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ABSTRACT

Recently, some single-step systems without onset detec-
tion have shown their effectiveness in automatic musical
tempo estimation. Following the success of these systems,
in this paper we propose a Multi-scale Grouped Attention
Network to further explore the potential of such methods.
A multi-scale structure is introduced as the overall network
architecture where information from different scales is ag-
gregated to strengthen contextual feature learning. Further-
more, we propose a Grouped Attention Module as the key
component of the network. The proposed module sepa-
rates the input feature into several groups along the fre-
quency axis, which makes it capable of capturing long-
range dependencies from different frequency positions on
the spectrogram. In comparison experiments, the results on
public datasets show that the proposed model outperforms
existing state-of-the-art methods on Accuracy1.

1. INTRODUCTION

Although there are many different ways to describe musi-
cal tempo (e.g., measures per minute, bars per minute, or
even a range of Italian terms), beats per minute (BPM) is
the most commonly used measurement unit. The estima-
tion of BPM plays an important role in a variety of appli-
cations, such as music recommendation, automatic accom-
paniment, playlist generation, etc. Because of its utility,
the automatic estimation of tempo has been an important
task and received continuous attention in the field of music
information retrieval (MIR) [1–4].

Traditional methods for automatic tempo estimation are
usually based on hand-crafting signal processing. To esti-
mate the tempo of a given audio segment, an onset strength
signal (OSS) function is firstly derived, and the frequency
of the major pulses is extracted and converted to BPM. The
OSS function is a function whose peaks should correspond
to onset times. It can be obtained by various methods,
such as means of auto-correlation [5, 6], comb filters [2, 7]
and Fourier analysis [8]. Machine learning techniques
are also adopted for tempo estimation, including Gaus-
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sian mixture models (GMM) [9], support vector machines
(SVM) [10, 11], k-nearest neighbors (k-NN) [12, 13], ran-
dom forests [14] and so on. Since Böck [15] proposed
a recurrent neural network (RNN) model to learn beat-
level representations from audio signals, attempts to use
deep neural networks (DNN) for tempo estimation began
to grow [16–18].

In all methods mentioned above, the extraction of BPM
depends on some post-processing of OSS functions or beat
activation functions. It is only in recent years that the
single-step tempo estimation systems based on DNN ap-
peared. As the first single-step approach for tempo esti-
mation, the CNN model proposed by Schreiber [19] is ca-
pable of extracting BPM value directly from a Mel-scaled
spectrogram. In this work, classification is proved to be an
effective method for tempo estimation. Adopting a similar
idea, Foroughmand [20] proposed the Harmonic-Constant-
Q-Modulation (HCQM), a new representation of audio sig-
nal, as the input of a relatively simple CNN classification
model. The experimental results also showed its effective-
ness.

A commonly used metric in tempo estimation is Ac-
curacy1 [3], indicating the percentage of correct estimates
allowing a ±4% tolerance. However, automatic tempo es-
timation systems tend to predict a wrong tempo by a factor
of 2 or 3, known as octave errors. As an additional mea-
sure, Accuracy2 is introduced, which ignores octave errors.
In some applicational scenarios (such as DJ software), ac-
curate tempo annotations are mandatory and octave errors
are unacceptable [21], but most existing algorithms’ per-
formance on Accuracy1 is still far from satisfactory.

Previous works [19, 20] have shown the potential of
CNN-based single-step approach to improve performance
on Accuracy1. Following the success of these meth-
ods, in this paper we propose a CNN-based single-step
model named Multi-scale Grouped Attention Network
(MGANet). A multi-scale network architecture is designed
to aggregate information from different scales to produce
superior feature representations. Furthermore, a Grouped
Attention Module (GAModule) is proposed to capture
long-range dependencies and refine the feature based on
the attention mechanism.

The remainder of this paper is organized as follows. In
Section 2, we introduce the proposed method in detail. In
Section 3, experimental results are presented to show the
effectiveness of our method. Finally, we make further con-
clusion in Section 4.
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Figure 1: The overall architecture of Multi-scale Grouped Attention Network (MGANet). The numbers in dashed boxes
indicate the three parameters of GAModules: {output channel number C, pooling size p, group number k}. Every concate-
nation operation in the figure is followed by a 1×1 convolution layer to adjust channel number. The classifier consists of a
concatenation operation, a fully connected layer, and a softmax layer.

2. APPROACH

2.1 Proposed Model

Same as [19] and [20], we also treat tempo estimation as a
classification problem. The output of our model is a prob-
ability distribution of 256 BPM classes (from 30 to 285
BPM). Because the Mel-scaled frequency matches closely
the human auditory perception, we choose the Mel-scaled
spectrogram as the raw feature. First, the original au-
dio data is resampled to 11.025 kHz. Then, we use half-
overlapping windows of 1,024 frames, and transform each
window into an 81-band Mel-scaled magnitude spectrum.
The input of the proposed model is designed as a spectro-
gram segment of 128 frames, roughly 6 seconds long.

In the rest of this section, we first present the overall ar-
chitecture of the proposed MGANet. Then, we introduce
the GAModule, which is the key component of the net-
work.

2.1.1 Multi-scale Network Architecture

The goal of tempo estimation is to extract a periodic pat-
tern from an audio signal. Therefore, global information of
the input spectrogram is particularly important. Due to the
characteristics of CNN, overall pattern extraction is usually
achieved by stacking multiple layers. But directly repeat-
ing convolution layers makes the model difficult to design
and optimize. Another way is to use large-size convolution
kernels to enlarge the receptive fields. However, this is also
costly because of the increase in parameters and multiply-
add operations. To solve the problem, we introduce the
idea of multi-scale structure, which has been proved to be
effective in many classification tasks [22–24]. By down-
sampling / upsampling the feature to different scales and
exchanging information repeatedly, high-level representa-
tions can be derived after just a few layers.

As shown in Figure 1, the overall architecture of
MGANet is mainly composed of three branches for dif-
ferent scale. In each branch, input features are gradually
downsampled over the frequency (vertical) axis, but main-
tains the resolution through the whole process on the time

(lateral) axis. Furthermore, these feature maps from differ-
ent scales are merged repeatedly to integrate contextual in-
formation, leading to high-level representations amenable
to classification.

Specifically, the input spectrogram is first downsampled
by 1/2 and 1/4 over the time axis with average pooling,
resulting in three representations of sizes (81, 128), (81,
64), and (81, 32). Then, the representations are fed into
three parallel branches respectively to perform feature pro-
cessing. The processing is mainly done by the proposed
GAModule described in section 2.1.2. Through the whole
structure, we repeat multi-scale fusion by rescaling and
concatenation. Average pooling and transposed convolu-
tion [25] layers with kernel size of 1 × 3 are used to per-
form rescaling. For concatenation, a 1 × 1 convolution
layer with the exponential linear unit (ELU) [26] activa-
tion is followed to adjust the channel number.

Processed by GAModules, the features are gradually
downsampled over the frequency axis to summarize fre-
quency bands, making the representations easier to detect
periodicity. On each branch, the downsampling is repeated
four times. Accordingly, the channel numbers of the fea-
tures are increased. After the above processes, three fea-
ture maps with shapes (1, 128, 128), (1, 64, 128), and (1,
32, 128) are obtained. Then, these feature maps are fused
again and fed into a 1×3 convolution layer to adjust chan-
nel numbers to 256. After global average pooling, three
vectors of length 256 are concatenated together. Finally, a
fully connected layer takes the vector as input and a soft-
max layer is used to derive the probability distribution of
256 tempo classes.

2.1.2 Grouped Attention Module

The proposed GAModule structure is shown in Figure 2.
The module consists of two parts: a trunk branch perform-
ing feature processing, and k attention branches produc-
ing an attention mask to capture global context information
and recalibrate the output feature map.

The structure of the attention branch is mainly inspired
by the global context network (GCNet) [27], which is de-
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Figure 2: The structure of Grouped Attention Module
(GAModule). Feature maps are shown as feature dimen-
sions, e.g. (F, T,C) denotes a feature map with height F ,
width T , and channel number C. p and k denote pool-
ing size and group number respectively. ⊙ denotes matrix
multiplication and ⊗ denotes broadcast element-wise mul-
tiplication.

signed for long-range dependency modeling through atten-
tion mechanism. The attention mechanism biases the al-
location of the most informative feature expressions and
suppresses the less useful ones. Recently, the benefits of
the attention mechanism have been demonstrated in a se-
ries of tasks. We introduce the attention mechanism into
GAModule mainly for two purposes: 1) model the long-
range dependencies to obtain global context features; 2)
reweight the importance of different channels to improve
the representational capacity of the refined feature.

Unlike the images in the field of computer vision, the
two axes of audio spectrograms have different meanings,
which respectively represent frequency and time. Further-
more, it is known that different musical instruments have
different frequency ranges, and different frequency ranges
have a different impact on the total sound. These facts
indicate that different frequency bands contain relatively
independent information. Based on these observations,
we believe that it’s inappropriate to aggregate the whole
spatial scope at once to calculate long-range dependen-
cies. Instead, different frequency positions of the feature
should be handled separately, which will help to filter the
useful information more efficiently. Therefore, different
from traditional channel-wise attention models that aggre-
gate the entire feature to generate one attention map (e.g.,
squeeze-and-excitation networks [28]), we divide the fea-

ture equally into k groups along the frequency axis and
send each fragment into an independent attention branch.
We termed the operation as grouped channel attention.

As shown in Figure 2, the framework of the attention
branch is roughly the same as the GC block in GCNet.
Firstly, the feature map is squeezed into a channel descrip-
tor by global attention pooling. The pooling is achieved
by convolution, softmax, and matrix multiplication. For an
input feature map x, the generated descriptor z ∈ R

C is
calculated by

z =
∑Np

j=1

exp(ELU(Wxj))∑Np

m=1
exp(ELU(Wxm))

xj (1)

where j and m enumerate all possible positions, and W
denotes linear transformation matrix. We adopt ELU as
the activation of the convolution layer to further increase
robustness. After the pooling, global spatial information
is gathered in the descriptor. Then, a bottleneck of two-
layer architecture is formed to transform information. We
adopt a reduction ratio of 4 and ELU activation in the first
layer. A sigmoid function is then applied to rescale the
transformation output. Finally, k attention maps with the
shape of (1, 1, C) can be obtained. We concatenate these
attention maps along the frequency axis and get the output
attention map of (k, 1, C).

Simultaneously, in the trunk branch we simply stack
three convolution layers with kernel of 3× 3 and ELU ac-
tivation. Because of the existence of attention branches,
the trunk does not need a complex structure and too many
layers, which reduces the number of parameters and the
complexity of the model. We use average pooling with
pooling size of p × 1 to downsample the feature map to
(F/p, T, C). Finally, broadcast element-wise multiplica-
tion is performed to fuse the output of the trunk branch and
attention branches. Through the fusion, the output feature
map is refined by global contextual information gathered
by grouped attention operation.

2.2 Training Data & Augmentation

For training and validation, we adopt the three train-
ing datasets used in [19]: LMD Tempo (3,611 items),
MTG Tempo (1,159 items), and Extended Ballroom (3,826
items). However, though covering multiple musical gen-
res, the combination of these datasets is not genre-
balanced, and some common genres are even missing. It
is known that tempo perception is closely related to music
genre. For example, for popular music, people usually per-
ceive tempo through drumbeats, while for classical music,
people often perceive tempo from bass instruments such as
double bass. To alleviate the genre imbalance, we use two
additional datasets to supplement the training data:

• RWC-popular: To further enhance the model’s ability to
estimate pop music tempo, we used RWC-popular [29]
(a pop music database with 100 pieces) for training. We
cut the songs into 30s fragments without overlapping,
resulting in 735 items.
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Figure 3: Tempo distribution before and after augmenta-
tion.

• FD-Tempo: To enrich the genres of training data, we se-
lected some tracks of classical music. For each track, we
chose several 30s excerpts with stable tempi and anno-
tated them by manually tagging. Finally, 530 items are
obtained as an additional dataset termed FD-Tempo.

We use the combination of the five datasets for training
and validation. It contains 9,861 tracks with a total length
of 41h 3min. Specifically, we randomly choose 500 tracks
for validation, and the rest 9,361 tracks are used for train-
ing.

To alleviate the BPM class imbalance, we further aug-
ment the training set by speeding up / slowing down the se-
lected tracks with factors randomly chosen from 0.7∼1.4
without altering the pitch. We retain the original files and
make sure that the same audio will not be selected more
than 15 times. After augmentation, the number of tracks
increases from 9,361 to 23,512. Note that the validation
set is not augmented. The tempo distribution in the train-
ing set before and after augmentation is shown in Figure
3. Besides, we also adopt the scale-&-crop data augmenta-
tion mentioned in [19] to further increase the variability of
training data.

2.3 Training Details

For training, the batch size we set is 32. In each epoch, 128
consecutive frames of each sample are randomly selected
for training. We choose the categorical cross-entropy as
the loss function, and an Adam optimizer [30] is applied
with a learning rate of 0.001. We evaluate Accuracy1 of
the validation set every 500 iterations, and save the model
with the highest accuracy. The training is not stopped until
Accuracy1 has not improved for 50,000 iterations.

3. EVALUATION

We choose Accuracy1 (ACC1) and Accuracy2 (ACC2) [3]
as the evaluation metrics. Accuracy1 is defined as the per-
centage of correct estimates allowing a ±4% tolerance.
Accuracy2 ignores octave errors by a factor of 2 and 3,
and also allows a ±4% tolerance. As mentioned earlier,
the demand for highly accurate tempo annotations has be-
come increasingly urgent in many applicational scenarios.
Hence we mainly focus on improving Accuracy1.

We focus on the performance on global tempo estima-
tion based on the assumption the tempo of the input track
stays constant, and only one BPM value will be returned by

Method ACC1 ACC2

w/o AB 77.0 89.9
w/o GA 78.5 89.1
Single-scale 75.8 89.6
Proposed 78.9 91.3

(a) GTzan

ACC1 ACC2

79.8 95.3
79.0 94.2
71.2 94.5
82.1 95.7

(b) ACM Mirum

Table 1: Results of ablation study. "w/o AB" and
"w/o GA" denote "without attention branch" and "with-
out grouped attention" respectively. Best results are set in
bold.

the estimation system. In the experiment, the global tempo
is obtained by averaging the outputs of softmax layer over
different parts of a full track [19].

3.1 Ablation Study

We study the effect of each idea in our approach. To sim-
plify the discussion, we select two test datasets GTzan [31]
and ACM Mirum [9] for analysis. These two datasets are
relatively large (999 and 1,410 items respectively), and
both cover rich genres.

To investigate how much the proposed GAModule con-
tributes to the model, we design a set of experiments.
Firstly, we remove the attention branches in the module,
and only the trunk branch is remained to process features.
As shown in Table 1, the performance degrades for both
datasets. When focusing on Accuracy1, the performance
decreases by 1.9% for GTzan and 2.3% for ACM Mirum.
Then, in another experiment we keep only one attention
branch in each module, which can be achieved by setting
GAModules’ parameter k to 1. The Accuracy1 reduced by
0.4% and 3.1% respectively. For Accuracy2, in both ex-
periments there is also a certain degree of decline. These
results indicate that the attention mechanism is helpful to
capturing long-range dependencies and therefore improve
the generalization of the model. But directly using exist-
ing modules may hinder the effect. The proposed grouped
attention takes into account the characteristics of spectro-
gram and achieves further improvements of the model.

Then, we analyze the effect of the multi-scale architec-
ture by changing the architecture to a single-scale one. We
remove all downsampled subnetworks and only retain the
one with the highest resolution (the topmost branch in Fig-
ure 1). As shown in Table 1, model without multi-scale ar-
chitecture shows significantly worse performance on Ac-
curacy1. The Accuracy1 decreases by 3.1% and 10.9%
for GTzan and ACM Mirum respectively. For Accuracy2,
there is also a certain degree of performance degradation.
The results demonstrate that the multi-scale can improve
the classification ability as well as robustness.

3.2 Comparison with Previous Work

To compare with previous work, we use the same test
datasets as in [19] (see [14] for details): ACM Mirum [9]
(1,410 items), Hainsworth [32] (222 items), GTzan [31]
(999 items), SMC [33] (217 items), GiantSteps [34] (664
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Dataset böck schr foro mgan

ACM Mirum 74.0 79.5 73.3 82.1

Hainsworth 80.6∗ 77.0 73.4 77.5
GTzan 69.7 69.4 69.7 78.9

SMC 44.7∗ 33.6 30.9 29.0
GiantSteps 58.9 73.0 83.6 90.2

Ballroom 84.0∗ 92.0 92.6 95.1

ISMIR04 55.0 60.6 61.2 61.7

Combined 69.5 74.2 74.4 79.8

(a) Accuracy1

Dataset böck schr foro mgan

ACM Mirum 97.7 97.4 96.5 95.7
Hainsworth 89.2∗ 84.2 82.9 87.8
GTzan 95.0 92.6 89.1 91.3
SMC 67.3∗ 50.2 50.7 44.7
GiantSteps 86.4 89.3 97.9 97.6
Ballroom 98.7∗ 98.4 98.7 97.7
ISMIR04 95.0 92.2 87.1 88.8
Combined 93.6 92.1 92.0 91.9

(b) Accuracy2

Table 2: Comparison with the results published by Böck (böck) [15], Schreiber (schr) [19], and Foroughmand (foro)
[20]. Best results per test dataset are set in bold. Asterisk (*) denotes that the corresponding dataset were used for training.

items), Ballroom [3] (698 items), and ISMIR04 [3] (465
items). The union of all test datasets is referred to as Com-

bined. The most recent annotations available are used.
We compare our work (mgan) with previous studies

by Schreiber (schr) [19] and Foroughmand (foro) [20].
These two methods are both CNN-based single-step mod-
els that we are committed to improve. We consider them as
the state-of-the-art among single-step approaches. In addi-
tion, we also compare the model with an RNN-based tradi-
tional periodicity analysis approach by Böck (böck) [15].
The results are shown in Table 2. Note that Ballroom,
Hainsworth, and SMC are used for training in böck (val-
ues marked with asterisks *).

Focusing on Accuracy1, the experimental results show
that the proposed model surpasses other methods in most
cases, which proves the effectiveness of the proposed idea
to improve Accuracy1. Especially for GaintSteps (664
electronic dance music excerpts), there shows a signifi-
cant improvement of over 6.6%. The richness of electronic
dance music in training data can be considered as a reason.
The good performance in ACM Mirum and GTzan (both
multi-genre datasets) shows the generalization potential of
our model. Moreover, for Hainsworth, the model achieves
the highest Accuracy1 among single-step approaches. Fi-
nally, the proposed method also reaches the highest Accu-
racy1 for Combined (79.8%) compared with other meth-
ods, gaining improvement of 5.4%.

As for Accuracy2, it can be observed that böck

achieves the highest accuracy in most cases. Ignoring
böck, the proposed model shows a similar performance
to other single-step methods.

Among all datasets, the worst results of our model are
obtained for SMC. The dataset was designed to be difficult
to estimate tempo, covering various genres. Although we
have tried to supplement and augment the training data, the
genre-imbalance problem has not been solved very well.
This indicates the necessity to supplement more data with
different genres in the future work.

3.3 Comparison with Multi-task Approaches

In recent years, some works [17,18] have not only focused
on a single rhythm attribute, but combined the estimation

Accuracy1 Accuracy2
ACM Mirum

böck19 [17] 0.749 0.974
böck20 [18] 0.841 0.990

mgan 0.821 0.957
mgan+ 0.846 0.970

GiantSteps

böck19 [17] 0.764 0.958
böck20 [18] 0.870 0.965
mgan 0.902 0.976

mgan+ 0.861 0.973
GTzan

böck19 [17] 0.673 0.938
böck20 [18] 0.830 0.950

mgan 0.789 0.913
mgan+ 0.796 0.931

Table 3: Comparison with multi-task approaches. mgan+
is trained by multi-task learning with beat tracking. Best
results per test dataset are set in bold.

of interconnected rhythm attributes (such as beats, down-
beats, etc.) by multi-task learning, so that these highly
related tasks can reinforce each other. These approaches
are capable of embedding more musical knowledge into
a single model, and enrich the training data of each task.
In order to further explore the potential of the proposed
MGANet and compare its performance with multi-task ap-
proaches, we conduct experiments with reference to [17],
combining the beat tracking task to our model.

To predict beat positions, we add a branch to the orig-
inal network structure. The inputs of the branch are the
feature maps before sent into tempo classifier, with shapes
of (1, 128, 128), (1, 64, 128), and (1, 32, 128). The low res-
olution feature maps are up-sampled to 128 frames length
on time axis by transposed convolution layers. Then, the
concatenated feature map with shape (1, 128, 384) is pro-
cessed by three 1 × 3 convolution layers (output chan-
nel number are set to 128, 32, and 1 respectively). Af-
ter a sigmoid operation, the beat activation function is
derived. This extended network structure is trained as a
multi-output model to combine the two tasks.
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Figure 4: Grad-CAM visualizations for layers on different
resolution branches.

For the training of beat tracking, we use a combina-
tion of the following datasets: Hainsworth [32], SMC [33],
Ballroom [3], ISMIR04 [3], Beatles [35], and HJDB [36].
As for the training of tempo estimation, the training and
validation datasets in section 2.2 are used. To further en-
rich the data, beat annotated datasets are also adopted for
the training of tempo classifier, using the average BPMs
derived from beat annotations as training labels. We train
the two task alternatively every epoch, without changing
other experimental settings mentioned in section 2.3.

The experimental results are shown in Table 3. Three
datasets ACM Mirum [9], GTzan [31], and GiantSteps [34]
are used as test datasets. We compare our works (the origi-
nal model mgan and the multi-task model mgan+) with
two multi-task approaches böck19 [17] and böck20

[18]. By multi-task training, improvement can be observed
on ACM Mirum and GTzan. Especially for ACM Mirum,
the Accuracy1 is increased by 2.5%, achieving the best re-
sult among all approaches. Because the two test datasets
are both multi-genre datasets, it can be considered that
the good performance comes from not only the multi-task
learning, but also the beat tracking datasets with rich mu-
sic genres. As for GiantSteps, mgan+ performs better than
böck19 and böck20, but a bit worse than mgan. This is
also due to the supplement of data, which affects the dom-
inant position of dance music in training data.

3.4 Grad-CAM Analysis

Gradient-weighted Class Activation Mapping (Grad-
CAM) [37] is a method that can faithfully highlight the
important regions in inputs for a CNN-based classifica-
tion model. It uses the gradient information in back-
propagation as weights (grad-weights) to explain the net-
work’s decisions. We visualize the activation maps derived
by Grad-CAM as shown in Figure 4 and Figure 5. Red in-
dicates the part more important in predicting tempo while
blue contributes less.

Figure 4 shows the activation maps on branches with
different resolutions. Their inputs are two audio clips from
Ballroom dataset. Time duration is marked below the cor-
responding images, following the audio title set in italic.

Input Mel-spectrogram Before attention After attention

(a) Chacha/Albums-Latino Latino-0 (0:00-0:06)

Input Mel-spectrogram Before attention After attention

(b) Chacha/Albums-Media-103405 (0:12-0:18)

Figure 5: Grad-CAM visualizations for layers before and
after grouped attention.

Figure 4a comes from a piece of Samba mainly played by
piano and kick drum. The piano in the clip has a higher
pitch, played with quarter notes while the kick drum falls
on every beat in the bar. It can be observed from the activa-
tion maps that the model mainly focuses on short-duration
parts of piano in the high-resolution branch, and the kick
drum parts with long duration in the low-resolution branch.
As for the second example, which is a Cha Cha song, the
beat positions can be identified from kick drum in low-
frequency part, vocal in middle-frequency part, and claves
in high-frequency part. Figure 4b shows that the low-
resolution branch considers downbeats to be important,
while the high-resolution branch focus on not only down-
beats but every other beat in a bar. It can be proved that the
multi-scale structure is capable of integrating useful infor-
mation with different granularities.

We also visualize the activation maps before and af-
ter the proposed grouped channel attention to explore the
its effect. The results are shown in Figure 5. The mu-
sic excerpt of Figure 5a is played with regular claves and
double bass, hence the high-frequency part and the low-
frequency part contribute more to tempo estimation. The
attention branch reweights the feature maps from the trunk
branch, giving top and bottom parts higher weights to de-
tect tempo information easier. In contrast, the vocal domi-
nates the rhythm information in the song of Figure 5b, thus
the model gives higher attention to the middle-frequency
part after grouped attention. By grouped attention, the net-
work can efficiently find which part would be considered
to be important for tempo estimation.

4. CONCLUSION

In this paper, we propose a new CNN-based single-step
approach for tempo estimation. We introduce the idea of
multi-scale network to construct the architecture of the
proposed MGANet. The GAModule with the grouped
channel attention is designed to be the key component
of the network. Compared with previous work, the pro-
posed approach exhibits good performance on Accuracy1
and outperforms existing models in most cases.
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