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ABSTRACT

A problem inherent to the task of large vocabulary auto-
matic chord recognition (ACR) is that the distribution over
the chord qualities typically exhibits power-law character-
istics. This intrinsic imbalance makes it difficult for ACR
systems to learn the rare chord qualities in a large chord vo-
cabulary. While recent ACR systems have exploited the hi-
erarchical relationships that exist between chord qualities,
few have attempted to exploit these relationships explicitly
to improve the classification of rare chord qualities.

In this paper, we propose a convolutional Transformer
model for the task of ACR trained on a dataset of 1217
tracks over a large chord vocabulary consisting of 170
chord types. In order to address the class imbalance of
the chord quality distribution, we incorporate the hierarchi-
cal relationships between chord qualities into a curriculum
learning training scheme that gradually learns the rare and
complex chord qualities in the dataset. We show that the
proposed convolutional Transformer model achieves state-
of-the-art performance on traditional ACR evaluation met-
rics. Furthermore, we show that the proposed curriculum
learning training scheme outperforms existing methods in
improving the classification of rare chord qualities.

1. INTRODUCTION

The task of automatic chord recognition (ACR) has been
an active area of research in the field of music informa-
tion retrieval (MIR) for over 20 years [1]. This task auto-
mates the process of chord sequence annotation, which can
be time consuming when done manually. ACR systems
have been shown to be useful in other MIR applications,
as chord annotations can be used as descriptive low-level
features to assist other MIR tasks, such as key detection,
harmonic analysis, and even style analysis [2]. Typically,
an ACR system takes as input the audio signal correspond-
ing to a musical recording. Then, the system outputs a
time-aligned sequence of chord labels describing the un-
derlying harmonic structure of the musical recording.

© L. Rowe and G. Tzanetakis. Licensed under a Creative

Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: L. Rowe and G. Tzanetakis, “Curriculum Learning for Imbalanced
Classification in Large Vocabulary Automatic Chord Recognition”, in
Proc. of the 22nd Int. Society for Music Information Retrieval Conf.,
Online, 2021.

586

George Tzanetakis
University of Victoria
gtzan@cs.uvic.ca

1,400,000 -
0
@ 1,200,000~

-
o
=3
o
o
13
o

800,000 -
600,000 -

400,000
200,000 - '
. - . Chord Quality
0- -
> & A Q Q & o L Q& ) A Q Q
R AR IR I AL A

Number of fram

)
&

aug |
hdim?7 dim7
minmaj7

Figure 1: Top: Power-law distribution of chord qualities
in BRIM (see Section 3 for details). Bottom: Hierarchy of
chord qualities.

Most early ACR systems operated over a small chord
vocabulary consisting of only major and minor chords and
lacked the complexity needed for more complex chords.
Recently, the focus has shifted to large vocabulary ACR,
which includes a wider variety of chord qualities, such
as augmented, diminished, sixth, seventh, and suspended
chords. A critical issue with large vocabulary ACR is that
the distribution over the chord qualities — and hence over
the chord classes — exhibits a power-law distribution (see
Figure 1). This imbalance is not specific to any particu-
lar ACR dataset but is intrinsic to large vocabulary ACR.
Specifically, chord progressions seen across almost all gen-
res of music overwhelmingly favor the major and minor
chord qualities, which makes it difficult for ACR systems
to learn the rare chord qualities.

Despite the complexities that arise in large vocabulary
ACR, important structural relationships exist between the
chord qualities in a large chord vocabulary [3]. As out-
lined in Figure 1, the chord qualities can be arranged into
a hierarchical structure consisting of base chord qualities,
or triads, (in rectangles) and extended chord qualities, or
tetrads, (in ovals). Given an extended chord quality g and
a base chord quality gg, we say qg extends qp if the set
of intervals that defines ¢ is a superset of the set of inter-
vals that defines ¢p. Each extended chord quality extends
a corresponding base chord quality, with the extends rela-
tionship indicated by an arrow in Figure 1. We hypothe-
size that an ACR model can better learn an extended chord
quality when it has sufficiently learned its corresponding
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base chord quality. The underlying intuition is that the base
chord quality can be viewed as a harmonic base for the ex-
tended chord quality, and thus each extended chord quality
can be interpreted as a more complex variant of its corre-
sponding base chord quality. For example, the extended
chord quality 7 can be viewed as a variant of base chord
quality ma j, where an additional b7 interval is included.

Each extended chord quality is rarer in frequency than
its corresponding base chord quality as can be seen in
Figure 1. Based on this observation, we introduce a cur-
riculum learning (CL) reweighting scheme that gradually
converges from the initial distribution to a balanced chord
quality distribution. This way, the curriculum allows the
model to learn the base chord qualities prior to learn-
ing its corresponding extended chord qualities. The pro-
posed scheme is integrated with a convolutional Trans-
former model which is trained over a chord vocabulary
of 170 chord types. We show that the proposed model
achieves state-of-the-art performance on traditional ACR
evaluation metrics. Moreover, we show that the proposed
CL scheme outperforms existing methods in improving the
classification of rare chord qualities.

2. RELATED WORK
2.1 Automatic Chord Recognition

Most ACR systems have two stages: feature extraction
and chord sequence decoding. Arguably the most no-
table recent advancement in ACR is the replacement of
traditional machine learning with deep learning for both
stages of the ACR pipeline. For example, recent ACR sys-
tems have utilized deep neural networks [4-6], convolu-
tional neural networks [7—11], and deep belief networks
[12, 13] to produce robust feature representations that out-
perform earlier conventional methods. Moreover, recurrent
neural networks [4, 9-14] and conditional random fields
(CRFs) [8, 10, 11] have largely replaced hidden Markov
models to capture the temporal dependencies in the chord
sequence decoding process. Inspired by the recent suc-
cess of Transformer-based models in the field of natural
language processing [15—-18], recent approaches have ap-
plied end-to-end Transformer-based models to the task of
ACR [19] and to the related tasks of symbolic chord recog-
nition and functional harmony recognition [20,21].
Recent focus has shifted to the large vocabulary variant
of the ACR task [3,9, 11, 13, 14]. Since the chord qual-
ity distribution over a large chord vocabulary is extremely
skewed, these systems must explicitly overcome the im-
balanced class-learning problem, whereby model learning
is biased towards the frequently-labelled classes, resulting
in poor classification performance of the sparsely-labelled
classes [22]. To address this problem within large vo-
cabulary ACR, recent approaches have incorporated aux-
iliary training targets by decomposing chords into struc-
tured components [9, 11]. However, these structured train-
ing methods still provide limited exposure to the rare chord
qualities, and thus model learning is still heavily biased to-
wards the frequently-labelled chord qualities. Deng and

Kwok addressed this problem by implementing an “even-
chance” training scheme, which ensures that each chord
type has an even chance of being chosen at the beginning
of each training sample [14]. Jiang et al. combined their
structured chord representation with a reweighting scheme
to reduce the model learning bias induced by the imbal-
anced distribution of each structured component [11].

2.2 Curriculum Learning

CL was first proposed by Bengio et al. in [23], where they
demonstrated that for certain tasks with an established dif-
ficulty metric, introducing training data from easy to hard
difficulty in a deep neural network can lead to faster con-
vergence and guide training towards better local minima.
To the best of our knowledge, the only existing applica-
tion of CL to the task of ACR is in [24]. In [24], McVicar
et al. designed a curriculum to train an ACR system us-
ing ground-truth annotations with noisy alignments. CL
has recently been utilized to address the imbalanced class-
learning problem. In [25], Wang et al. proposed a CL
training scheme for the task of human attribute recogni-
tion, which gradually converges from the training distribu-
tion to a balanced distribution to improve the classification
performance of sparsely-labelled classes.

3. DATA PREPARATION

The ground-truth chord labels are mapped to a chord vo-
cabulary V' of 170 chords [9]. V includes chords that span
all 12 pitch classes and the following 14 chord qualities ):
maj, min, dim, aug, min6, majé, min7, minmaj7, maj7, 7,
dim7, hdim7, sus2, and sus4. Additionally, V' contains two
extra labels: N (no chord) and X (unknown chord). Our
model also integrates the structured chord representation
proposed in [9], whereby each chord label is decomposed
into its root, bass, and pitch structured components.

For training and evaluation, we use the dataset collected
by Humphrey and Bello [9, 11, 26], which comprises of
1217 tracks from the Billboard, RWC Pop, Isophonics,
and MARL collections. We refer to this collected dataset
as BRIM. We augment the training data using MUDA [27]
by pitch-shifting each audio track across —6 to +5 semi-
tones. To properly compare the performance on traditional
ACR metrics with previous methods, we use the same 5-
fold cross-validation split that is used in [9, 11,26].

We employ a separate 5-fold cross-validation split for
the imbalanced class-learning ACR experiments. Since the
chord-type distribution in BRIM is extremely imbalanced,
it is imperative for proper evaluation that this distribution
is maintained across each fold of our 5-fold split. How-
ever, since the 5-fold split occurs at the track level but the
distribution is measured at the frame level, we found strati-
fying over the chord types to be intractable. Therefore, we
propose an approximate 5-fold stratification algorithm that
instead ensures that the distribution over the chord quali-
ties in BRIM is approximately maintained across each fold.
The proposed algorithm (Algorithm 1) takes as input a set
of chord quality profiles P = { P, }, where Py[q] is the pro-
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Algorithm 1: N-Fold Chord Quality Stratification

Input: Number of folds: N; set of chord qualities: @Q; set
of tracks T'; chord quality profiles: P = { P, }; rarest chord
quality: g,.
fori=0to N —1do
initialize empty list folds]i]
initialize fold profile F;, where for each ¢ € Q,
Filg =0
Tiortea = SortDescending(T, by=P|q;])
fori =0to N — 1do
append Tyoreq?] to folds|i]
F; [Q] F; [ ] + PTmm.d [z][ ] foreach g €
remove Tyoeq[i] from T
while 7' # () do

¢’ = argmax Var(Fylg], ..., Fn-1[q])
q€Q
tmin = argmin Py [q,]
teT
imax = argmax F; [q/}
i€{0,...,.N—1}

append t iy to folds[imax]
Fi..ldl = Fi,la] + P, la] foreach g € Q@
remove tpm;, from T’
for each remaining fold i # i, do
th= argmin Plq'1+ Fild'] — Fi,.[4]
€

append t’ to folds|i)

Filq] = Fi|q] + Py [q] foreach ¢ € Q
remove ¢’ from T

return folds

portion of ¢ chords in track ¢ over BRIM, for each ¢ € Q.
The algorithm iteratively builds up a fold profile F; for
each fold 7, where F;[q] is the proportion of ¢ chords in fold
i over BRIM, for each ¢ € (). At each iteration, one track
is added to each fold. At iteration 1, we take the 5 tracks
with the highest proportion of the rarest chord quality g,
and add one track to each fold. Each subsequent iteration
can be viewed as a “correction step,” whereby one track is
added to each fold to minimize the variance of the highest-
variance chord quality over the folds. The result of the
5-fold chord quality stratification is shown in Figure 2b.

4. METHODS
4.1 Convolutional Transformer (CT)

The proposed system uses the log-power Constant Q-
Transform (CQT) spectrogram as its input feature rep-
resentation. We apply a convolutional-residual encoder
shown in Figure 3b to capture short-term context and in-
duce sufficient temporal smoothing of the spectrogram.
The encoder first applies batch-normalization (BN) [28]
to the input CQT. We then apply a series of convolutional
layers and add 3 skip connections [29] to ease the train-
ing process. Each convolutional layer is zero-padded to
preserve the spatial dimension of the CQT. After each con-
volutional layer, a BN layer followed by a Rectified Lin-
ear Unit (ReLU) activation is applied. The output of the
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Figure 2: 5-fold splits of BRIM. The height of each bar at
chord quality ¢ corresponds to the proportion of ¢ chords
contained in the corresponding fold.

convolutional encoder is passed through a stack of N bi-
directional self-attention layers proposed in [19]. Details
of this layer can be found in [19]. We replace the absolute
positional encoding used in [19] with relative positional
encoding [16], which has been shown to offer better gen-
eralization capabilities by taking into account the relative
positions between frames in the self-attention mechanism.
The model facilitates structured training of the root
note, bass note, and pitch classes as is done in [9]. Un-
like in [9], we multiply the pitch structured loss by v > 1
to assign more priority to the pitch structured component.
The model learns to jointly minimize the cross-entropy
chord label loss Ly,pe) and the cross-entropy structured loss
Lgtruct, Where Ly 1s the sum of the cross entropy losses
for the pitch, root, and bass structured components. For
each frame ¢, the model outputs a softmax distribution
7™ € [0,1]VI over V. At evaluation time, the system pre-
dicts the label with the highest activation in §*) for each
frame ¢. An overview of the model is shown in Figure 3.

4.2 Curriculum Learning

The idea of CL is to train the easy samples before the
hard samples. Loosely, we define an easy sample as a
frame where the ground-truth chord quality is a base chord
quality, and a hard sample as a frame where the ground-
truth chord quality is an extended chord quality. We want
to ensure that for each extended chord quality, the sys-
tem first sufficiently learns its corresponding base chord
quality. A critical observation in Figure 1 is that each ex-
tended chord quality is rarer than its corresponding base
chord quality. Based on this observation, we propose a
CL reweighting scheme that gradually converges from the
training distribution to a balanced chord quality distribu-
tion, similar to the scheme proposed by Wang et al. in [25].
The proposed scheme enables the model to put empha-
sis on the frequently-labelled chord qualities at the begin-
ning of training and put increasingly more emphasis on the
rare chord qualities as training converges. Since the pitch-
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Figure 3: Proposed CT architecture. (a) outlines the end-
to-end architecture and (b) outlines the layers of the pro-
posed convolutional encoder.

shifting data augmentation eliminates the root bias in the
training data, then balancing the chord-quality distribution
also balances the chord-type distribution during training.

The proposed scheme runs for E epochs. At epoch
e = 1, the target distribution is the training distribution
(i.e. an imbalanced chord quality distribution). As e ap-
proaches F, the system gradually modifies the target chord
quality distribution to be more balanced; this is achieved
by reweighting samples by placing higher weights on the
frames where the ground-truth chord quality is sparsely-
labelled and lower weights on the frames where the
ground-truth chord quality is frequently-labelled. At epoch
e = F, the chord quality distribution is balanced.

Let Q' = QU{N, X}. Let C, be the number of frames
in the training set with chord quality ¢ € Q" and let ¢y, €
Q' be the chord quality with the least number of frames
in the training set. We define the chord quality training
distribution Dyain by Dirain,g = Cqu. forall g € Q’.

Let D, be the target chord qual7i”t1'yn distribution at epoch
e. Then D1 = Dy,ip. During model training, the target
chord quality distribution gradually transfers to a balanced
distribution with the following function:

De g = (Dtrain,q>g(e) Vg e Q' (1)

where e is the epoch number and g(e) is the curriculum
scheduler function. The scheduler function is a monotoni-
cally decreasing function from 1 to O that sets the pace of
the curriculum. We experiment with three scheduler func-
tions (visualized in Figure 4): g(e) = 0 (baseline, fixed
balanced chord quality distribution), g(e) = 1 — £=% (lin-
ear schedule), and g(e) = ¢° — ¢¥ (convex schedule),
where ¢ is a hyperparameter. Observe that for all three
scheduler functions, g(F) = 0 and thus Dg , = 1 for all
q; i.e. the target chord quality distribution is balanced.

At epoch e, to facilitate training with target chord qual-
ity distribution D,, we reweight the samples such that for
chord class ¢ € V having chord quality ¢ € @Q’, the class
weight w; assigned to ¢ in Lyype is defined by:

w; = Dc,q/Dtrain,q (2

As the training set chord quality distribution is extremely

-

— g(e)=0
linear
- convex

gle)

o

Figure 4: Proposed curriculum scheduler functions.

imbalanced, the variation in the magnitude of the weights
w; across the different chord classes 7 € V is extremely
large at epoch e = E. We hypothesize that this may cause
the temporal smoothness of the output predictions to be
impaired. Therefore, we train an additional CRF decoder
on top of the output logits to smooth the output predictions,
in the same way as [8].

The proposed CL scheme differs from [25] in three crit-
ical ways. First, the training set statistics are used for com-
puting the reweighting terms w;, whereas [25] uses batch
statistics. Using batch statistics is suboptimal for ACR
since batches typically consist of a small number of se-
quences, and the frames of each sequence are highly inter-
dependent. Therefore, we believe that the training statis-
tics are more representative of the true chord quality im-
balance. Second, in [25], the frequently-labelled samples
are down-sampled by setting some samples to have weight
0 and the remaining to have weight 1. Down-sampling is
ill-advised for ACR as this would disrupt the temporal co-
herence of the training sequence. Therefore, the proposed
scheme instead employs a fully reweighted approach so
that the continuity of the training sequences are preserved.
Third, the proposed scheme employs a CRF decoder to
smooth the output predictions at model convergence.

5. EXPERIMENTS
5.1 Model Evaluation

To compare the proposed CT model with previous meth-
ods, evaluation is conducted using mir_eval [30]. We
obtain Weighted Chord Symbol Recall (WCSR) scores
for: Root, Thirds, Triads, Sevenths, Tetrads, Maj-Min, and
MIREX. We average the results of each metric across the
folds, as is done in [19]. For the methods addressing the
imbalanced class-learning problem, we utilize two evalua-
tion metrics proposed in [11]: the mean frame-wise accu-
racy (accame) and mean class-wise accuracy (accjyss) Over
V. acCrame 1S defined by:

_ Z?:l Ci
Z:L:1 Fi

where n is the number tracks for evaluation, F; is the num-
ber of frames in track ¢, and C} is the number of correctly-
predicted frames in track ¢ over vocabulary V. accgjuss 1S
defined by:

3

aACCframe

1« Y, v
aACCclass |V| = Z?::L Fiv ( )

where F’ is the number of frames in track ¢ with ground-
truth chord label v and C}’ is the number of frames in track
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¢ that are correctly predicted as v. Further, we define an
additional metric termed the mean quality-wise accuracy
(accquality) over V' to be used in the CL experiments. We
define accqualiry by:

Cq
aCCquali[y = |Q‘ Z Zl 1 (5)

where F! is the number of frames in track ¢ with ground-
truth chord quality ¢ and C{ is the number of frames in
track ¢ that are correctly predicted as having ground-truth
chord quality g. As previously outlined in [11, 14], when
addressing the imbalanced class-learning problem within
the task of large vocabulary ACR, we want to maximize
the accjass While still maintaining the accrame.-

5.2 Implementation Details

Using librosa [31], audio is transformed into a log-
power constant-Q spectrogram spanning 6 octaves with 36
bins per octave. The sample rate is 44100 Hz, and the
hop size is 4096. We tune the hyperparameters of the
bi-directional self-attention layers (optimized to BRIM):
number of self-attention layers N = 6, number of self-
attention heads n;, = 8, hidden dimension d = 512, and
dropout probability p = 0. The CT model is trained us-
ing the Adam optimizer [32] with initial learning rate le-
4. The learning rate is reduced by a factor of 10 when
the validation Ljape loss does not improve after 10 con-
secutive epochs. Model training terminates when the val-
idation Lj,pe loss does not improve after 20 consecutive
epochs. We save the model weights with the lowest valida-
tion Lyype loss for evaluation. In each epoch, a contiguous
248-frame segment is randomly sampled from each train-
ing track, and a mini-batch consists of 32 such segments.
Structured training is conducted in the same way as [9],
with the exception that we set v = 7. We set the Ligpel
class weights to w; = 1 foralli € V.

For the CL experiments, we set £ = 90 and ¢ = 0.95.
Since only the chord qualities of the 5-fold split are strati-
fied, the imbalance in the root distribution across the folds
may cause acCss to be an unreliable validation metric.
Thus, we instead use acCquaiy. The training details re-
main the same with a few exceptions. Namely, the learn-
ing rate is reduced by a factor of 10 when the validation
aCCquality has not improved for 10 consecutive epochs. For
the linear and convex scheduler functions, we save the
model weights at convergence (epoch e = F) for eval-
uation. For the baseline scheduler function g(e) = 0,
we save the model weights with the highest validation
aCCquality for evaluation. We train the CRF using Adam
with a learning rate of le-2. We terminate training the
CREF once the validation accgyality Stops improving. Our im-
plementation is available at https://github.com/
RLuke22/curriculum-learning-acr.

5.3 Methods under Comparison

We compare our proposed CT architecture with CR2S+A
[9], BTC [19] and the best-performing model of [11],
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Metric CT | CT_gg | CT—ges (g"TrE';Lﬁ;] CR2S+A [9] | CRNN* [11]
Root 0.838 | 0836 | 0.831 0.829 0.821 0.837
Thirds 0.809 | 0.807 | 0.802 0.798 0.784 0.803
Triads 0767 | 0764 | 0.759 0.754 0.742 0.759
Sevenths | 0.714 | 0711 | 0.709 0.700 0.677 0.694
Tetrads | 0.650 | 0.646 | 0.644 0.638 0.615 0.630
Maj-Min | 0.826 | 0.823 | 0.819 0.813 0.802 0.822
MIREX | 0.832 | 0.828 | 0.825 0.820 0.803 0.812

Table 1: WCSR scores averaged across 5 folds. —RE de-
notes removal of relative positional encoding. —S denotes
removal of structured training. —C denotes removal of
the convolutional encoder. *operates over a larger chord-
vocabulary V' consisting of 301 chord types [11].

Method ACCframe  ACCclass
CT 0.677 0.347
CT+CLBaseline 0.647 0.427
CT+CLLinear 0.658 0.439
CT+CLonvyex 0.657 0.449
CT+EC [14] 0.650 0.379

CRNNp.5,10 [11]  0.630 0.321

Table 2: accfame and acc,ss scores over V' for all data-
balancing methods using stratified split over BRIM.

which we call CRNN. As BRIM is significantly larger than
the dataset used to train the BTC model, the BTC model is
re-trained on BRIM as described in Section 5.2. We eval-
uate these models using the WCSR metrics and the same
5-fold split of BRIM that is used in [9, 11,26].

All CL experiments are trained and evaluated with the
CT model. We denote the models with convex and lin-
ear scheduler functions as CT+CL¢copyex and CT+CLy jjears
respectively. The baseline model with scheduler function
g(e) = 0 is denoted CT+CLpygeline- We also evaluate the
even-chance training scheme proposed in [14], which we
call CT+EC. Specifically, we adjust the CT model train-
ing procedure so that each chord type v € V has an even
chance of being selected at the beginning of each train-
ing segment. acCquality is used as the validation metric for
the CT+EC model. Further, we evaluate the reweighting
scheme of [11] on the CRNN model. We experiment with
the best-reported reweighting configuration (v, wmax) =
(0.5,10.0), which we call CRNN 5 1¢. For evaluation we
use the accgame and accgj,ss metrics using the stratified 5-
fold split of BRIM.

5.4 Results

The WCSR scores for all models considered are shown in
Table 1. Table 1 also includes an ablation study that out-
lines the performance degradation with the removal of each
novel component in the CT architecture; i.e. the convolu-
tional encoder (C), structured training (S), and relative po-
sitional encoding (RE). Note that the CT architecture with-
out all three novel components (and with the inclusion of
global z-normalization) is equivalent to BTC [19]. Table
1 shows that the CT model outperforms existing ACR sys-
tems across all WCSR metrics. Further, the ablation study
indicates that each novel component offers a gradual, yet
consistent improvement to the CT model.

Table 2 shows the results of the methods that address
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Chord Quality Accuracy
Method maj min 7 min7 maj7 sus4 maj6  min6 sus2  dim aug  hdim7 dim7 minmaj7
CT 0.801 0.637 0.518 0.576 0570 0.277 0.102 0.134  0.034 0.365 0.236 0.357 0.031 0.031
CT+CLcomvex  0.735 0.626  0.537 0.595 0.634 0.406 0.275 0.288 0.261 0.395 0.517 0476 0.181 0.229
CT+CLpaseline  0.727 0.618 0.512 0.581 0.604 0.411 0.250 0.264 0.235 0.386 0.460 0.450 0209  0.151

Table 3: Chord quality accuracies of various CT models over BRIM at evaluation. Chord quality accuracy is defined as the
proportion of frames where the predicted chord quality matches the ground-truth chord quality.

imbalanced class-learning including a baseline CT model
(i.e. no reweighting). Unsurprisingly, the CT model per-
forms the best in the accgame metric. This is consistent
with previous works that have shown that optimizing the
class-wise accuracy typically harms the frame-wise accu-
racy [11,14]. The best-performing CL model CT+CLconyex
provides substantial improvement (10.2%) in the class-
wise accuracy, with only a modest degradation (2.0%)
in the frame-wise accuracy. This indicates that the CL
scheme considerably suppresses the learning bias in the
model induced by the imbalanced chord quality distribu-
tion without significantly impairing the performance of
the frequently-labelled classes. Moreover, both CL con-
figurations CT+CL¢opvex and CT+CLy e, offer improve-
ments in the acCeame and accg,ss metrics over the baseline
CT+CLBaseline- This indicates that by having the model suf-
ficiently learn the base chord qualities prior to the corre-
sponding extended chord qualities, the model better gener-
alizes on both the frequently-labelled and sparsely-labelled
chord qualities. This is further confirmed in Table 3,
which shows that CT+CLconyex outperforms CT+CLpggeline
in chord quality accuracy on every chord quality except for
sus4 and dim7.

In Figure 5, we evaluate the chord quality accuracies of
the CT+CLonvex model at different epochs in the curricu-
lum. Note that the dim base chord quality accuracy (in
dark green) improves substantially from epochs 1 to 10,
followed by an improvement in the hdim7 (in red) and
dim7 (in purple) extended chord qualities from epochs 10
to 20 and 10 to 40, respectively. Similar trends can be ob-
served for the maj and min base chord qualities. This
indicates that sufficient learning of the base chord qualities
leads to performance improvements in the corresponding
extended chord qualities. We hypothesize that the convex
scheduler function outperforms the linear scheduler func-
tion in class-wise accuracy because the extreme imbalance
in the chord quality distribution warrants a faster curricu-
lum pace at the beginning of training. As shown in Table
2, the proposed CT+CLconvex model convincingly outper-
forms previous methods in the accj,ss metric. Note that the
CRNNj 5,10 results in Table 2 differ from the results re-
ported in [11] as we run CRNNj 5 10 over a different chord
vocabulary V' than the one used in [11].

To validate the inclusion of the CRF decoder in the
CL scheme, we count the number of chord changes in
BRIM predicted by the CT model, the CT+CL¢onyvex model,
and the CT+CLconex model without the CRF (denoted
CT+CLconyex-CRF). Table 4 shows that the model weights
at CL convergence disrupt the smoothness of the out-
put chord-label predictions, as evidenced by the substan-
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Figure 5: Chord quality accuracies of CT+CLconyex €valu-
ated at different points along the curriculum.

Method Chord Changes
CT 170,287
CT+CLConvcx 123,350
CT+CLconvex-CRF 235,885
Ground-Truth 122,231

Table 4: Predicted chord changes over BRIM.

tially larger number of predicted chord changes by the
CT+CLconvex-CRF model.

6. CONCLUSION

We propose a convolutional Transformer architecture for
ACR and a novel CL reweighting scheme to handle the im-
balanced chord quality distribution. The proposed scheme
exploits the hierarchical relationships between chord qual-
ities by gradually converging from the initial distribution
to a balanced chord quality distribution. The proposed cur-
riculum outperforms existing methods and non-CL base-
lines in improving the classification performance of rare
chord qualities without significantly degrading the classifi-
cation performance of the frequently-labelled chord qual-
ities. Although the proposed method considerably dimin-
ishes the model-learning bias induced by the imbalanced
chord quality distribution, the model still generally fa-
vors the frequently-labelled chord qualities. We believe
this is primarily an issue of data scarcity. Therefore, a
promising future direction to handle the imbalanced class-
learning problem for ACR is to generate more annotated
data either synthetically or by leveraging the vast amount
of publically-available unannotated audio tracks.
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