discretization from t to 0. We obtain then
variations of the original sound.

6.4.3 Inpainting

We can also perform inpainting on a sound in order to re-
generate any desired part. We show this method on Fig. 6
where we regenerate 6 endings of a snare sound.

Figure 6. Six Inpaintings on the end of a snare sound

This provides an innovative way to generate a variety of
plausible sounds starting with the same attack.

6.4.4 Class-Conditioning and Class-Mixing with a
Classifier

We trained a noise-conditioned classifier on the 3 classes
(kick, snare, cymbal) and used it to generate class-
conditioned and class-mixing generation. Once again, by
using the latent representation of a sound we can regener-
ate it (via ODE) with control on its "kickiness, snariness or
cymbaliness".

MM W'MY‘ “H‘ —

Figure 7. Transformation of a cymbal into a kick via class-
conditioning ODE

7. CONCLUSION

We presented CRASH, a score-based generative model for
the generation of raw audio based on the latest develop-
ments in modeling diffusion processes via SDEs. We pro-
posed novel SDEs, well-suited to drum sound generation
with high-resolution, together with an efficient architec-
ture for estimating the score function. We showcased how
the many controllable sampling schemes offered new per-
spectives for interactive sound design. In particular, our
proposed class-mixing strategy allows the controllable cre-
ation of convincing "hybrid" sounds that would be hard to
obtain with conventional means. We hope that these new
methods will contribute to enrich the workflow of music
producers.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

8. REFERENCES

[1] S. Vasquez and M. Lewis, “Melnet: A generative
model for audio in the frequency domain,” 2019.

[2] J. Engel, K. K. Agrawal, S. Chen, I. Gulrajani, C. Don-
ahue, and A. Roberts, “Gansynth: Adversarial neural
audio synthesis,” 2019.

[3] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan,
O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and
K. Kavukcuoglu, “Wavenet: A generative model for
raw audio,” 2016.

[4] S. Mehri, K. Kumar, I. Gulrajani, R. Kumar, S. Jain,
J. Sotelo, A. Courville, and Y. Bengio, “Samplernn:
An unconditional end-to-end neural audio generation
model,” 2017.

[5] R. Prenger, R. Valle, and B. Catanzaro, “Waveglow: A
flow-based generative network for speech synthesis,”
2018.

[6] A. A. Gritsenko, T. Salimans, R. van den Berg,
J. Snoek, and N. Kalchbrenner, “A spectral energy dis-
tance for parallel speech synthesis,” 2020.

[7] C. Donahue, J. McAuley, and M. Puckette, “Adversar-
ial audio synthesis,” 2019.

[8] J. Nistal, S. Lattner, and G. Richard, “Drumgan: Syn-
thesis of drum sounds with timbral feature conditioning
using generative adversarial networks,” 2020.

[9] J. Drysdale, M. Tomczak, and J. Hockman, “Adversar-
ial synthesis of drum sounds,” 2020.

[10] C. Aouameur, P. Esling, and G. Hadjeres, “Neural
drum machine: An interactive system for real-time
synthesis of drum sounds,” in International Conference
on Computational Creativity, 2019.

[11] T. Bazin, G. Hadjeres, P. Esling, and M. Malt, “Spec-
trogram inpainting for interactive generation of instru-
ment sounds,” arXiv preprint arXiv:2104.07519, 2021.

[12] A. Razavi, A. v. d. Oord, and O. Vinyals, “Generating
diverse high-fidelity images with vg-vae-2,” NeurIPS,
2019.

[13] P. Vincent, “A connection between score matching and
denoising autoencoders,” pp. 1661-1674, 2011.

[14] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion
probabilistic models,” 2020.

[15] Y. Song and S. Ermon, “Generative modeling by esti-
mating gradients of the data distribution,” in Advances
in Neural Information Processing Systems, 2019, pp.
11895-11907.

[16] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar,
S. Ermon, and B. Poole, “Score-based generative mod-
eling through stochastic differential equations,” 2021.

[17] Z. Kong, W. Ping, J. Huang, K. Zhao, and B. Catan-
zaro, “Diffwave: A versatile diffusion model for audio
synthesis,” 2021.

[18] N. Chen, Y. Zhang, H. Zen, R. J. Weiss, M. Norouzi,
and W. Chan, “Wavegrad: Estimating gradients for
waveform generation,” 2020.

[19] P. Warden, “Speech commands: A dataset for limited-
vocabulary speech recognition,” 2018.

[20] J. Sohl-Dickstein, E. A. Weiss, N. Maheswaranathan,
and S. Ganguli, “Deep unsupervised learning using
nonequilibrium thermodynamics,” 2015.

[21] O. Tov, Y. Alaluf, Y. Nitzan, O. Patashnik, and
D. Cohen-Or, “Designing an encoder for stylegan
image manipulation,” CoRR, vol. abs/2102.02766,
2021. [Online]. Available: https://arxiv.org/abs/2102.
02766

[22] E. Hirkonen, A. Hertzmann, J. Lehtinen, and S. Paris,
“Ganspace: Discovering interpretable gan controls,”
2020.

[23] M. Mirza and S. Osindero, “Conditional generative ad-
versarial nets,” 2014.

[24] B. D. O. Anderson, “Reverse-time diffusion equation
models,” pp. 313-326, 1982.

[25] C. Durkan and Y. Song, “On maximum likelihood
training of score-based generative models,” 2021.

[26] A. Nichol and P. Dhariwal, “Improved denoising diffu-
sion probabilistic models,” 2021.

[27] G. Meseguer-Brocal and G. Peeters, “Conditioned-
u-net: Introducing a control mechanism in the u-
net for multiple source separations,” ArXiv, vol.
abs/1907.01277, 2019.

[28] M. Tancik, P. P. Srinivasan, B. Mildenhall,
S. Fridovich-Keil, N. Raghavan, U. Singhal, R. Ra-
mamoorthi, J. T. Barron, and R. Ng, “Fourier features
let networks learn high frequency functions in low
dimensional domains,” 2020.

[29] E. Perez, F. Strub, H. de Vries, V. Dumoulin, and
A. Courville, “Film: Visual reasoning with a general
conditioning layer,” 2017.

[30] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Con-
volutional networks for biomedical image segmenta-
tion,” 2015.

[31] Y. Song and S. Ermon, “Improved techniques for train-
ing score-based generative models,” 2020.

[32] K. Kilgour, M. Zuluaga, D. Roblek, and M. Sharifi,
“Fréchet audio distance: A metric for evaluating music
enhancement algorithms,” 2019.

585

