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ABSTRACT

The extent to which the sequence of tracks in music
playlists matters to listeners is a disputed question, nev-
ertheless a very important one for tasks such as music rec-
ommendation (e. g., automatic playlist generation or con-
tinuation). While several user studies already approached
this question, results are largely inconsistent. In contrast,
in this paper we take a data-driven approach and investigate
704,166 user-generated playlists of a major music stream-
ing provider. In particular, we study the consistency (in
terms of variance) of a variety of audio features and meta-
data between subsequent tracks in playlists, and we relate
this variance to the corresponding variance computed on a
position-independent set of tracks. Our results show that
some features vary on average up to 16% less among sub-
sequent tracks in comparison to position-independent pairs
of tracks. Furthermore, we show that even pairs of tracks
that lie up to 11 positions apart in the playlist are signif-
icantly more consistent in several audio features and gen-
res. Our findings yield a better understanding of how users
create playlists and will stimulate further progress in se-
quential music recommenders.

1. INTRODUCTION

Over the last decade, online streaming services have sub-
stantially changed the way people consume music. As a re-
sult, research on automatic playlist generation (APG) and
automatic playlist continuation (APC) has gained attrac-
tion and contributed to improving machine-based creation
and extension of item sequences (most commonly, mu-
sic tracks), respectively. All the more as users nowadays
spend over 36 % of their online music listening time on
user-generated playlists, 17 % on playlists personalized by
recommendation engines, and 15 % on the ones created by
professional playlist curators. 1 Together with the fact that
users create and share massive amounts of playlists on mu-

1 https://www.goodwatercap.com/thesis/
understanding-spotify
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sic streaming platforms, 2 this raises the question of how
well current research understands the underlying semantics
of user-generated playlists.

Most APG and APC approaches include algorithms that
are capable of learning sequences [1–5] while other focus
on smooth transitions [6]. However, contradictory findings
from user-centered studies [7, 8], as well as from offline
evaluations of sequence-aware recommenders [9, 10], im-
pair a clear understating of whether tracks’ sequential or-
der has a meaningful role in users’ listening experiences.

To narrow this research gap, the work at hand investi-
gates directly, in a multifaceted manner, various properties
shared across subsequent tracks in user-generated playlists.
In contrast to other works, we argue that our conducted
in-depth statistical analysis of a large set of real user-
generated playlists complement findings over conclusions
previously drawn from other indirect approaches, such as:

• measuring differences in recommendation accuracy
for shuffled playlists [9, 10],

• comparing different machine learning approaches
such as sequence aware vs. only context-aware rec-
ommenders [3],

• analyzing the effects of adding an additional re-
ranking stage to the model [2, 4],

• evaluating feedback from user studies [7, 8, 11].
Against this background, we investigate the following

research questions:
RQ1: Does the sequence of tracks matter in user-
generated playlists? We approach this question by com-
paring the variance of subsequent tracks to the overall
playlist variance, in terms of a variety of properties, con-
cerning track metadata and audio features.
RQ2: For how long do the properties of one track per-
sist on its successors? We study this question by evaluat-
ing the number of tracks that are affected by the previous
ones concerning the aforementioned properties.

2. RELATED WORK

Related work can be categorized into (i) user studies in-
vestigating the quality criteria of user-generated playlists,
(ii) research analyzing the difference between sequential
and order-agnostic algorithms for APG or APC, and (iii)
works that consider APG and APC as sequential problems,
thereby, indirectly assuming the importance of track order.

2 For instance, Spotify reports having over 4 billion playlists (https:
//newsroom.spotify.com/company-info/).
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Concerning user studies, in the works by Kamehkhosh
et al. [8, 11] users were asked to identify quality criteria of
playlists. In both works participants ranked (out of 7 op-
tions) the track order as the fourth and sixth most impor-
tant criteria, respectively. Although this might indicate that
track order has less relevance to users than other properties,
one third of the participants reordered their tracks during
one of the experiments by Kamehkhosh et al. [11], which
shows that (even unconsciously) track order is, to some
extent, relevant to the users. Differently, in the user study
conducted by Tintarev et al. [7], participants did not expe-
rience their track recommendations to be ordered. Some
participants even reported that they generally use random-
ization for listening to their songs.

Concerning sequence-aware music recommender sys-
tems, Bonnin and Jannach [3] showed that algorithms
based on sequential patterns outperform association rules.
Chen et al. [12] trained a Latent Markov Embedding capa-
ble of reproducing coherency of playlists, thereby, outper-
forming n-gram models. Yang et al. [13] proposed an au-
toencoder architecture which performed better when track
order was not manipulated. In contrast, Vall et al. [9, 10]
investigated a recurrent neural network trained once on ac-
tual playlists and once on shuffled playlists. They showed
that rank-based accuracy did not significantly change be-
tween the two settings.

Furthermore, some research acknowledged the impor-
tance of track order by directly implementing methods ca-
pable of learning track sequences. Bittner et al. [5] iden-
tified a vast support for the creation of smooth transitions
in commercial DJing software, which led them to imple-
ment a system that fosters such transitions. Amongst other
works related to the topic [6, 14], Jannach et al. [4] pre-
sented a two-stage approach for APC to re-rank candi-
dates coherently with recent tracks. Similarly, Volkovs
et al. [2] used a two-stage model including temporal and
pairwise interactions which achieved the best score in the
2018 ACM Recommender Systems Challenge. 3

Finally, since previous work on APG and APC mostly
focus on western music, considering theoretical principles
from tonal music is important when investigating tracks’
transitions. Yet, in previous works the mode is typically
considered [15] while the key (essential to represent tonal-
ity besides the mode), is often disregarded. Indeed, the
role of tonality, despite its importance in the hierarchical
relationships inherent of Western music, 4 has been rarely
considered in the context of playlist sequentiality [5, 18].

3. DATA AND METHODOLOGY

3.1 Dataset

In order to answer the research questions, we consid-
ered the Million Playlist Dataset (MPD) provided by Spo-

3 http://www.recsyschallenge.com/2018
4 From a music theory perspective tonal functionality models listeners’

expectations, within and across songs, as shown by the tonal relationship
between the different movements of unique compositions, e. g., sonatas
(cf. Sonata A in [16]), whose movements’ tonalities are typically related
in terms of dominant, subdominant, relative, or modal relationships [17].

tify for the ACM Recommender Systems Challenge 2018.
It encompasses one million user-generated playlists from
US-citizens, with a length between 5 and 250 tracks, and
an average length of 66.35 tracks. Overall, the playlists
in the dataset contain about 2.3M unique tracks by 296K
artists. The dataset includes only publicly shared playlists
with at least 5 followers; thus, minimizing the risk of in-
cluding collections of tracks without any musical theme
which are just enjoyed by the creator.

One additional advantage of using this dataset is the
coverage of high-level audio features, i. e., descriptors de-
rived from low-level acoustic properties, that can be re-
trieved by the Spotify API. 5 These features have been
used frequently in the literature [19–22] to analyze or rec-
ommend music. In this work, we investigate the following
audio features: acousticness (confidence that a track con-
tains non electronic instruments); danceability (how suit-
able a track is for dancing); energy (measure representing
tracks’ intensity and activity according to perceptual fea-
tures such as dynamic range or loudness); instrumental-
ness (probability that a track does not contain vocals); key
(indicates the tonality of the track without referring to the
mode, i. e., the pitch-class); liveness (confidence value that
indicates whether the track has been performed in presence
of an audience); loudness (average loudness of the track
in decibel); speechiness (measures the presence of spoken
words); mode (indicates the scale of the track, i. e., major
or minor, to which the key refers to); tempo (pace of the
track in beats per minute); valence (indicates a track’s he-
donistic value, i. e., whether it sounds positive or negative).

In addition to the described audio features, we also take
into account other three related to metadata, i. e., artist,
genre, and popularity. As MPD provides only the main
artist per track, we enrich the set of artists by retrieving for
each of the 2.3M tracks, also through the Spotify API, all
artists which have contributed to a track. This has been
done to account for artist collaborations as possible ef-
fect of smooth transitions inside playlists. For 136, 854
of the 402, 867 artists in the enriched artist set, a set of
genres is available. 6 We link these genres to the tracks
of the playlists in order to analyze whether a shift in gen-
res over time can be observed. Finally, the popularity of a
track, which describes the recent average number of listen-
ing events, is retrieved by the same query as the artists.

All in all, 9 continuous features, i. e., acousticness,
danceability, energy, instrumentalness, liveness, loudness,
speechiness, tempo, and valence, as well as 5 discrete, i. e.,
key, mode, genre, artist, and popularity, are considered.

Note that some features, i. e., acousticness, instrumen-
talness, liveness, and speechiness, describe confidence lev-
els rather than meaningful musical characteristics. Never-
theless, we include these features as they might still be in-
sightful, even with their skewed distribution, towards val-
ues of 0 and 1.

From the one million playlists provided by the dataset,
we filter out all playlists which have less than 30 tracks:

5 https://developer.spotify.com/documentation/
web-api/reference/#category-tracks

6 https://everynoise.com/
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this yields 704, 166 playlists with 2, 165, 065 unique tracks
to be analyzed. The filtering is mainly done for RQ2, so
that we can analyze tracks dependencies that lie up to 15
tracks apart, which is necessary since our method requires
twice of this number of tracks to assure that all tracks
are covered in the variance calculation presented in Sec-
tion 3.2.2. As a side effect of the filtering procedure, we
also minimize random noise caused by small playlists. 7

3.2 Definitions

3.2.1 Playlist Variance

Let T be a list of n tracks [t1, . . . , tn] forming an arbitrary
playlist of our dataset. Each track ti is assigned to a set of
features where xi denotes a single feature value, represent-
ing any of the considered Spotify features (i. e., the audio
features and popularity). Besides, the genres and artists of
each track are defined as discrete feature sets, Gi and Ai,
respectively, through a bag-of-words representation.

The variance according to a feature x across all tracks,
independently of the track order inside a playlist, is cal-
culated as the sum of differences between the average of
the feature x and all feature values xi, as given by Equa-
tion (1). To avoid ambiguity, from now on we call this the
playlist variance.

pl_var(T ) =
1

n− 1

n∑
i

(xi − x)2 (1)

This formula works in cases for which the mean can
be computed. However, calculating the overlap between
genres and artists, e. g., with the Jaccard distance, does not
provide a mean value. Similarly, the discrete features key
and mode need also a different distance measurement to
capture the similarities across tracks’ tonalities. In these
cases, the playlist variance can be calculated by averaging
the differences of all pairwise combinations. This has been
demonstrated by Zhang and Cheng [23] and it is shown in
Equation (2).

var(T ) =
1

n

n∑
i

(xi − x)2 =
1

2n2

n∑
i

n∑
j

(xi − xj)
2 (2)

Equation (2) can now be extended by any arbitrary dis-
tance measurement D and since the distance w. r. t. the
same track is always zero, a degree of freedom n − 1 is
considered to compute the variances, as shown in Equa-
tion (3).

pl_var(T ) =
1

2n(n− 1)

n∑
i 6=j

D(xi, xj)
2 (3)

In order to eliminate possible correlations between re-
peating artists, we prevent some pairwise track combina-
tions to be considered for calculating the playlist variance.
The corresponding filter functionF(Ai, Aj) returns 1 if all
artists of Ai are different from those of Aj and 0 otherwise.

7 It seems that playlists in the dataset are stratified by their track size.
The smallest playlists is 5 tracks long and the largest 250.

Adding the filter functionF(Ai, Aj) to the playlist vari-
ance results in the constrained playlist variance, as defined
by Equation (4).

cpl_var(T ) =

∑
i6=j F(Ai, Aj)D(xi, xj)

2

2
∑

i 6=j F(Ai, Aj)
(4)

3.2.2 Sequential Variance

To answer the RQs we need to compare the playlist vari-
ance with a variance eligible to account for the track order
inside playlists. We will refer to this as sequential vari-
ance, which is the variance of a pair of tracks occurring at
a fixed distance (number of tracks) apart in a given playlist.
The sequential variance for all track combinations that lie d
tracks apart is defined by Equation (5). Note that d = 1
means that the two tracks are direct neighbors.

seq_var(T ) =
1

2(n− d)

n−d∑
i

D(xi, xi+d)
2 (5)

Similarly as for the constrained playlist variance, to
compute the constrained sequential variance we apply
again the filter function F on the sequential variance, thus
ignoring pairs of tracks by the same artist(s), as defined in
Equation (6).

cseq_var(T ) =
∑n−d

i F(Ai, Ai+d)D(xi, xi+d)
2

2
∑n−d

i F(Ai, Ai+d)
(6)

3.2.3 Proportional Variance

To analyze the aggregated differences between playlist
and sequential variance for all considered playlists in the
dataset, we calculate for each track list T ∈ D, where D
denotes to the dataset, the ratio of the playlist variance to
the sequential variance. From now on, we refer to it as
the unconstrained proportional variance (UPV), by this
denoting that repeating artists were not excluded. As a
minor part of the tracks might present very homogeneous
features, sequential variances with values close to zero can
occur. Since dividing the playlist variance through these
variances may yield proportional variances converging to
infinity, we use the median instead of the mean to reduce
the UPV values of all playlists to one average value, as
shown in Equation (7).

prop(D) = medianT∈D
pl_var(T )

seq_var(T )
(7)

Note that the constrained proportional variance (CPV)
is calculated as shown in Equation (7) but considering the
constrained versions of the playlist and sequential variance
instead.

3.2.4 Feature-specific Distance Measurement

In this section, we summarize the three different distance
measurements, previously denoted as D, to calculate the
variances, both the playlist variance and the sequential one:
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Figure 1. Visualization of the Euclidean distance (marked
with the red dashed line) between ‘AZ’ and ‘a’ in R3. Major
and minor tonalities are indicated with upper- and lower-
case, respectively; \ stand for sharps, Z for flats.

(i) For all the continuous features and the discrete pop-
ularity, the variance is calculated by Euclidean distance.

(ii) For the discrete features key and mode, related in
terms of tonality from a music theory perspective, these
were considered together, as proposed by Bittner et al. [5],
who maps mode and key into the three dimensional space
R3. Keys, i. e., the pitch classes, are mapped according to
the circle of fifths and represented as points onto a two di-
mensional unit circle. The third dimension is added by the
mode (major or minor) so that key and mode are equidis-
tant. In Figure 1 the representation of key and mode in the
three dimensional space is shown. From now on, we will
refer to the combination of these tow features as tonality.

(iii) For the overlap in artists (or genre) between two
tracks, the variance is calculated by the Jaccard distance,
as shown in Equation (8), where Ai and Aj represent the
artist (or genre) sets of track ti and tj , respectively.

J (Ai, Aj) =
|Ai ∪Aj | − |Ai ∩Aj |

|Ai ∪Aj |
(8)

3.3 Method

To investigate the RQs, we first calculate for each playlist
in the dataset the playlist variance, as defined in Sec-
tion 3.2.1. The playlist variance is our baseline, which
represents the variance of features irrespective of the order
of the tracks. Then, the sequential variance is computed
for each playlist as defined in Section 3.2.2. In contrast
to the playlist variance, the sequential variance considers
only tracks which lie exactly d tracks apart from each other
inside the playlist.

To answer RQ1 we choose d = 1, so that only fea-
tures of direct neighbors, i. e., (x1, x2), . . . (xn−1, xn), are
considered for the variance calculation. If for the major-
ity of playlists the sequential variance is lower than the
playlist variance, thus yielding a high proportional vari-
ance, i. e., above 1.0, we can conclude that users, con-
sciously or unconsciously, create playlists with smooth
transitions between tracks for the given feature under in-
vestigation. In contrast, if the sequential variance is higher
than the playlist variance for a certain feature, thus yield-
ing a low proportional variance, i. e., below 1.0, we can

conclude that users tend to prefer a more rapid change for
that feature. Reasons for rapid changes can be multifari-
ous. For instance, in playlists with the purpose of dancing,
a change towards slower or different music style might be
used to give listeners a recovery break.

We also investigate the effects of repeating or partially
overlapping artists across tracks. Assuming that artists
tend to produce tracks with similar features, sequences of
tracks by the same artist might bias the variances of other
features, especially when correlations between artists and
features are strong. Therefore, we adapted the sequential
variance and playlist variance as defined by Equation (4)
and Equation (6) with the constraint of excluding subse-
quent tracks for which artists repeat.

To answer RQ2 we compare the playlist variance with
the sequential variance for different track distances d. This
enables us to assess how the features of a given track per-
sist on the neighboring ones in relation to the distance be-
tween them. We interpret the changes in the UPV w. r. t.
different track distances as defined in Section 3.2.2 and
Section 3.2.3. We also compute a series of Welch’s two-
tailed t-tests between the playlist variances and sequen-
tial variances to identify how many consecutive tracks of
a given track are affected w. r. t. the feature under consid-
eration. Generally, track distance and significance are in-
versely proportional, i. e., when the former increases, the
latter decreases. As soon as the two-tailed t-test returns
a p-value larger than .001, we conclude that there is no
significant difference between sequential and playlist vari-
ance. 8

4. RESULTS AND DISCUSSION

For RQ1 we first investigate in Section 4.1 the variation of
subsequent tracks in comparison to the order-independent
playlist variance. Next, in Section 4.2, we focus on the dis-
tribution of loudness, i. e., the audio feature with the largest
UPV. For RQ2 the number of tracks affected by the previ-
ous one, i. e., those for which properties characteristic of
previous tracks still persist, are assessed in Section 4.3.

4.1 Quantitative Analysis of Proportional Variances

In Figure 2, the unconstrained and constrained propor-
tional variances, i. e., UPV and CPV, respectively, as de-
fined in Section 3.2.3, are shown.

The statistical analysis shows that genre seem to be the
most important property influencing users in the selection
of neighboring tracks, as displayed by the highest UPV,
i. e., 1.159 (meaning that playlist variance exceeds sequen-
tial variance by 15.88%); cf. UPV for genre in Figure 2. A
high UPV indicates a low variance for neighboring tracks
in comparison to the overall playlist variance for a given
feature. However, as explained in Section 3.1, the tracks’
genres, being the union of the corresponding artists’ gen-

8 Note that the reported results are comparable to those obtained from
the non-parametric alternatives Mann-Whitney U rank and Wilcoxon
signed-rank test.
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Figure 2. Bar chart representing the unconstrained propor-
tional variances (UPV) and the constrained proportional
variances (CPV) for all the analyzed features.

res, 9 are often sparse, leading to large Jaccard distances
when repeating artists are filtered out, which yields a very
low CPV (cf. no visible CPV bar for genre in Figure 2).

The next most important properties for low sequential
variance (in relation to playlist variance) are artist and pop-
ularity, as shown by their high UPV: 1.153 and 1.151, re-
spectively (cf. UPV for artist and popularity in Figure 2).
This indicates that user-generated playlists often repeat the
same artists in subsequent tracks. The proportional vari-
ance for popularity drops considerably, i. e., −0.133, after
filtering out repeating artists: compare UPV (1.151) w. r. t.
CPV (1.019) for popularity in Figure 2. 10 We assume this
is due to tracks from famous artists, which are more com-
mon in playlists, being typically more popular; therefore,
repeating artists have a large effect on tracks’ popularity.

Several audio features (loudness, energy, danceability,
acousticness, and valence) have lower but still consider-
able proportional variances, both in the unconstrained and
the constrained setting: all of them show a UPV ≥ 1.082
and a CPV ≥ 1.046; while tempo, tonality, and liveness
show UPV ≤ 1.021, CPV ≤ 1.013; and speechiness falls
in between with UPV = 1.056, CPV = 1.024 (cf. UPV and
CPV in Figure 2). This shows that concerning loudness,
energy, danceability, acousticness, and valence, the ma-
jority of playlists tend to have smooth transitions between
directly neighboring tracks even in cases where all artists
are different from one song to another. Differently, for
tempo, tonality, liveness, and to a lesser extent for speech-
iness, no substantial differences are displayed. Neverthe-
less, a deeper evaluation focusing on specific genres, such
as ‘classical’ or ‘rap’, should be performed in order to un-
derstand whether the importance of these features is biased
by the effect of predominant genres, e. g., ‘pop’ or ‘rock’,
in which they might not have a prominent role.

Interestingly, for instrumentalness it can be observed

9 There are 5, 145 genres across the whole dataset with an average of
3.17 genres per track.

10 For obvious reasons there is no bar referring to the constrained pro-
portion for artist in Figure 2.

Figure 3. Scatter plot of the loudness feature. Each point
represents one playlist with the playlist variance on the x-
axis and the sequential variance on the y-axis. The red
point marks the center of gravity. The lower line (in blue)
visualizes the general differences between both variances
in comparison to the line of equality (in yellow).

that the proportional variances are below the line of equal-
ity (i. e., 1.0 on the y-axis), meaning that the sequential
variance is on average larger than the playlist variance.
More precisely, the UPV is 0.985 (or −1.49% in relation
to the playlist variance). The effect is even stronger for
CPV: 0.958 (or −4.23%). This is an unexpected outcome,
which might be explained by the very skewed distribution
(skewness = 3.593) of this feature.

4.2 Visualization of Proportional Feature Differences

To visually explore the relationship between playlist and
sequential variance over all playlists in the dataset, we rep-
resent each playlist as a point on a scatter plot with the x-
axis corresponding to the playlist variance and the y-axis to
the sequential variance of a chosen feature. Figure 3 shows
the distribution of the feature loudness. We chose loudness
as example as it is the audio feature with the largest UPV.
For completeness, we provide the plots for all features as
well as the source code to reproduce the experiments. 11

Figure 3 displays that the scattered points are not sym-
metrically distributed along the line of equality, i. e., the
diagonal (upper line) considered as reference. Most of the
points fall below the line of equality, as shown by the gen-
eral trend of the distribution, indicated by the lower line
crossing the center of mass (large dot), which has a slope
of 0.83, i. e., 39.77 degrees. This indicates that directly
neighboring tracks vary less arbitrary than other tracks in
the playlist, in other words, there is a large imbalance be-
tween sequential and playlist variance.

Furthermore, the effect seems to be even stronger for
playlists with generally large playlist variances (cf. empty
area in the upper left part compared to the lower right part
of Figure 3). Thus, we conclude that the majority of user-
generated playlists have a smooth change in loudness.

11 https://gitlab.cp.jku.at/haralds/spv_analysis
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4.3 Proportional Variances for Increasing Track
Distances

Unlike in Section 4.1, where the sequential variance was
only considered for every track and its direct neighbor, in
order to answer RQ2, we compute now the sequential vari-
ance of tracks which lie a predefined distance d apart from
each other. Figure 4 depicts along the x-axis the increas-
ing track distance considered, whereas the y-axis shows the
drop in features persistence according to the UPV defined
in Section 3.2.3. Dashed lines indicate non-significant re-
sults on the t-test: as significance threshold, we consider
p ≤ .001.

It can be seen that the UPV of the analyzed features, ex-
cluding instrumentalness, genre, and artist, drop in a sim-
ilar fashion. The larger the initial UPV (i. e., the UPV at
track distance d = 1), the longer specific characteristics
of a given feature prevail on the upcoming tracks. Gen-
erally, energy, loudness, danceability, accousticness, and
valence are properties that significantly persist on tracks
which lie up to 11 tracks apart (cf. solid lines for these
features in Figure 4). Differently, the UPV drop faster for
genre and artist than for the audio features, which indi-
cates that repeating artists and overlapping genres are only
important for neighboring tracks lying close to each other,
i. e., within a track distance of 2 or 3. Interestingly, after
around 8 tracks the lines for genre and artist drop below
1.0. This suggests that after 8 tracks it is more likely that
artists and genres differ than they do not.

As mentioned in Section 4.1, the audio features tempo,
tonality, and liveness present an initial UPV ≤ 1.021,
which drops even further with increasing track distance
(cf. Figure 4). Nevertheless, although these features do not
generally show a high UPV for any track distance, they are
still significant: especially tonality, whose characteristics
persist even 9 tracks apart (cf. solid line for tonality in Fig-
ure 4). This suggest that these features might be important
for specific genres or themes but not for the dominant ones,
i. e., the most popular, whose weight could have hidden
the role of these features for concrete genres in the inves-
tigated scenario. A similar trend (persisting up to 8 tracks)
is shown for speechiness, falling in between audio features
with high UPV and low UPV. The exact reason for the per-
sisting significance but low UPV values is an open research
question which will be investigated in future work.

The only outlier feature in this assessment is again, as
expected by the findings described in Section 4.1, instru-
mentalness. Unexpectedly, the UPV continues to drop un-
til a track distance of 8 is reached, afterwards it increases
again. This might be explained by pronounced overlaps be-
tween artists or between genres, as well as by the skewed
distribution (skewness = 3.6) of this feature. Investigating
this behavior further will also be part of our future work.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated to which extent audio
and metadata characteristics of subsequent tracks in user-
generated playlists differ, and we related this difference

Figure 4. Visualization of the change in UPV according to
track distance. The feature labels of the legend are sorted
by the starting values of UVP in descending order. Gray
dashed lines mark the point at which t-test between playlist
and sequential variance return a p-value ≥ .001.

to the difference of arbitrary tracks in the playlist. For
this purpose, we defined variance measures on the level
of subsequent tracks (sequential variance) and on the level
of an entire playlist (playlist variance). Using these mea-
sures, we analyzed both direct neighbors and tracks up to
a certain distance apart in the playlist. Our major find-
ings can be summarized as follows. (i) Metadata, i. e.,
genre, artist, and popularity, vary on average by 15.10%
more for the overall playlist variance than for order de-
pendent sequential variance. (ii) The audio features loud-
ness, energy, danceability, acousticness, and valence per-
sist stronger over subsequent tracks at larger distances in
the playlist than the metadata aspects genre, artists, and
popularity. This effect is particularly pronounced for track
distances≥ 3, and specially marked for energy, danceabil-
ity, acousticness, and valence, which significantly persist
on average up to 11 subsequent tracks. (iii) Filtering tracks
by the same artist(s) shows similar, but less pronounced
results for all features, except for genre and popularity,
where the difference between playlist and sequential vari-
ance almost vanishes.

Future work will include research about the content of
playlists for which very large or very small UPV values
are measured. This will enables us to identify possible pat-
terns inside playlists as well as the ‘themes’ that the creator
might have had in mind. We will also focus on a more pro-
found explanation about correlations between features and
will further investigate the reasons of certain outliers, e. g.,
instrumentalness. Since we are aware that the sequential
relationship between tracks for some of the evaluated fea-
tures, such as key and mode, might strongly depend on the
musical genre, 12 a deeper evaluation on selected musical
genres will also be carried out. We will ultimately leverage
our findings to improve APG and APC algorithms.

12 For instance, in classical music the sequential relationship between
pieces in terms of tonality is stronger than in other genres, e. g., rock.
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