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ABSTRACT

Performers’ distortion of notated rhythms in a musical
score is a significant factor in the production of convinc-
ingly expressive music interpretations. Sometimes exag-
gerated, and sometimes subtle, these distortions are driven
by a variety of factors, including schematic features (both
structural such as phrase boundaries and surface events
such as recurrent rthythmic patterns), as well as relatively
rare veridical events that characterize the individuality and
uniqueness of a particular piece. Performers tend to adopt
similar pervasive approaches to interpreting schemas, re-
sulting in common performance practices, while often for-
mulating less common approaches to the interpretation of
veridical events. Furthermore, some performers choose
anomalous interpretations of schemas. We present a ma-
chine learning model of expressive performance of Chopin
Mazurkas and a critical analysis of the output based upon
statistical analyses of the musical scores and of recorded
performances. We compare the timings of recorded human
performances of selected Mazurkas by Frédéric Chopin
with performances of the same works generated by a neural
network trained with recorded human performances of the
entire corpus. This paper demonstrates that while machine
learning succeeds, to some degree, in expressive interpre-
tation of schemata, convincingly capturing performance
characteristics remains very much a work in progress.

1. INTRODUCTION

Performers of classical music typically interpret a score’s
symbolic music notation as a basis of performance.
This interpretive transformation from symbols to musical
sound demands decisions regarding inherently imprecise
or vague symbols such as dynamic and tempo markings.
Furthermore, performers often divert from strict interpre-
tations of precise symbols such as quantized rhythms in
order to provide a sense of musical shape and direction.
Expressive timing is a particularly important aspect of per-
formance, with temporal deviations of tempi and distorted
rhythms [1] to indicate structural demarcations, express
implied affective [2] and articulate stylistic conventions.
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These interpretive performance decisions are often made
with little conscious thought reflecting internalized notions
of traditional performance practices and schemas.

The complexity and multidimensionality complicit in
the creation of an expressive musical performance has
made the task a rich domain for theoretical analysis and
computational modeling. Prior studies include analysis-
derived rule-based methods such as the KTH model [3], as
well as machine learning approaches dating back to Wid-
mer’s inference of note-level performance principles based
on Sonatas by Mozart [4]. Statistically derived rules in-
clude historically rooted schematic tendencies such as the
note inégales, arching tempo curves, and cadential ritard
were encapsulated in the KTH model. Some generalized
schematic rules, such as the tendency to perform a note
staccato if the note is repeated immediately, were observed
both in KTH and in Widmer’s machine learning model.

More recent novel data-driven approaches including
both linear [5] and nonlinear [6, 7] methods have been
developed to model expressive performance by extracting
basis functions (i.e. features) of each note. These fea-
tures include note, metrical position, dynamic, and tempo
markings. Recent efforts apply hierarchical attention net-
works [8] and conditional variational RNNs [9] to generate
expressive piano music performances.

Our goal here is to examine computational models of
expressive timing. As noted, performers rarely play metro-
nomically but rather introduce more or less subtle nuances
to vary performed durations. For example, most perform-
ers tend to slow their tempo in response to major structural
breaks [10]. Repp [1] studies patterns of expressive timing
over 115 performances of a same piece and suggests inde-
pendent timing strategies that can describe each pianist’s
timing pattern. Chew [11] reveals extreme pulse elasticity
as musical tipping points. Peperkamp et al. [12] propose
ways to formally represent relative local tempo variations
in a vector space.

We aim to understand how a neural-network-based sys-
tem generalizes performance practices and compositional
style given multiple performances of each of the Mazurkas
in our corpus. We train a neural network to predict the
tempo curve of each Mazurka. We then analyze expres-
sive timing by comparing human performed Mazurkas to
computer generated performances. We observe that while
machine learning generalizes key schematic performance
practices, it is less successful in capturing veridical perfor-
mance characteristics.
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2. SCHEMATA AND STATISTICAL
PERFORMANCE ANALYSIS

Schemata are prototypical melodic, harmonic, or rhyth-
mic/metric characteristics that constitute defining at-
tributes of a particular style or genre [13]. Some schemata,
such as the harmonic progression at the approaches to ca-
dential phrase endings, have evolved as pervasive attributes
of a common musical language. Chopin’s Mazurkas share
schemata. They are all composed in triple meter, with reg-
ular phrase lengths typically comprised of short motivic
units of one or two measures. Along with signature stylis-
tic attributes they also share particular performance prac-
tice traditions. In this section we focus on the evolution of
schematic features in performance.

2.1 Data

CHARM'’s Mazurka Project! comprises a collection of
approximately 3000 individual recorded performances of
Mazurkas composed by Frédéric Chopin. Kosta et al.
[14] augmented the recordings from the project with au-
tomatically aligned score-beat positions, loudness values,
as well as positions of expressive markings. The result-
ing dataset, named as “MazurkaBL”, contains 44 Mazurkas
with 2000 performances. Sapp [15] has manually anno-
tated 5 Mazurkas with around 300 performances. For each
performance, beat times were recorded. These annotations,
as well as “MazurkaBL” were used as data for the study.

2.2 Statistical Analysis of Rhythmic Schemata in the
Mazurkas

Particular rhythmic patterns characterize the Mazurka, as
evident in the frequency of pattern occurrences across the
corpus. The ten most recurrent rhythmic patterns are sum-
marized and illustrated in Figure 1.
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Figure 1: The ten most frequently occurring rhythmic pat-
terns in Chopin’s Mazurkas in order of prominence.

We define the Mazurka Quality as a beat that is accen-
tuated by temporal elongation repeatedly across most in-
stances of a given Mazurka. Mazurka performances are
often characterized as having a “stretched” second or third
beat of the measure, at the durational expense of the down-
beat [16]. We observed this short-long pattern in some
mazurkas. However, we also observed that the elonga-
tion of the Mazurka Quality was not always compensated

Uhttp://www.mazurka.org.uk

Pattern # | % of 1st beat shortened
1 45.30%
2 67.74%
3 37.11%
4 50.29%
5 56.28%
6 22.00%
7 58.08%
8 82.08 %
9 39.23%
10 33.36%

Table 1: Percentage of the first beat shortened over all
recorded performances of our corpus for the 10 most re-
curring Mazurka rhythmic patterns. Note that in most per-
formances, the first beat is shortened in rhythmic patterns
#2 and #8, indicating a schemata interpretive performance
practice.

for by shortening the downbeat. To validate this, we ob-
served how each pianist executes a pattern on each mea-
sure, comparing the duration of the downbeat to the other
beats in that measure. Alas, across all performances in the
dataset, we observed that only 47.93% of the downbeats
were shortened (as compared with the second beat).

This suggests that the short-long pattern appears only
in specific rhythmic patterns. We then examined the tempo
curve where human pianists played the above 10 rhythmic
patterns respectively. Table 1 summarizes a comparison
of how the duration of the first beat of each rhythm is
altered in the recorded performances compared with the
second beat. These 10 rhythmic patterns comprise over
70% of all rhythmic patterns in 44 Mazurkas in Mazurk-
aBL. We see that in column 2 of Table 1, for rhyth-

mic pattern #2 ( n J J ) and rhythmic pattern #8
3

( m J J ), there is a great percentage of down-
beats being shortened (67.74% and 82.08%).

2.3 High Correlation Sections

We examined musical phrases where performers have the
highest agreement. We calculated the Pearson’s correlation
coefficient (PCC), a statistic that measures linear correla-
tion between two variables (or two sets of numbers). This
method was previously used by Sapp [15] to represent sim-
ilarities between performers of Mazurkas. Pearson’s corre-
lation coefficient is defined as:

dici (i — @) (yi — )
Vi (@i — )220 (yi — 9)?

The equation means to divide the covariance of the two
variables by the product of their standard deviations. This
results in a number ranging from -1 to 1 where -1 indicates
negative correlation, 0 indicates no linear correlation, and
1 indicates positive correlation.

ey
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Figure 2: Phrases with the highest correlation in tempo (in
order) in Op.68 No.3 performed by 53 pianists.

We looked at Op.68 No.3. As in Figure 2, we found
that phrase ends have the highest correlation. Figure 2(a)
is the end of C section, 2(b) is the end of the A section,
2(c) is the very end, 2(d) is the end of phrase 1, and 2(e)
is the end of phrase 1 after the C section. The Pearson’s
correlation coefficient of phrase (a) through (e) are: 0.84,
0.84, 0.79, 0.76 and 0.72. When we plotted the tempo of
how 53 different pianists playing the highest correlation
phrase in Figure 3, we found that all have similar trends:
the tempo of the phrase reached climax at the beginning,
and then gradually slowed down towards the end. A similar
situation was found in Op.24 No.2. The tempo curves of
the phrase reached highest at the beginning, then dropped
tremendously at the second half of the phrase.

3. VERIDICAL EVENTS IN MAZURKA
PERFORMANCES

We borrow Bharucha’s [17] distinction between schematic
events and veridical events. A veridical event is a musical
occurrence characterized by something unexpected within
the context of the work. This salient characteristic—
whether rhythmic, melodic, harmonic, textural, articu-
latory or a combination thereof—is typically relatively
unique and rare in the specific work, and often is noticeable
and attention grabbing. As opposed to a schema, veridical
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Figure 3: Tempo curves of 53 pianists playing the phrase
with the highest correlation in Op.68 No.3. The Y axis
represents beat-per-second.

events are less likely to have broadly shared prevalent per-
formance practices.

3.1 Unexpected Change in Harmony

Unexpected changes in harmony often cause veridical
events. In the opening passage of Op.24 No.l (Figure 4),

the signature rhythm ( J '7 j J J ) appears for 6
times (beats 1-3, 7-9, 13-15, 19-21, 31-33, and 37-39).
They are rhythmic pattern #1. According to the schema
in section 2, they should be performed as a lengthening of
the first beat and a shortening of the second or third beat.
But performers did not all follow this schema. For the re-
peating motif in beats 1-3, 13—15, as well as 37-39, most
pianists performed the first beat long and the second beat
short. However, in beats 7-9, 19-21, 31-33, most pianists
changed their Mazurka Quality to lengthen the third beat
and shorten the first beat. This is due to a change of har-
mony in these beats. For example, in beat 9 and beat 33
the piece goes to a vii-th chord that makes the F# in the
top voice lead to the G on the next measure. In beat 21,
there is an accidental of C# that leads to D. These leading
actions cause the elongation of the third beat, rather than
the downbeat.

Another example is in Op.63 No.3. Figure 5 and Fig-
ure 6 show two phrases that appear at the end of the A
section, and at the end of the A’ section of Op.63 No.3.
According to the trends we summarized in section 2, the
phrases that are located at the end of a section are usually
the highest correlated phrases among all pianists, as the
tempo curves are usually gradually going down. However,
these two phrases are the least correlated phrases among
different pianists in the whole piece. When we performed a
harmonic analysis, we found that there is a secondary dom-
inant chord in the middle of both phrases. The secondary
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Figure 4: The first theme of Op.24 No.1. Veridical events
happen on highlighted notes where there are unexpected
changes in harmony. Yellow rectangles mark a lengthening
of the beat and red rectangles mark the shortening of the
beat.
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Figure 5: The low correlation phrase in Op.63 No.3. There
is a secondary dominant chord in measure 7.

dominant chords change the harmonic color. In addition,
the last chord of each phrase is a common tone diminished
chord. Thus the phrase becomes a veridical event.

3.2 Rubato

In Op.24 No.2, the least correlated phrase among 68 pi-
anists is the one with a “rubato" mark on it, as in Figure 7.
This phrase appears after the B phrase, serving as a tran-
sitional phrase. When Chopin marks rubato, it typically
departs from the Mazurka schema and is thus a veridical
event, as there is no strict rule about how to perform this
excerpt. Pianists usually play the phrase with their own
interpretations.

4. COMPUTATIONAL MODEL OF EXPRESSIVE
PERFORMANCE

Can machine play music as expressively as humans do?
If so, to what extent? This section describes a computa-
tional model to synthesize expressive piano music perfor-
mances. The motivation is mainly to model the complex
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Figure 6: The low correlation phrase 2 in Op.63 No.3.
There is a secondary dominant chord in measure 55.
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Figure 7: The least correlated phrase in Op.24 No.2.

relationship between score properties and tempo in the per-
formance. The goal is to understand how a neural-network-
based system generalizes performance practices and com-
positional style given multiple performances of each of the
Mazurkas in the corpus.

4.1 Input Features

We used MusicXML encoding of the Mazurka scores.
Most computational systems of expressive performances
take a sequence of note features extracted from MusicXML
as input. However, for practical reasons MusicXML for-
mat does not readily identify simultaneities. For example,
a chord is represented as a sequence of note tokens. Since
our goal is to study expressive timing in Mazurkas, espe-
cially on how beats are grouped and emphasized, it is im-
portant to capture such metrical relationships in the encod-
ing. As aresult, we used beat-based features (i.e., features
for each beat, rather than for each note).

We first extracted note information on a MusicXML file
using partitura [18]. For each metrical position, we ex-
tracted the following features: highest and lowest notes
within the beat, number of simultaneous notes within the
beat, the rhythmic pattern of the beat (i.e., triplet, two
eighth notes, one quarter note, etc.), articulation (accent
and staccato) markings in the beat, metrical phase (i.e.,
first, second, or third beat in the measure), indicator of the
start beat of a phrase, indicator of the final beat of a phrase.
The maximum and minimum pitch are represented numer-
ically between 0 and 1, while the rest of the features are
represented by one-hot vectors.

4.2 Output Features

Piano allows for expressive variation in timing, dynam-
ics, and articulation [1]. The output features are velocity,
tempo, and articulation.

The velocity is a numeric value between 0 and 1, corre-
sponding to the sone values in the dataset. The beat tempo
is first calculated as the reciprocal of the beat interval such

that — )
tempo, = —— =
B 5) ol
, where IBI; represents the inter-beat-interval for the ¢-th
beat. The unit of the tempo is beat-per-second.
Then, we translated the absolute value of the tempo into

relative tempo ratio, such that

@)

onset; 11 — onset;

’ tempo, — tempo

3

tempo

For example, -0.2 means 20% slower than the average
tempo, 0 means the same tempo as the average tempo, and
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1 means doubling the average tempo. We limited this value
to within -1 to 1.

During generation time, given the features of each beat,
our system predicts the velocity and the relative tempo ra-
tio of the beat. We then scaled the velocity to 1-127 and
we calculated the onset time for each beat as

1
onset; = onset;_1 + tempo; ST+ T 4
, where T is a constant that the user specifies the mean
tempo to be. The unit of T is beat-per-second.

We encoded the generated performance in MIDI files
capturing onset time, offset time, and velocity of each note.
Due to the limitation of the dataset representation, the off-
set time of each note is unknown. Thus the prediction of
the articulation (duration of the note in the performance
over duration of the note in the score) is replaced with a
fixed length. This does not affect our research about ex-
pressive timing since tempo is affected only by the onsets.

4.3 Training

We used 3-layer bi-directional LSTMs with 128 units to
model beat-wise parameters. For velocity, the final layer is
a sigmoid activation. For tempo prediction, the final layer
is a tanh activation. The models were trained in a super-
vised fashion to minimize the mean-square-error loss. The
sequence length was 64, the dropout rate was 0.5, and the
learning rate was 0.001. We split the data into 80% train-
ing data and 20% validation data. The validation loss was
0.0412 for velocity and 0.0837 for tempo.

5. WHAT DOES THE NEURAL NETWORK
LEARN?

5.1 Schemata

In section 2, we demonstrated that the characteristic sig-
nature rhythms are associated with the Mazurka Quality.
To validate that the neural network can learn the Mazurka
Quality on different signature rhythms, we encoded 16
measures of each signature rhythm as testing cases (the in-
put scores) to feed into the beat-based neural network.

We then plotted the absolute tempo curve for each 16-
bar signature rhythm input score. As in Figure 8, different
input scores output different tempo curves. We see that in
signature rhythms #2, #7, and #8, the output of the neural
networks shows the “short-long” pattern, i.e., the tempo
value of the first beat of each measure is higher than that
of the second beat. Such pattern is especially strong on
signature rhythm #8—there is on average a 26.6 beat-per-
minute tempo difference between the first beat and the sec-
ond beat. While in other rhythm as input, we see lengthen-
ing (slower tempo) of the first beat. This result aligns with
Table 1, showing that the model learns about this general
schema about Mazurkas.

5.2 Tempo Correlation

To evaluate the correlation of model-generated perfor-
mance and human average performance, we calculated the
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Figure 8: Tempo curves of different signature rhythm in-
puts. The “short-long" pattern is evident rhythms #2, #7,
and #8.

Pearson’s correlation coefficient (PCC) between computer-
generated tempo and average human tempo for five pieces
in the test set. From Table 2, we see that PCC-BH (PCC
between the tempo generated by beat-based model and hu-
man average tempo) is higher than PCC-VH (PCC between
the tempo generated by Virtuosonet [8] and human average
tempo), indicating that the beat-based model learned gen-
eralized schematic performance practices more success-
fully than Virtuosonet in tempo estimation. As a reference,
PCC between one human performance and other human
performances is between 0.29 and 0.97.

Mazurka Op. # | PCC-VH | PCC-BH | PCC-HH
Op.17 No.4 0.065 0.151 0.794
Op.24 No.2 N/A 0.497 0.778
Op.30 No.2 0.048 0.44 0.786
Op.63 No.3 0.167 0.59 0.714
Op.68 No.3 0.489 0.59 0.889

Table 2: Pearson’s correlation coefficient of performance
tempo generated by Virtuosonet and human average tempo
(PCC-VH), the beat-based model and human average
tempo (PCC-BH), and a random human performance
tempo and average human performance tempo (PCC-HH).

5.3 Veridical Events

When plotting the tempo curve of Op.63 No.3 (Figure 9),
we see that the beat-based model (line 3) learns about the
schema that when pattern #2 occurs, the downbeat gets
shortened. This aligned mostly with human performances.
For performances generated by Virtuosonet (line 4), since
it is trained on 16 composers’ pieces, it is understandable
that it does not favor Mazurka’s rhythmic tempo. Thus we
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see an almost opposite direction.
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Figure 9: Tempo curves of the first 10 measures of Op.63
No.3 from two human performances (lines 1 & 2), a beat-
based model (line 3) and Virtuosonet (line 4), with the
score (line 5). Tempo trends of pattern #2 (boxed) are
noted with arrows.
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In an analysis of 95 distinct human performances of the
same work, in beats 5 and 6 (the first rectangle in Figure 9),
89 performers shortened the downbeat, in beats 11 and 12
(the second rectangle), 82 performers shortened the down-
beat, and in beats 23 and 24 (the fourth rectangle), 88 per-
formers shortened the downbeat. However, in beats 17 and
18 (the third rectangle), there were more performers (53
out of 95) who lengthened the downbeat rather than short-
ening it. While this seems to be an “outlier”, we were in-
terested to further investigate what’s happening musically
on these two beats.

Harmonic analysis was performed on the first ten mea-
sures of the score as in Figure 10. Note that there is a sec-
ondary dominant in measure 7 (beats 17-19), whose veridi-
cal change of color and direction prompts performers to
emphasize the moment. The beat-based network captured
the schematic “short-long” accent across many Mazurka
performances, however, performance of this salient veridi-
cal event was not compellingly captured.

Another example is the A phrase of Op.24 No.2 (as in
Figure 11). This phrase consists of four sub-phrases. Each
sub-phrase is two-bar long. When the machine played this
passage, we saw a very consistent trend. As in Figure 12,
for each sub-phrase of 2 bars (6 beats), the machine length-
ened the second to last beat. In addition, for all four sub-
phrases, the tempo curves were similar: during the first
three beats the tempo surged, and for the next two beats the
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Figure 10: Harmonic analysis of the first 10 measures of
Op.63 No.3. The secondary dominant in measure 7 is a
veridical characteristic not captured by the beat-based net-
work.
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Figure 11: Phrase A of Op.24 No.2 . This phrase consists
of four sub-phrases, each two-bar long.

Beat-per-minute

%
Beat

Figure 12: The tempo curve of machine playing the A
Phrase of Op.24 No.2. For each sub-phrase, the machine
emphasized (lengthened) the second to last note. This
trend is consistent among all four sub-phrases.

tempo decreased, and finally the tempo slightly increased
for beat 6. However, when we examined human perfor-
mances, we found different results. As in Table 3, in con-
trast to the computer performance, human performers tend
to vary the emphasized beat for each sub-phrase, whereas
the computer performs the same one for each sub-phrase.

Sub-phrase | B1 | B2 | B3 | B4 | B5S | B6
1 24 | 11 | 2 3 8 2
2 0 0 0 | 11|27 | 12
3 7 7 0 26| 7 3
4 4 2 4 | 25|10 ]| 5

Table 3: Beats that human performers lengthened most for
each sub-phrase in Op.24 No.2.

6. SUMMARY

In this paper we described our implementation of a beat-
based model to learn expressive timing parameters in
Chopin Mazurkas. Comparing human performances with
performances generated by our model, we note that neu-
ral network succeeds at modeling schemas (such as dis-
tortion of the characteristic “short-long” Mazurka rhythm,
and temporal augmentation at the approach to phrase-
ends). However piece-specific veridical events (such as
performed variations of repeated rhythmic units) are dif-
ficult to learn. One reason for this is that insufficient in-
stances of examples of such veridical moments in the train-
ing set make it difficult for a deep learning-based system
to acquire. Capturing the performance nuances of veridi-
cal events is a critical next step for the success of future
computational models of expressive music performance.
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