MULTI-TASK LEARNING OF GRAPH-BASED INDUCTIVE
REPRESENTATIONS OF MUSIC CONTENT

Antonia Saravanou!”  Federico Tomasi?

Rishabh Mehrotra? Mounia Lalmas?

! University of Athens, ? Spotify

antoniasar@di.uoca.gr,

ABSTRACT

Music streaming platforms rely heavily on learning mean-
ingful representations of tracks to surface apt recom-
mendations to users in a number of different use cases.
In this work, we consider the task of learning music
track representations by leveraging three rich heteroge-
neous sources of information: (i) organizational informa-
tion (e.g., playlist co-occurrence), (ii) content informa-
tion (e.g., audio and acoustics), and (iii) music stylistics
(e.g., genre). We advocate for a multi-task formulation
of graph representation learning, and propose MUSIG:
MUIti-task Sampling and Inductive learning on Graphs.
MUSIG allows us to derive generalized track representa-
tions that combine the benefits offered by (i) the induc-
tive graph based framework, which generates embeddings
by sampling and aggregating features from a node’s local
neighborhood, as well as, (ii) multi-task training of aggre-
gation functions, which ensures the learnt functions per-
form well on a number of important tasks. We present
large scale empirical results for track recommendation for
the playlist completion task, and compare different classes
of representation learning approaches, including collabo-
rative filtering, word2vec and node embeddings, as well
as graph embedding approaches. Our results demonstrate
that considering content information (i.e., audio and acous-
tic features) is useful and that multi-task supervision helps
learn better representations.

1. INTRODUCTION

Recent advancements in recommendation technology [1-
7] have fueled music listening on on-demand music
streaming apps (e.g., Spotify, Pandora, Apple Music).
Playlists form the backbone of how music is consumed,
with users relying on curated or user generated playlists to
discover and consume music from a massive pool of mil-
lions of songs. Personalization models built for selection
of tracks, generation of playlists and subsequent recom-
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mendation of playlists to users, rely heavily on represent-
ing tracks in a meaningful way, to best capture the various
intricacies and differences across musical tracks.

When learning track representations, one can leverage
various types of heterogeneous information encoded in
music data to benefit downstream tasks of music recom-
mendation: (i) organizational information: tracks orga-
nized into playlists; (ii) content information: audio and
acoustic features extracted from tracks; and (iii) musical
stylistics: musical domain characteristics like music gen-
res. Further, such representations are used by system de-
signers for many different downstream tasks, e.g., track
recommendation for playlist completion, ranking tracks
within a playlist and suggesting tracks in sequential ses-
sions (i.e., track radios). Unfortunately, the learnt repre-
sentations are often ill-suited for such tasks, because of
mismatch between the original learning and downstream
task. Instead, training the representation learning system
on multiple, complementary tasks would enable learning
richer representations, allowing for an increased adoption
of the representations for a variety of newer downstream
tasks, which is important in an industrial setting.

Motivated by the above aspects, we propose a MUIti-
task based Sampling and Inductive Graph learning ap-
proach (MUSIG) for learning track representations, that
combines information from heterogeneous sources and
benefits from supervision signals from a number of tasks.
Instead of training a distinct embedding vector for each
node, following recent advancements in graph based learn-
ing [8], we train a set of aggregator functions. These func-
tions aggregate information from different nodes in the lo-
cal neighborhood, and are trained via pairwise multi-task
supervision. For each pair of nodes, we consider three
tasks: (i) playlist co-occurrence, (ii) genre prediction, and
(iii) regression of tracks’ audio and acoustic properties.

Furthermore, the trained aggregator functions afford the
inductive ability to the model. Indeed, we can generate em-
beddings for unseen nodes by applying the learned aggre-
gation functions. Finally, jointly leveraging organizational,
content and stylistics information helps us cover individ-
ual track level information (e.g., audio/acoustic features)
as well as information from across various groupings of
track such as music stylistics based grouping (e.g., genres)
and user consumption based grouping (e.g., playlists).

We present a case-study on music recommendations
and conduct large scale analysis to compare different tech-
niques across several qualitative and quantitative measures.
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We make a number of contributions, including algorith-
mic and qualitative insights of music data at scale. Our
findings suggest that extracting audio and acoustic features
from music content is useful, and the addition of such con-
tent attributes better drives the representation of the tracks,
especially when large amount of consumption data is not
available, e.g., when launching in new markets. Further-
more, we show that training the model on multiple tasks
results in performance improvements and enables learning
more generalizable representations. We contend that our
findings have implications on the design and development
of representation learning approaches not only for music,
but also for other types of data.

2. RELATED WORK

Music representation learning. Recent works on mu-
sic representation learning rely on deep neural networks
to generate music embeddings, using various groups of
features: sequence of notes [9], music signals [10], pitch
sequences, temporal dependencies [11, 12], and artist fea-
tures [13]. Using music signals/notes from a track to gen-
erate track embeddings has shown various degrees of suc-
cess, and research in this area is still ongoing. In this work,
we use similar features and compare how graph represen-
tation learning models can incorporate them.

Word2Vec style embeddings. Text representations have
been extensively studied in the last years. Word em-
beddings refer to low-dimensional real-valued vector
representations for each term in the input vocabulary.
Word2Vec [14] and GloVe [15] are two well-known word
embedding algorithms that learn embedding vectors based
on the idea that similar words appear in similar contexts.
Word embeddings have been applied in various contexts,
such as item recommendations [16-18], music recommen-
dations [19] and query modeling and expansion [20, 21].
We also use Word2Vec to generate track embeddings based
on the idea that tracks appearing together in a playlist
should be closer in the embedding space. However, these
approaches are limited as they only consider the sequence
in which the items appear, and could not include additional
information on the actual content.

Graph based embeddings. In recent years, varia-
tions of Word2Vec working on graph structured data
were developed. Examples include Deepwalk [22] and
Node2Vec [23], which generate random walks in a spec-
ified neighborhood of the target node, to compute the
node embedding. Significant advancements of learning
on graph structures for recommendation applications in-
clude GraphSAGE [8], PinSAGE [24], PinnerSAGE [25],
IntentGC [26], MEIRec [27]. Most of these methods are
based on Graph Convolutional Networks (GCNs) [28],
which combine the graph information from the neighbor-
hood of a node (graph structure) and node features (content
information) in the creation of the embeddings. Graph-
based embeddings are especially useful when nodes and
edges have different types [29-32]. Graph representa-
tion learning exploit the structure and the features of the

Feature Description

Genre One-hot encoded vector of the top-50 popular genres

Popularity 2-dimensional vector with the global and the region popularity

Audio 42-dimensional vector that includes: danceability, energy,
liveness, acousticness, loudness, tempo, instrumentalness, va-
lence, etc

Acoustic  8-dimensional vector, corresponding to audio characteristics

Table 1. Track features (values are normalized in 0-1).

data. However, the embeddings are learnt by optimizing
the model on a single task, which makes the embeddings
not easily generalizable to additional downstream tasks.

3. MULTI-TASK GRAPH EMBEDDINGS

Recommender systems rely heavily on learning meaning-
ful representations of users and content, to offer personal-
ized recommendations piquing users’ interest. With an ex-
plicit focus on streaming music platforms, we briefly dis-
cuss few important characteristics of representation learn-
ing and describe our proposed method, MUSIG, for node
representation learning with multi-task supervision.

3.1 Music Graph Data

We work with data consisting of track and playlist informa-
tion from Spotify, a popular music streaming platform ' .
Tracks are organized into playlists. Playlists provide in-
formation on how users organize their music. We rep-
resent playlist-track information as a graph and create a
(weighted) homogeneous graph containing all tracks in our
dataset. Let the graph be G = (V, &), with nodes V be the
tracks and edges £ be the connections between tracks co-
appearing in the same playlist. We set the weight of an
edge to be the number of distinct playlists in which the
connected tracks co-appear. We keep edges with weight
> 10. Our graph contains 5.2M edges and 15.9K nodes,
from a collection of 95K playlists (albums and movies).

Following the approach outlined in [33], we extract var-
ious content features from the music recording of the track,
including acousticness, danceability, energy, instrumental-
ness, liveness, loudness, speechiness, valence and tempo,
etc., which we refer to as audio features (Table 1). Further-
more, we train a deep neural model on the music recording
of each track (via 30-second windows) for a binary classi-
fication task of playlist co-occurrence and we use the last
layer projected to 8 dimensions as the acoustic features of
the track.

3.2 Desired Characteristics

We identify few desirable characteristics for representation
learning approaches and motivate their need for inclusion
with brief supporting analysis. First, many industrial ap-
plications, especially in the music domain, require repre-
sentations to be promptly available for new tracks. Fig-
ure 1 (left) plots the increase in new content on a daily

Uhttps://www.spotify.com
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Figure 1. (Left) Percentage of tracks per day in our
sample. (Right) Correlation between number of common
playlists and acoustic similarity on 50K pairs of tracks.
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Figure 2. (a) Input graph (each color represents a differ-
ent track). (b) GraphSAGE model, aggregating the blue
node’s neighbors to generate the node embedding. (c) Our
multi-task model (MUSIG) computing blue and red nodes’
embeddings while optimizing for three different tasks.

basis; hundreds of tracks are added every day? and learn-
ing their representations as early as possible is crucial for
production machine learning systems.

Second, a good representation learning approach should
leverage all available information, including both playlist
co-occurrence and content features. Figure 1 (right)
presents the relationship between playlist co-occurrence
and acoustic features between randomly selected track
pairs. For each pair, we compute the similarity between
tracks using their acoustic features, and plot those against
the percentage of playlists in which the two tracks co-
occur. We observe very low correlation between the two
modalities (—0.029), and low density of the scatter-plot in
the high similarity co-occurrence region, which highlights
that these modalities (graph structure and additional fea-
tures) capture different information.

Finally, the learnt track representations are employed
in a number of use cases across multiple product features.
Usually, methods that compute representations are opti-
mized for a specific task. We hypothesize that training the
representation learning modules on multiple tasks would
enable learning generic representations which would help
in a wide variety of downstream recommendation tasks.

3.3 MUSIG Overview

The key idea behind MUSIG is multi-task supervision of
neighborhood aggregator functions that aggregate infor-

21n 2019, there is an average 0.09% daily increase of the catalog,
resulting in a 19% increase from the start of the year.
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mation from a node’s neighborhood. The idea of exploiting
node’s neighborhood has shown to provide state-of-the-art
results [8,34]. MUSIG adopts a multi-task based learning
of aggregator functions, which enables it to learn param-
eters of the functions based on feedback from multiple,
complimentary tasks. Specifically, the algorithmic com-
putations performed by MUSIG are divided into two key
steps: (i) Neighborhood Aggregator Step, which gener-
ates embeddings by aggregating information from differ-
ent nodes in multiple hops away from a given node (based
on search depth), and (ii) Multi-Task Supervision Step,
which trains the parameters of the aggregation functions
by jointly predicting multiple tasks, and back-propagates
the combined losses to the aggregator function parameters.

3.4 Neighborhood Aggregator Step

Unlike traditional representation learning approaches,
which train a specific embedding for each item in an end-
to-end neural model, MUSIG relies on local neighbour-
hood information and learns aggregator functions that can
digest local information to obtain a representation of any
given node (Figure 2). For any depth d, the aggregator
function recursively aggregates information from all nodes
in the d-depth neighborhood of a node, and uses a set of
weight matrices W*, Vk € {1,..., K} to propagate in-
formation between layers arising for each depth. At each
iteration, or search depth, the nodes aggregate information
from their local neighbors, and as this process iterates, the
nodes incrementally gain more information from further
reaches of the graph. We follow an iterative approach to
aggregate information. First, each node v € V aggregates
the representations of the nodes in its neighborhood A (v),
{h*=1 vu € N(v)}, into a single vector hﬁf(i):

h} ) + AGGREGATE({hy ", Yu e N(v)}) (1)

The representations at step k& depend on the representa-
tions generated at k£ — 1, with representations at £ = 0
being encoded by the default node features provided to the
graph. By incorporating node features in the learning al-
gorithm, the model simultaneously learns the topological
structure of each node neighborhood as well as the distri-
bution of the node features in the neighborhood. To extract
all adjacent nodes, we uniformly sample a fixed-size set
of neighbors and thereby keep the computational footprint
of each batch fixed. Following [34] we use a permutation
invariant aggregator function which implements the mean
operator, taking the element-wise mean of the vectors in

{h*=1 vy € N(v)}:
AGGREGATE; (h5 1) «— MEAN({h* ™' Vu e N(v)}) (2

We then concatenate the node’s current representation,
with the aggregated neighborhood vector. This concate-
nated vector is fed through a fully connected layer with
nonlinear activation function, which transforms the repre-
sentations to be used at the next step of the algorithm (i.e.,
h*, Vv € V):

ht U(CONCAT(hf_lv hf\/(v))) )
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The final representations output at depth K is denoted as
s, = hif, which is used in the next step during training.

3.5 Multi-Task Supervision

The performance of representations learnt by MUSIG
model relies heavily on how well the aggregator functions
are trained and what tasks they are trained on. Most graph-
based representation learning approaches are trained only
on link prediction tasks, and hence learn function param-
eters only to do well on link prediction task. We hypoth-
esize that training these parameters in a multi-task setting
would make the parameters (and in turn, output represen-
tations) generalizable across multiple downstream applica-
tions. Learning under multi-task supervision offers various
benefits, including imparting inductive bias via auxiliary
tasks, which cause the model to prefer hypotheses that ex-
plain more than one task. This improves generalization
by sharing the domain information between complimen-
tary tasks, which is achieved by using a shared represen-
tation to learn multiple tasks — what is learned from one
task can help learn other tasks.

Considering the output from the previous step, we de-
note by s; a track from the input space S and a collection
of task spaces {Yt}tem. To train the aggregator func-
tions in a multi-task learning setup, we consider large sam-
ple of i.i.d. data points {(s;, sjc1(i)), ¥ yZ.-., y7 }, where
(si,8jer(i)) represents a pair of nodes (i.e., tracks) with
sjer(i) being a track derived either from neighborhood of
si, N'(s;), or negatively sampled from elsewhere. T is the
number of tasks, NV is the number of such node pairs sam-
pled, and y! is the label of the ¢-th task for the i-th track
pair. Essentially, for each pair of tracks sampled from the
graph, we consider labels obtained via different tasks. We
further consider a parametric hypothesis class per task as
FH((si,8jer(i)); 0°) © S — Y, such that the parame-
ters (0°") are shared between tasks. We also consider task-
specific loss functions £!(-,-) : S* x S* — RT.

We employ an empirical risk minimization formulation
of multi-task learning, and minimize the loss function:

T
Iglbl}{l Ctﬁt (gsh) (4)
t=1
for some static or dynamically computed weights ¢! per
task. In essence, losses from all tasks are combined into a
single surrogate task via linear weighted scalarization, with
each task having ¢! weight. We perform grid search over
the space of the parameters to estimate the final set of task
weights used to report results. £f(6") is the empirical loss
of the task ¢, defined as:

AN 1 S
Lo & N Zﬁ(ft(<5i78,jel(i)>§9 ") u) 5)

We apply a multi-task supervision based loss function to
the output representations, z,,, Vu € V, and tune the weight
matrices W¥, Vk € {1,..., K}, and parameters of the
aggregator functions via stochastic gradient descent.

3.5.1 Identifying Supervision Tasks

The multi-task supervision of the model encourages nodes
to have representations that help them solve all tasks for
which the model is trained on. Our choice of supervi-
sion tasks is guided by our focus on leveraging the hetero-
geneous information encoded in music data, specifically,
around three types of information (i) organizational infor-
mation: tracks organized into playlists, (ii) content infor-
mation: audio and acoustic features extracted from tracks,
and, (iii) musical stylistics: musical domain characteristics
like music genres. To have a representative set of tasks to
train the model on, we select one task from each of these
three categories of information:

1. Playlist prediction: binary classification task,
where we predict whether or not the two tracks co-
occur in same playlists. This task encapsulates the
organization structure embedded in music playlists:
two tracks sharing a playlist would make their rep-
resentations similar to each other.

2. Genre prediction: binary classification task, where
we predict whether two tracks belong to the same
genre. Genres are useful for the categorization, and
training on them ensures that tracks with the same
genre have similar representations.

3. Acoustic or audio similarity prediction: regres-
sion task, where we encourage the embeddings to
capture similarities in the music content space. We
define track similarity as the inner product between
acoustic or audio vectors and, thus, force the learnt
space to encode music characteristics. This training
task enforces representations to rediscover audio and
acoustic distances between the tracks.

To better highlight that these tasks contribute heteroge-
neous information during representation learning, we com-
pute the label correlation across them, and observe that the
playlist prediction task has very little correlation with the
other two tasks, and that the genre and acoustic similarity
prediction tasks do share some commonality, but still dif-
fer enough (Figure 1). We use binary cross-entropy loss
for the classification task and RMS loss for the regression
task. Overall, the final loss function combines the losses
from each of the three tasks as:

LFinal = ¢1Lplaytist + C2LGenre + 3 LAudiobist-  (6)

Importantly, unlike previous approaches, the representa-
tions s; that are fed into this loss function are generated
from the features contained within a node’s local neigh-
borhood, rather than training a unique embedding for each
node (via an embedding look-up).

4. EXPERIMENTAL SETUP

To study the quality of the track embeddings, we conduct
an empirical evaluation using data from Spotify.
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Method Features HR MRR Prec@1 Prec@5 Prec@l0 NDCG@1 NDCG@5 NDCG@10
CF - 02715  0.1350  0.0119 0.0136 0.0119 0.0610 0.0890 0.0921
TRACK2VEC 0.5616 0.0174  0.0123 0.0218 0.0225 0.0123 0.0520 0.0813
NODE2VEC 0.4739  0.0128  0.0001 0.0005 0.0025 0.0001 0.0008 0.0065
TRACK2VEC GENRE 0.5017  0.0137  0.0126  0.0133 0.0139 0.0126 0.0378 0.0575
TRACK2VEC  POPULARITY 0.5029 0.0138  0.0125 0.0140 0.0137 0.0125 0.0388 0.0564
TRACK2VEC AuUDIO 0.5020 0.0133  0.0156  0.0132 0.0128 0.0156 0.0368 0.0539
TRACK2VEC Acoustic  0.5014  0.0137  0.0145 0.0145 0.0140 0.0145 0.0425 0.0610
GRAPHSAGE GENRE 0.4981 0.0132  0.0038 0.0129 0.0135 0.0038 0.0318 0.0499
GRAPHSAGE PoOPULARITY 0.5038 0.0149  0.0239 0.0219 0.0180 0.0239 0.0624 0.0808
GRAPHSAGE AUDIO 0.5914  0.0162  0.0143 0.0155 0.0154 0.0143 0.0420 0.0615
GRAPHSAGE  Acoustic 05382 0.0163  0.0164  0.0217 0.0186 0.0164 0.0594 0.0795
MUSIG GENRE 0.7077  0.0359  0.0278 0.0362 0.0393 0.0278 0.0724 0.1150
MUSIG PopPULARITY 0.7505 0.0358  0.0024  0.0193 0.0327 0.0024 0.0312 0.0776
MUSIG Aupio 0.7203  0.0324  0.0661 0.0494 0.0415 0.0661 0.1240 0.1614
MUSIG Acoustic  0.7305 0.0308 0.0412  0.0429 0.0372 0.0412 0.1047 0.1404

Table 2. Results of the comparison methods using the 50% of playlist’s tracks as seed track list.

4.1 Downstream Task: Playlist Completion

Playlists are the backbone of how music content is con-
sumed, with over one-third consumption resulting from
user-generated playlists. > To assist users in selecting mu-
sic for their playlists from the massive music catalog of
million tracks, platforms rely on track recommendation
services for playlist completion. Good track representa-
tions are crucial for the playlist completion task to be ef-
fective. Given a number of tracks in a playlist, our goal is
to recommend related tracks. We construct this experiment
in an offline fashion. We randomly select 10K playlists that
have at least 40 tracks. We keep the top x% tracks to be
the seedlist and we calculate the average embedding from
those. Then, we mix the bottom (100 — x)% tracks with
the same number of tracks from a random pool and we call
them candidate tracks C. We calculate the cosine similar-
ity of all pairs (zs, z.), where z; is the average seedlist em-
bedding and z. is the embedding of candidate ¢ € C, and
we rank them in descending order. Finally, we recommend
the top (100 — x)% ranked tracks.

4.2 Baselines

We compare the proposed MUSIG with representative
models from the three different classes of representa-
tion learning approaches: collaborative filtering, word2vec
based models and graph embedding based model.

1. Collaborative Filtering. We compare with a collab-
orative filtering matrix factorization method trained with
WARP loss [35], which aims at maximizing the rank of
positive examples by repeatedly sampling negative ones.

2. Track2Vec. We compare a Word2Vec-based model,
considering tracks co-occurring in the same playlists. We
also concatenate the normalized features of Table 1 to
the final embeddings of the model for fair comparison
(TRACK2VEC-FEATURE).

3. Node2Vec. This approach takes into account random
walks in the neighborhood of the node to create embed-
dings. Tracks connected by links in the graph are encour-
aged to be closer in the embedding space.

3 https://www.businessofapps.com/data/spotify-statistics/
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4. GraphSAGE [8]. This is a node representation model
that produces embeddings based on the structure (i.e., node
neighborhood) as well as the feature vector.

5. GraphSAGE-Feature. To investigate the performance
of the model when adding features, we run the GraphSage
model with all four different groups of features. To tune
the model, we use the same parameters as before.

Our MUSIG/MUSIG-Feature model. Since the pro-
posed MUSIG model affords multiple supervision, it
is trained on genre prediction and audio/acoustic fea-
ture similarity tasks in addition to playlist co-occurrence
task. We modulated the balance between the three
tasks by empirically selecting the best performing
triple (c1,co,c3) of Eq. (6) across the following set:
{(1,1,1),(1,0,0),(0.7,0.1,0.2), (0.4,0.2,0.4) }, to eval-
uate different properties of the single loss functions (i.e.,
when all losses weight the same; when only the first is non-
zero, which is equivalent to a single task GraphSAGE).

4.3 Evaluation Metrics

We use four metrics to compare the approaches on the
playlist completion task. Firstly, we include the standard
versions for Precision at k (P@k) and Normalized Dis-
counted Cumulative Gain at kK (NDCG@k). We define hit
rate (HR) as the fraction of tracks that were ranked in the
top K candidates for a specific playlist P. This metric di-
rectly measures the probability that the track recommenda-
tions are the correct ones. In our experiments, K dynam-
ically changes based on the size of the playlist, and it is
defined as K = (100 — x)/|P|, where x is the size of the
seedlist tracks and | P| the size of the playlist. We also use
(scaled) mean reciprocal rank (MRR), which takes into ac-
count the rank of the track © among recommended tracks
for playlist P, defined as [24]:

1 1
MRR = = -
RE=2 2 R0

where n is the number of all pairs and R,, is the rank of the
track « among all recommended tracks for playlist P.
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4.4 Comparison across approaches

We compare all representation learning approaches to ours
(MUSIG), on the playlist completion task (Table 2). Re-
sults are calculated using the 50% of the playlist as seedlist.
In Section 4.6, we discuss more on the performance of
the models using all features. MUSIG trained on the
Music Graph using the multi-task training and including
the POPULARITY in the node attributes, outperforms all
other models. More specifically, we observe that MUSIG—
POPULARITY achieves the best HR=75.05%, while the
best performance from any of the comparison models is
achieved by GRAPHSAGE-AUDIO with an HR=59.14%.
All results were tested for statistical significance and
proven significant (p < 0.01).

4.5 Impact of training on multiple tasks

MUSIG improves the hit-rate score of the best existing
model by 27%. This is an important indicator that em-
beddings generated by optimizing on multiple tasks are
able to significantly improve the performance of the down-
stream task of playlist completion. Furthermore, this indi-
cates that imparting the representations to perform well on
genre classification and acoustic/audio distance similarity
tasks enriches them further, improving the performance.
We leave for future work further validation of other tasks
for training, and the impact on other downstream tasks.

4.6 Impact of Features

We extensively investigate the importance of leveraging
content features while learning embeddings. We select the
best performing track (TRACK2VEC) and node embedding
(GRAPHSAGE) models, and we evaluate the performance
of these models and MUSIG using different groups of
features node attributes (GENRE, POPULARITY, AUDIO,
AcousTIC). For fair comparison, in TRACK2VEC we use
aggregations of features and track embeddings.

In Table 2 we observe that TRACK2VEC achieves best
performance when trained without the content features,
which was expected since the model is designed to lever-
age only organization information. Second, we observe
that in MUSIG the GENRE*, AUDIO and ACOUSTIC fea-
tures achieve lower hit rate scores, when compared to the
POPULARITY features. An explanation is that all three fea-
tures are already included as tasks in MUSIG, while popu-
larity enriches further the learning phase. Intuitively, pop-
ularity does have a relationship to content, as it is related to
more “mainstream” or “alternative” track types. However,
in all groups of content features, our model outperforms all
other models when trained with the same content features.
The improvements of our model for each group of con-
tent features are: GENRE: 42%, POPULARITY: 49%, AU-
DIO: 22%, and, ACOUSTIC: 36% compared to the second
best model. This highlights that the information contained
by the audio and the acoustic features extracted from mu-

4 An explanation for the limited performance offered by genre could
be our restriction to the most 50 popular genres (Table 1).

Regr. Task  Features HR MRR Prec@10 NDCG@10
AuDIO AcousTIiC 0.7305 0.0308 0.0372 0.1404
AUDIO AuDIO 0.5518  0.0186 0.0164 0.0581

AcousTIiC AcousTiC  0.7203 0.0324  0.0415 0.1614

AcCOUSTIC AuDIO 0.4339  0.0134 0.0085 0.0295

Table 3. Regression task and node features interplay.

sic recordings is indeed informative, and leveraging them
while learning embeddings is useful.

We also evaluate the models for the playlist comple-
tion task when using all four feature categories as node
attributes. For MUSIG, we only add the POPULAR-
ITY feature in the node attributes, as information from
the rest of the available features is already used in the
tasks during the training. The best performing model
is MUSIG, which achieves HR=0.75. The second best
performance, GRAPHSAGE with all features as node at-
tributes; achieves HR=0.50. This highlights that the multi-
task learning in our MUSIG model achieves better results
in all cases, for each feature separately but also in combi-
nation, further motivating multi-task learning methods for
node classification tasks.

4.7 Variations in Multi-task Learning

To leverage music audio and acoustic properties, the pro-
posed model not only considers them as node features, but
also as regression tasks in the multi-task setting. We inves-
tigate the interplay between using such content informa-
tion, and we compare multi-task models trained on both
audio and acoustic features and tasks (Table 3). Among all
combinations of tasks and features, using AUDIO similar-
ity as the regression task with ACOUSTIC features as node
features gives the best hit rate, while the reverse model,
i.e., ACOUSTIC similarity task with AUDIO features, out-
performs other combinations for all other metrics. AU-
DIO features capture rich information about music content.
This further motivates the usefulness of hybrid representa-
tion learning approaches, that combines playlist organiza-
tion information with content information.

S. CONCLUSION

We propose a multi-task graph-based learning model for
music recommendation. Our method learns the track rep-
resentations based on content features and structural graph
neighborhoods, while the multi-task training is aggregat-
ing multiple functions and learning representations based
on supervision from multiple training tasks. The induc-
tive aspect of MUSIG helps in reducing the wait time to
surface new, fresh content in front of users from days to
few hours, while the multi-task supervision enables the
use of these representations for tasks that could not di-
rectly benefit from playlist co-occurrence only. Empirical
results demonstrate the benefits of our method, wherein we
show the value of the multi-task over the single-task learn-
ing. Furthermore, we show that extracting content features
(such as audio or acoustic) improves the performance in
existing methods, achieving the best improvements when
those features are used in the multi-task setting.
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