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ABSTRACT

Learning symbolic music representations, especially dis-

entangled representations with probabilistic interpreta-

tions, has been shown to benefit both music understanding

and generation. However, most models are only applica-

ble to short-term music, while learning long-term music

representations remains a challenging task. We have seen

several studies attempting to learn hierarchical representa-

tions directly in an end-to-end manner, but these models

have not been able to achieve the desired results and the

training process is not stable. In this paper, we propose

a novel approach to learn long-term symbolic music rep-

resentations through contextual constraints. First, we use

contrastive learning to pre-train a long-term representation

by constraining its difference from the short-term represen-

tation (extracted by an off-the-shelf model). Then, we fine-

tune the long-term representation by a hierarchical predic-

tion model such that a good long-term representation (e.g.,

an 8-bar representation) can reconstruct the corresponding

short-term ones (e.g., the 2-bar representations within the

8-bar range). Experiments show that our method stabilizes

the training and the fine-tuning steps. In addition, the de-

signed contextual constraints benefit both reconstruction

and disentanglement, significantly outperforming the base-

lines.

1. INTRODUCTION

Deep music representation learning have been proven to

be a powerful tool for high-quality symbolic music gen-

eration [1]. The learned representations can be directly

fed into downstream predictive models such as LSTMs [2]

and Transformers [3] to achieve more coherent results than

note-based or event-based generation [4–6] Furthermore,

when a representation learning model has a probability in-

terpretation, the representation can then be easily interpo-

lated or resampled to create new music pieces. Recently,

several studies further disentangle music representations

into interpretable factors (such as pitch, rhythm, chord and

texture) to achieve a more controllable and interactive mu-

sic generation [5,7,8]. For example, we can keep the pitch
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factor of a melody while resampling its rhythm factor to

achieve theme variation. We can also interpolate the pitch

factor for a smooth music morphing [7].

Despite the above mentioned progress [9–11], most ex-

isting work applies only to short music segments with a

length of several beats, while learning long-term repre-

sentations remains a challenging task. In particular, stud-

ies have shown that even for monophonic melodies, "flat"

model designs (e.g., using long-range sequential encoders)

have difficulty remembering a complete music phrase at

once. Some other studies have attempted to solve this

problem by building another layer of hierarchy on top

of short-range flat models, learning short-term and long-

term representations simultaneously in an end-to-end man-

ner [1, 12]. However, as the model expressivity increases

with the number of layers, models also become much more

difficult to train.

We argue that the main problem with current methods

is the lack of proper inductive bias, and in this paper we

propose a new method for learning long-term, phrase-level

symbolic music representations through contextual con-

straints. The method consists of two stages pre-training

and fine-tuning, with two steps in each stage. In the pre-

training stage, we first adopt EC2-VAE [7] to learn bar-

level, disentangled latent pitch and rhythm representations.

Then, we apply the same model to learn phrase-level repre-

sentation but with contrastive losses to constrain the differ-

ence between phrase-level and bar-level representations. It

is indeed difficult to learn phrase-level representations di-

rectly using bar-level models, but the additional contrastive

constraint can serve as a useful inductive bias to help find a

reasonable solution that can subsequently be improved by

fine-tuning. During the fine-tuning stage, we replace the

pre-trained decoder with a hierarchical prediction model

that forces the phrase-level representation to reconstruct

the bar-level ones. This is achieved by first tuning only

the new hierarchical decoder (while fixing the pre-trained

encoder) and then tuning the whole network. During these

two steps, structured contrastive loss is applied to stabilize

the learning process.

Experiments show that the proposed method signifi-

cantly outperforms the baselines and successfully learns

disentangled pitch and rhythm representations for 8-bar

long phrases (32 beats in 4/4 meter) without increasing the

latent dimensionality. To our knowledge, this is also the

first generative model that achieves phrase-level compo-

sition style transfer, latent factor interpolation, and theme
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variation. In sum, our contributions are as follows:

• We demonstrate the importance of structured contextual

constraints in learning long-term disentangled represen-

tations. Our approach only requires reasonable amount

of data to train and could learn compact latent represen-

tation.

• We show that the proposed Structured InfoNCE loss ef-

fectively expresses the contextual constraints, stabilizes

the training of long-range models and helps the model

converge faster.

• Our model achieves phrase-level music style transfer, la-

tent factor interpolation, and theme variation.

2. RELATED WORK

We review two realms of research related to our work

on long-term music-representation learning: contrastive

learning, which is the main method to stabilize the training

process, and hierarchical music modeling, which is related

to our fine-tuning model.

2.1 Contrastive Learning

Contrastive learning (CL) is an efficient method in self-

supervised learning [13–15], serving as regularization to

latent representations. For example, NCE-based con-

trastive losses [16,17] have been widely used and achieved

good results in natural language processing. Contrastive

predictive coding (CPC) [18] and Deep Infomax (DIM)

[19] explore the relation between minimizing a contrastive

learning loss and maximizing a lower bound of the mu-

tual information. In DIM, global feature is connected with

local feature to learn more abstract and informative repre-

sentations.

2.2 Hierarchical Music Representation Learning

The hierarchical nature of music has been studied for a

long time [20–23]. Recently, we see some efforts on

learning long-term music representations using hierarchi-

cal modeling [12, 24, 25]. The basic idea is that since a

flat model design can only effectively learn shot-term rep-

resentations, we can stack more layers on top of the short-

term representations module for long-term representations.

Existing works include MusicVAE [1], Music Transformer

VAE [12], Jukebox [26], etc. However, experiments show

that unless we have a huge amount of data, the model is

in general very difficult to train. In this study, we pro-

vide a two-stage algorithm with contrastive loss as a better

learning strategy. Also, no model so far has achieved dis-

entanglement for long-term representation as done in this

study.

3. METHODOLOGY

In this section, we introduce our algorithm in detail. Con-

ceptually, it consists of two stages, each with two steps.The

first stage is pre-training:

• In step 1, we simply adopt EC2-VAE [7], an exist-

ing music representation disentanglement model, to

extract short-term pitch and rhythm representations.

• In step 2, we build Long-EC2-VAE, a long-term ver-

sion of the model and train it with an extra contextual

constraint using the proposed Structured InfoNCE

loss. Intuitively, this loss prevents the learned long-

term representations from deviating too far from cor-

responding well-trained short-term representations.

The second stage is fine-tuning, in which we build a hierar-

chical representation-learning model by combining the en-

coder of Long-EC2-VAE with a hierarchical decoder. We

name this model after Hierarchical-EC2-VAE.

• In step 1, we only train the hierarchical decoder to

ensure the predictive power of the long-term repre-

sentation.

• In step 2, we train the whole hierarchical network for

a better long-term pitch-rhythm disentanglement.

3.1 Pre-training by Contrastive Learning

The model of the pre-training stage, Long-EC2-VAE, is

shown in Figure 1. It is built upon an off-the-shelf music

representation model, EC2-VAE [7], which can effectively

disentangle pitch and rhythm factors for short music seg-

ments by cutting the latent representation into two parts

and pairing one part with a local rhythm decoder. In Fig-

Figure 1: The model architecture of Long-EC2-VAE in

the pre-training stage, where the right-hand-side is short-

term model with parameter fixed and the left-hand-side

is the long-term model. The dotted lines denote con-

trastive losses, whose weighting matrices are joined opti-

mized with the parameters on the left-hand-side networks.

ure 1, the right-hand-side part is a literal copy of the EC2-

VAE encoder (with parameters fixed) to extract short-term

representations, while the left-hand-side part is a simple

adaptation of EC2-VAE for long-term music by lengthen-

ing its temporal receptive field. Note that the left part alone

is not able to learn long-term representations, and our goal

is to assist it using contrastive learning. Formally, the loss

function of Long-EC2-VAE is:

L = LLong-EC2-VAE + LStructured InfoNCE, (1)

where LLong-EC2-VAE is the same as in the original EC2-

VAE model (which contains the KL loss, the rhythm loss
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Figure 2: The model architecture of Hierarchical-EC2-VAE in the fine-tuning stage. The training follows two steps.

and the overall reconstruction loss). The Structured In-

foNCE loss expresses the contextual constraint. It is de-

veloped from InfoNCE [18] loss, and it is structured since

the compared representation pairs are extracted from mu-

sic segments of different length, one is long term and the

other is short term. Formally:

LStructured InfoNCE =

− ln
exp

(

zT
L,f

Wẑ+
S,f

/τ
)

exp

(

zT
L,f

Wẑ+
S,f

/τ
)

+
∑K

i=1 exp

(

zT
L,f

Wẑ−
S,f

/τ
) ,

(2)

where zL,f and W are the normalized long-term represen-

tations and weighing matrix we need to learn. f = {p, r}
indicates whether it is the pitch or rhythm factor. Like-

wise, we use ẑS,f to denote the short-term representations

extracted by right-hand-side model. K and τ are hyper-

parameters. K is the amount negative samples and τ is the

temperature parameter.

In specific, the short-term melodies are half as long as

long-term ones. The positive samples ẑ+S,f are in the cases

that the corresponding short-term melody is a part of the

long-term melody and f takes the same value as in zL,f ,

while the negative samples are not in this case. Also, the

long-term and short-term representations share the same

dimensionality.

3.2 Fine-tuning with Hierarchical Generation

Figure 2 shows the architecture of the fine-tuning model,

Hierarchical-EC2-VAE, where the two subfigures illustrate

the two training steps. Here, the encoder design is the same

as in the Long-EC2-VAE model, while the decoder is a hi-

erarchical predictive model with three layers. The first two

layers are new designed and the last layer is an aggregation

of several EC2-VAE decoders sharing the same parame-

ters. Given the disentangled long-term (phrase-level) rep-

resentations, it first decodes intermediate-level representa-

tions, then decodes bar-level representations, and finally

reconstructs concrete rhythm and music tokens.

Compared to the phrase-level representation, the tem-

poral receptive fields of the intermediate-level represen-

tations all shrink to a half, but at the same time their

number doubles in order to cover the same range of mu-

sic. The same relationship holds between intermediate and

bar-level representations. In particular, a phrase means

8 bar (in 4/4 meter, 32 beats) in our design, so that

the intermediate-level and bar-level mean 4-bar and 2-bar

melody segments (a length which the original EC2-VAE

model can handle), respectively. All levels of latent repre-

sentations share the same dimensionality.

In the first step of training (Figure 2(a)), the encoder is

a literal copy from the Long-EC2-VAE model and we only

train the hierarchical decoder. Formally, the loss function

is:

Lstep1 = LHierarchical−EC2-VAE Decoder + LInfoNCE, (3)

where the first term refers to the reconstruction losses

adopted from the EC2-VAE model, and the second term

is defined as:

LInfoNCE =

− ln
exp

(

zT
l,f

Wẑ+
l,f

/τ
)

exp

(

zT
l,f

Wẑ+
l,f

/τ
)

+
∑K

i=1 exp

(

zT
l,f

Wẑ−
l,f

/τ
) ,

(4)

where zl,f are the normalized hierarchical representations

we need to learn with l = {intermediate, bar} indicating

the level of representation and other notations follow the
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same meaning as in Eq.(2). Here, both positive ẑ+l,f and

negative ẑ−l,f samples are normalized representations com-

puted from a pre-trained EC2-VAE, in which the positive

samples are in the cases that the ẑ+l,f and zl,f are computed

based on the same music segment and have the same value

of l and f , while ẑ−l,f are not in this case.

After the first step achieves a reasonable accuracy, we

proceed to step 2 (Figure 2(b)), unfreezing the encoder

and training the whole hierarchical representation-learning

model with:

Lstep2 = Lstep1 + LStructured InfoNCE

+ βLKLphrase,
(5)

where the first two terms are defined in Eq. (3) and Eq. (2)

respectively. LKLphrase is KL divergence to only regular-

ize the phrase-level representations by a normal distribu-

tion. The value β controls the degree of KL divergence

penalty.

4. EXPERIMENTS

4.1 Dataset and data format

We train our model on Nottingham Database [27] and

POP909 database [28]. Our dataset contains 2154

melodies (at song level) in total. We randomly split these

pieces into 2 subsets: 90% songs for training and 10%
songs for test. The data format is designed as the same

as in [7] in which 4 bar or 8 bar melodies are formalized

as sequences of 130-dimensional one-hot embedding vec-

tors and 16-beat and 32-beat rhythm pattern is represented

by a sequence of 3-dimensional one-hot embedding vec-

tors. Each vector in the melody sequence denotes a 1
4

-beat

unit. The first 128 dimensions of this vector denote 128

MIDI-format pitches from 0 to 127, the 129th dimension

is the holding state for longer note duration, and the last

dimension is kept for rest. The three dimensions of rhythm

pattern vectors represent the onset of any pitch, a holding

state, and rest, respectively.

4.2 Implementation Details

All of our models are trained using Adam optimizer [29]

with a scheduled learning rate from 1e-3 to 1e-5. The batch

size is 128 in the pre-training stage and is 64 in the fine-

tuning stage. We do normalization on representations in

Eq.(2) and (4) to make the training process more stable.

The representations fed into decoders are original repre-

sentation without normalization.

4.2.1 Pre-training

In the pre-training stage, we simply adopt the structure of

EC2-VAE [7] to model 4 bar and 8 bar EC2-VAE. Each

model comprises an encoder with a bi-directional GRU

layer, a rhythm decoder with a GRU layer, and a global

decoder with a GRU layer. We set the hidden dimension of

the GRU in the encoder and decoders to 2048. The latent

dimension is 128 for disentangled pitch representations

and 128 for disentangled rhythm representations for each

range model. For LStructured InfoNCE depicted in Eq. (2), we

set K to 512 and τ to 1. The positive samples for Eq. (2)

and Eq. (4) are the representations of 1-4th, 3-6th and 5-8th

bar from well-trained 4 bar EC2-VAE. Actually, even when

training the 4-bar EC2-VAE (right-hand side of Figure 1),

we use a similar constrastive loss as in Eq. (2) where the

positive samples are representations of 1-2th, 2-3th, 3-4th

bar from well-trained 2 bar (original) EC2-VAE [7] .

4.2.2 Fine-tuning

Hierarchical-EC2-VAE model consists of a long-term (8

bar) EC2-VAE encoder, 4 GRU layers, and an aggregation

of 2 bar EC2-VAE decoders. We first train the hierarchical

model with fixed 8 bar EC2-VAE encoder from pre-trained

stage for around 25 epochs. Then we train the whole model

without fixing parameters. We set the hidden dimension of

4 GRU layers to 1024. We set K to 256 and τ to 1 for both

Structured InfoNCE loss and InfoNCE loss and set β to 0.1

in Eq. (5).

4.3 Objective Evaluation

We objectively evaluate the model in terms of reconstruc-

tion accuracy, training stability, and disentanglement.

4.3.1 Reconstruction Accuracy

Table 1 shows that the reconstruction accuracy of the pro-

posed models (2nd an 3rd rows) significantly outperform

the baseline, a vanilla EC2-VAE applied to 8-bar melody

(first row). The last two rows show the results of two ab-

lation settings of Hierarchical-EC2-VAE: one without the

contrastive loss and the other without first fixing the pa-

rameters of encoder and directly train the model end-to-

end. We see that the proposed Structured InfoNCE or In-

foNCE losses play a vital role for an accurate reconstruc-

tion and the two-step training strategy improves the result

marginally.

Method Recon.Acc Rhythm Recon.Acc

Baseline 0.772 0.847

Long-EC2-VAE 0.992 0.995

H-EC2-VAE(ours) 0.997 0.995

H-EC2-VAE(w-o CL) 0.584 0.599

H-EC2-VAE(w-o fixed) 0.991 0.989

Table 1: A comparison on reconstruction accuracy of dif-

ferent models.

4.3.2 Training stability

Figure 3: Experimental results of overall reconstruction

and rhythm accuracy on the test set.
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Comparing the accuracy curves of the proposed Long-

EC2-VAE with the baseline as illustrated in Figure 3, we

find that the proposed Long-EC2-VAE converges more

quickly during training. This indicates that the proposed

training strategy leads to a better initialization and makes

the performance of the model fluctuate less during training.

4.3.3 Disentanglement Evaluation

We evaluate the disentanglement performance of models

using a disentanglement evaluation method adopted in [7]

and [30]. The method randomly transposes all the notes

of the input data by i(i ∈ [1, 12]) semitones while keep-

ing the rhythm and underlying chord unchanged and then

measures the variation of disentangled representations.We

denote Σ|∆zp| and Σ|∆zr| as the variation of zp and zr .

1 2 3 4 5  6 7 8 9 10 11 120

50

100

150

200

250
Pitch
Rhythm

(a) Baseline model (8 bar)

1 2 3 4 5  6 7 8 9 10 11 120

50

100

150

200

250
Pitch
Rhythm

(b) Long-EC2-VAE model (8 bar)

1 2 3 4 5  6 7 8 9 10 11 120

50

100

150

200

250
Pitch
Rhythm

(c) Hirarchical-EC2-VAE model (8 bar)

Figure 4: The comparison between Σ|∆zp| and Σ|∆zr| af-

ter transposition. The numbers show the pitch augmented

by 12 semitones in each sub-figure from left to right.

As shown in Figure 4, values of Σ|∆zp| of the pro-

posed Hierarchical-EC2-VAE are relatively high while

Σ|∆zr| maintains in a significantly low level. This indi-

cates that the pitch and rhythm representations of the pro-

posed Hierarchical-EC2-VAE are well-disentangled as the

change of notes has a tiny impact on zr. Similarly, we can

intuitively find in the figure that the disentanglement per-

formance of the proposed Hierarchical-EC2-VAE is much

better than the baseline and also outperforms the proposed

Long-EC2-VAE.

4.4 Music generative examples

In this section, we show some music generation results

by manipulating the disentangled phrase-level pitch and

rhythm representations in three different ways: style trans-

fer via swapping the representation, rhythm morphing via

interpolating the representation, and theme variation via

representation posterior sampling.

4.4.1 Phrase-level composition style transfer

We cross-swap the disentangled pitch and rhythm factors

zp and zr of two 8-bar melodies A and B and then ob-

tain generative pieces C and D. The results are shown in

Figure 5, in which we see that both of the two generative

pieces perfectly inherit target rhythm patterns. Besides,

these generative melodies vary slightly from the source

melody and these variations tend to sound creative, i.e. the

appearance of embellished notes.

(a) Melody A

(b) Melody B

(c) Generated by 𝑧𝑝 from A and 𝑧𝑟 from B

(d) Generated by 𝑧𝑝 from B and 𝑧𝑟 from A

Figure 5: Style transfer examples by hierarchical-EC2-

VAE model.

4.4.2 Latent zr interpolation

We interpolate rhythm representations zr of two phrases

using SLERP [31] while keeping the pitch and chord un-

changed. The interpolated latent representations can then

be “re-synthesized” using Hierarchical-EC2-VAE.
As shown in Figure 6, we interpolate zr of the piece A

and B with different SLERP weights. The results exhibit a

surprising sense of coherence of pitch and rhythm in gener-

ative melodies, even in the transition between consecutive

bars.This implies that a longer-term representation is also

adept at modeling short-term generation and even contains

more global harmonic information than a short-term repre-

sentation.

4.4.3 Theme variation

We can also achieve theme variation by adding a Gaus-

sian noise to zr while keeping zp unchanged . As a sam-

ple shown in Figure 7, we find that as the variance of the

noise grows larger, the pitch and rhythm of the generative

melody are still reasonable smooth, implying that the long-

term representations contain the coherence of contextual

information and can “control” the generation process.
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(a) Source Melody A

(b) Target rhythm B

(c) Interpolated on  𝑧r from A to B with more weight on A

(d) Interpolated on  𝑧r from A to B with more weight on B

Figure 6: Interpolation examples.

(a) Source Melody A

(b) Rhythm representation Posterior sampling with 𝜎2 = 0.8
(c) Rhythm representation Posterior sampling with 𝜎2 = 1.3

Figure 7: Rhythm representation posterior sampling ex-

amples.

4.5 Subjective Evaluation

One may wonder what are the advantages of learning long-

term representations since we can always generate the mu-

sic bar by bar using short-term models and just concate-

nate the generated samples together. One merit lies in the

coherency in controlled music generation. For example,

when sampling the long-term rhythm representation, the

overall rhythm pattern of a phrase is controlled as an or-

ganic whole, while individually sampling the rhythm of

different bar may easily lose the rhythm coherency. To bet-

ter illustrate this idea,we conduct a survey on theme vari-

ation (as in Section 4.4.3) to compare the performance of

the proposed 8-bar Hierarchical-EC2-VAE and baseline 2-

bar EC2-VAE.

4.5.1 Survey Configuration

In our survey, each subject is given 5 groups of

pieces. Each group contains three 8 bar pieces: a

human-composed piece from Nottingham dataset and 2

theme variations generated by a 2-bar EC2-VAE and

Hierarchical-EC2-VAE, respectively. In each group, the

generated pieces use zp of the human-composed piece and

the sampled zr.

Each subject listens to five randomly arranged groups

in turn and is required to rate each melody ranging from

1 (very low) to 5 (very high) according to three aspects:

creativity, naturalness (how human-like the composition

is) and overall musicality.

4.5.2 Results

A total of 29 subjects ( 18 females and 11 males) partici-

pated in the survey. Experimental results depicted in Fig-

ure 8 demonstrate that people prefer melodies generated

by the proposed Hierarchical-EC2-VAE to those generated

by the 2 bar EC2-VAE [7], implying the effects of a long-

term coherence learned by our model. The heights of bars

represent means of the ratings and the error bars represent

the MSEs computed via within-subject ANOVA [32]. The

results show that our model performs significantly better

than the 2 bar EC2-VAE in terms of all three dimensions(p

< 0.05). Besides, the qualities of melodies generated by the

proposed Hierarchical-EC2-VAE reach a competitive stan-

dard compared to the human-composed pieces, especially

in creativity.

Figure 8: The results of the subjective evaluation.

5. CONCLUSION

In conclusion, we contribute a pipeline of algorithms to

learn long-term and disentangled music representations.

The main novelty lies in the proposed two inductive biases

which constrain the long-term representations using con-

textual information. The first one requires long-term rep-

resentation to be not too different from the short-term ones

which represent a part of the long-term sequence, and we

demonstrate contrastive loss is well-suited for such rough

constraint. The second inductive bias is that a good long-

term representation should be able to reconstruct the cor-

responding short-term ones, and we use a hierarchical pre-

dictive model to realize this constraint. Unlike most hier-

archical models, our purpose is not prediction for its own

sake, but rather to leverage the prediction power to learn a

well-disentangled long-term representation. Experimental

results show that our approach is quite successful, capa-

ble of disentangling pitch and rhythmic factors for phrase-

level (32 beats) melody without increasing the dimension-

ality of latent representation compared to bar-level models.

Moreover, the learned representations enable high-quality

phrase-level style transfer via representation swapping and

theme variation by representation interpolation and poste-

rior sampling.
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