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ABSTRACT

Choral music separation refers to the task of extracting

tracks of voice parts (e.g., soprano, alto, tenor, and bass)

from mixed audio. The lack of datasets has impeded re-

search on this topic as previous work has only been able

to train and evaluate models on a few minutes of choral

music data due to copyright issues and dataset collection

difficulties. In this paper, we investigate the use of syn-

thesized training data for the source separation task on real

choral music. We make three contributions: first, we pro-

vide an automated pipeline for synthesizing choral music

data from sampled instrument plugins within controllable

options for instrument expressiveness. This produces an

8.2-hour-long choral music dataset from the JSB Chorales

Dataset and one can easily synthesize additional data. Sec-

ond, we conduct an experiment to evaluate multiple separa-

tion models on available choral music separation datasets

from previous work. To the best of our knowledge, this

is the first experiment to comprehensively evaluate choral

music separation. Third, experiments demonstrate that the

synthesized choral data is of sufficient quality to improve

the model’s performance on real choral music datasets.

This provides additional experimental statistics and data

support for the choral music separation study.

1. INTRODUCTION

Choral music is a distinct artistic genre that includes sev-

eral vocal parts (e.g. soprano, alto, tenor, and bass) ar-

ranged into intricate patterns from strict counterpoint to

polyphonic echoes and flows of lyrics. One useful tool in

the analysis and re-production of choral tracks is the abil-

ity to take mixed-down choral music and separate it back

into audio tracks of isolated vocal parts: i.e. choral music

separation, as a subtask of audio source separation.

Audio source separation is an audio signal processing

task that involves separating one or more sound sources

from a multi-source audio mixture. This task has a wide

range of applications in a variety of domains, including
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speech separation, vocal-accompaniment separation and

musical instrument separation. The latter two tasks are

primary tasks in the field of music signal processing and

have been adopted for practical use in the entertainment

industry [1]. Many models, such as Open-Unmix [2], De-

mucs [3], and Spleeter [4], achieve great separation perfor-

mance. Some models [5] further extend the source separa-

tion task to a zero-shot or query-based setting. However,

choral music separation has received limited attention. Un-

like general musical instrument separation, which seeks to

separate non-homologous sources (e.g., piano, drums, and

singing voice), choral music instrument separation seeks to

separate homologous or close-homologous sources (e.g.,

soprano, alto, tenor, bass). Additionally, the scarcity of

data on choral music separation impedes further progress.

Choral music separation could be used in a wide variety of

scenarios. Individuals could obtain solo tracks from choral

recordings for practice, analysis, and re-production. Not

only does it fill a void in a particular type of musical in-

strument separation, but it also provides convenience for

music educators.

In this paper, we investigate the choral music separa-

tion task from the perspective of addressing the insuffi-

ciency of available datasets. We begin by introducing re-

lated works in the field of choral music separation. Sec-

ond, we present the discovery of how to improve the per-

formance of choral music separation using high-quality,

synthesized music data. Then, we conduct comprehensive

experiments with multiple models and datasets to evaluate

the improvement of using synthesized data on choral music

separation in real datasets. Finally, we discuss the exten-

sibility of our pipeline to more choral-related separations,

such as string quartet separation, as well as its future direc-

tions. The code and the dataset are publicly available 1 .

2. RELATED WORK

Research in choral music separation receives relatively

less attention. Deep learning methods for audio source

separation has already outperformed traditional methods

(e.g. Non-negative Matrix Factorization [6]) for a long

time. Separation models have been developed follow-

ing two directions: frequency-domain models and time-

domain separation models.

1 https://github.com/RetroCirce/Choral_Music_Separation
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Dataset Minutes Songs Public

Choral Singing Dataset [11] 7 3 ✓

Dagstuhl ChoirSet [12] 5 2 ✓

Cantoria Dataset [13] 20 14 ✓

ESMUC Choir Dataset [13] 31 26 ✓

Bach and Barbershop Collection [14] 105 48

Table 1: Existing datasets for choral music separation.

2.1 Frequency-Domain and Time-Domain Models

The traditional method of audio separation is to mask the

frequency-domain representation and then inversely trans-

form it to the time-domain signal, referred as frequency-

domain separation models. Spec-U-Net [7], based on

the U-Net architecture, contains convolutional neural net-

work (CNN) blocks for downsampling the input short-time

Fourier transform (STFT) spectrogram and upsampling the

bottom feature back into a separation mask. The mask is

applied into the input to obtain the separate spectrogram

as output. Res-U-Net [8] replaces the original CNN blocks

with residual CNN blocks to accelerate convergence speed.

On the other hand, time-domain models perform the sepa-

ration directly on the audio waveform. Wave-U-Net [9] in-

corporates an end-to-end U-Net structure on the input and

output of waveforms. Conv-TasNet [10] applies a CNN

encoder-decoder structure to process waveforms into la-

tent features and generates the mask. The masked latent

features are decoded back to waveforms as separation re-

sults. Bypassing the spectrogram processing, time-domain

models can save parameters and perform efficiently in low-

latency systems for speech separation. Some hybrid mod-

els, such as Demucs v3 [3], can leverage both time-domain

and frequency-domain features to achieve the best perfor-

mance for musical instrument separation, while the size of

the model is a little bit large.

2.2 Choral Music Separation

For choral music separation, [15] proposed a score-

informed separation model based on Wave-U-Net and per-

formed experiments on 347 (synthesized) Bach Chorale

pieces from MIDI files with MuseScore_General Sound-

Font. This model performs well on this SoundFont-

Synthesis dataset but poorly on real choral music datasets.

[16] proposed a conditional Spec-U-Net to optimize the

separation performance by conditioning on the fundamen-

tal frequency contour. However, as mentioned in their pa-

per, due to the lack of choral music datasets, the evaluation

was conducted on only three songs with a total duration of

seven minutes. [14] proposed a harmonic overlap score to

increase the model’s sensitivity to different choral voices,

thereby improving performance. It made use of a relatively

large dataset containing 105 minutes of Bach and Barber-

shop Collections, but this dataset is not publicly available

due to copyright concerns, which prevents it from being

open source. And indeed, 100-minute is still not enough to

help achieve an audio separation model with a high gener-

alization ability, we expect to obtain a size more than that.

Pitch range

Name Type Soprano Alto Tenor Bass

Standard MIDI A0±C8 A0±C8 A0±C8 A0±C8

Noire [17] Piano A0±C8 A0±C8 A0±C8 A0±C8

Grandeur [18] Piano A0±C8 A0±C8 A0±C8 A0±C8

Voices Of Rapture [19] Vocal B3±D6 E3±G5 B2±C#5 A1±D4

Dominus Choir [20] Vocal G3±A5 G3±A5 E2±G4 E2±G4

Table 2: Sample instrument libraries we use for synthesiz-

ing choral music separation datasets.

In this paper, we first conduct four fundamental models:

Spec-U-Net, Res-U-Net, Wave-U-Net and Conv-TasNet.

Our objective is to demonstrate the efficacy of synthe-

sized expressive data in improving separation performance

on real choral music datasets. As a result, fundamental

models enable us to consider the performance gains more

directly associated with data changes and augmentations.

Also, score-informed and conditional separation models

introduce external information, such as musical notes of

original songs or multi-pitch estimation results, to guide

the separation’s goal, while it also limits its applications. In

practice, we frequently find ourselves in situations where

the only available input is the audio. We continue to de-

mand unconditioned choral music separation. As a re-

sult, we proceed directly to unconditioned choral music

separation in this paper, without relying on any score con-

ditions.

3. METHODOLOGY

3.1 Scarcity of Datasets

Existing datasets for choral music are listed in Table 1,

collected from previous works and other public sources.

We observe that most of these datasets have short total

lengths; three of them are less than 20 minutes. The Choral

Singing Dataset [11] and ESMUC Choir Dataset [13] have

been used for choral music separation by [16], while the

Dagstuhl ChoirSet [12] and Cantoria [13] Datasets were

never used for separation tasks but instead for singing

performance analysis. The Bach and Barbershop Collec-

tion [14] is relatively longer, but is not publicly avail-

able. As a result, when a model is trained and tested on

such a small amount of data, its generalization and separa-

tion capabilities are severely limited. [15] directly synthe-

sized 347 choral pieces of Bach’s from MIDI files with

MuseScore_General SoundFont and trained the model.

However, this SoundFont-Synthesis dataset is dissimilar

to true choral vocals. Moreover, it lacks lyrics and sylla-

bles. As a result, the trained model performs poorly on real

datasets [15].

In the next section, we first introduce the pipeline of

synthesizing audio datasets for choral music separation

from sampled instrument libraries. Then, we train vari-

ous models on our datasets and compare them to deter-

mine the best model. Finally, we transfer the best model

weights to the real-world datasets shown in Table 1, fine-

tune the model and determine whether it truly improves
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Tonality Shifting: TRUE 
Legato: TRUE 
Dynamic Velocity: [85, 128] 
Note Range: [B3,D6],[E5,G5],[B2,C#5],[A1,D4] 
Dynamic Tempo: FALSE 
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Figure 1: The synthesis pipeline of choral music data from sample instruments and the training pipeline to utilize it.

performance when compared to the previous settings.

3.2 Data Synthesis Pipeline

Figure 1 shows our pipeline of choral music dataset cre-

ation and training methods. Generally, we need three col-

lection steps:

1. The symbolic choral music dataset (MIDI, MusicXML)

2. The sampled instrument libraries (standalone VST plu-

gin, or Kontakt sample libraries)

3. The synthesis configuration (syllables or lyrics choices,

legato, velocity, and tempo)

Then, our provided code can completely automate the data

synthesis process. It is built on top of the python-support

and free digital audio workstation (DAW) ± Reaper 2 . With

the above three steps, one could complete any choral music

data synthesis process on supported system platforms.

3.3 Data and Instrument Collection

For Step 1, following [15], we use the JSB Chorales

Dataset [21], which contains 347 pieces of choral music

in MusicXML format. The total duration is 248 minutes at

a tempo of 90 bpm (a.k.a. beat per minute). The data is

first transformed into MIDI files, which serves as the sym-

bolic dataset source for the creation of choral music audio.

For Step 2, a sampled instrument 3 is a sound source plugin

applied in a DAW. Unlike a SoundFont, it contains samples

of real instruments recorded in a professional acoustic en-

vironment. The human singing voice is also considered as

an instrument type. And many vocal sampled instruments

support a variety of lyrical or syllabic sets (e.g., vowels,

Latin words, etc.). We first choose two types of instru-

ments for our purposes: piano and vocal (soprano, alto,

tenor, and bass). Then, we choose two sampled instru-

ments for each type, as shown in Table 2. The reason to

choose the piano instrument is to evaluate the separation

performance of piano as a common and same-source in-

strument. In this case, the model needs to consider most

on the pitch difference between each voice part. When

it comes to the vocal dataset, the model can distinguish

the timbres slightly between soprano, alto, tenor, and bass

2 https://www.reaper.fm/
3 A detailed introduction can be found at https://tinyurl.com/2p8trn2u

voices, but it is more difficult to model the acoustic fea-

tures of these four voices than piano. This allows us to

determine whether the model can improve performance by

exploiting the timbre difference between vocal datasets, or

if it fails to model these timbres and perform a bad separa-

tion result.

Due to the fact that we have two sampled libraries for

each type of instrument, each dataset contains 248 × 2 =

496 minutes (8.2 hours) of synthesized choral music data.

All sampled instrument libraries that we use have a paid

license.

3.4 Synthesis Configuration for Expressiveness

For Step 3, we adopt two methods to further improve the

scalability and quality of synthesized data: the basic data

augmentation, and expressiveness incorporation. The left

of Figure 1 shows a specification.

We perform two operations to augment the data. First,

we notice that the pitch ranges of sampled instrument

libraries do not always correspond exactly to the pitch

ranges of tracks in JSB Chorales Dataset. For instance,

some bass melodies in JSB appear to be lower than the

lowest note in sampled instrument libraries. Instead of di-

rectly discarding these tracks, we implement ªoctave shift-

ingº by shifting out-of-range notes up or down some oc-

taves until they fall within the range. While it produces

non-realistic jumps between some melodies, it saves the

whole track to preserve more realistic data. Second, we

apply ªtonality shiftingº to each track. The tonality was

shifted upward and downward by three semitones before

synthesis. Therefore, the effective length of training data

will be further augmented several times.

For expressiveness incorporation, we provide several

options, which are supported by sampled instrument li-

braries, to synthesize audio:

• Legato: for vocal, this includes whether or not to change

breath or sing continuously. In vocal instrument li-

braries, legato is controlled by detecting the presence of

an overlap between adjacent notes. To support the legato

configuration, we begin by segmenting the track into mu-

sical phrases using the breath break information in Mu-

sicXML (if provided) or the note intervals (if specified).

Then, in each phrase, we add overlap to adjacent notes

(to activate the legato) if their pitch distance is less than

7 semitones (i.e., a perfect fifth).
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• Velocity: for each phrase, we provide three types of

volume/velocity change curves: crescendo, diminuendo,

and cresc.→dim.. The configuration establishes the

maximum and minimum velocity ranges.

• Word Control: for vocal, we support the word control of

sampled instrument libraries by assigning random com-

binations of words or syllables to each phrase. Note that

real-world performance may not contain random word

changes, but for model training, this still increases the

data richness on each training batch.

The configuration also supports the reverberation as a de-

signed feature, but currently it is not applied in this work.

4. EXPERIMENTS

In this section, we conduct an experiment on evaluating

different separation models on our synthesized datasets.

The purpose of this experiment is to identify the best model

on synthesized datasets and then transfer it to real choral

music datasets.

4.1 Datasets, Models and Hyperparameters

As introduced above, we use two datasets (piano and vo-

cal) to train four models (Spec-U-Net, Res-U-Net, Conv-

TasNet, and Wave-U-Net). Each track is in 22,050 Hz sam-

ple rate. Each dataset contains 496 minutes data. We use

277 tracks for training, 35 tracks for validation and another

35 tracks for testing. Since we have training combinations

among four models, two datasets, and four choral voices,

to save training time, we first train models on the dataset

without the expressiveness incorporation in section 3.4,

named as Standard-Piano and Standard-Vocal datasets.

After finding the best model, we will train it on the expres-

sive datasets in section 4.3.

For model hyper-parameters, In Spec-U-Net [7], we use

a window size of 2048, FFT size of 2048, and hop size

of 441. We apply 7 CNN blocks to downsample the in-

put spectrogram, and another 7 CNN blocks to upsample

it into the separation mask. In Res-U-Net, we apply the

implementation from [8], with 10 residual CNN blocks to

downsample the input spectrogram, then another 6 resid-

ual CNN blocks to upsample. In Wave-U-Net, we follow

the settings of [9] to adopt 6 downsampling CNN layers

and 6 upsampling CNN layers for separation. The filter

channels are set from 32 to 1024 in order for each layer.

The kernel size is 15 for the first layer and 5 for remain-

ing layers. In Conv-TasNet, we follow the setting of [10]

to set hyper-parameters as N = 512, L = 20, B = 128,

H = 512, P = 3, R = 3, X = 8. Spec-U-Net and

Res-U-Net use their default mean absolute error (MAE)

loss function; Conv-TasNet uses the default scale-invariant

source-to-noise ratio (SI-SDR) loss; and Wave-U-Net with

mean squared error (MSE) loss.

For training hyperparameters, the batch size is 8, the

learning rate is 1e-3, and each training sample is a 2-sec au-

dio segment randomly chosen from one music track in the

training set. The number of steps for each epoch is 700. We

Standard
Model

Median Source-Distortion Ratio (dB)

Dataset Soprano Alto Tenor Bass Avg.

Piano Spec-U-Net [7] 9.78 9.46 10.35 10.60 10.05

Piano Res-U-Net [8] 8.53 9.01 9.97 12.23 9.94

Piano Wave-U-Net [9] 6.95 5.36 7.21 9.82 7.34

Piano Conv-TasNet [10] 7.04 6.98 7.29 7.82 7.28

Vocal Spec-U-Net [7] 10.45 10.19 12.25 9.53 10.61

Vocal Res-U-Net [8] 9.35 10.87 10.20 10.77 10.30

Vocal Wave-U-Net [9] 2.65 3.08 3.06 3.90 3.17

Vocal Conv-TasNet [10] 6.60 6.12 6.41 6.58 6.43

Table 3: The separation performance of four models on the

test sets of Standard-Piano and Standard-Vocal datasets.

apply the Adam optimizer [22] with β1 = 0.9, β2 = 0.999,

ϵ = 1e− 8, and a learning rate scheduler where the learn-

ing rate is reduced with a multiplier f = 0.65 if the val-

idation performance does not improve across 3 consecu-

tive epochs. We implemented all methods in Pytorch using

NVIDIA RTX 2080Ti GPUs. All models converged within

300 epochs with early stop using a 10-epoch patience.

For evaluation, source-to-distortion ratio (SDR) is one

of the most widely used metrics for evaluating a source

separation system’s output, which measures a ratio be-

tween the original source track and the noise, interfer-

ence, added artifacts in the separation track. It is consid-

ered to be an overall measure of how good a separation

result sounds. We follow the music separation campaign

SiSEC 2018 [23] to use the median SDR to evaluate sepa-

ration performance. The median SDR is obtained by first

computing segment-level SDR of each 2-sec segment in

each track, then taking the median over them as track-level

SDRs, finally taking the median over the track-level SDRs

as the final SDR. The computing library is mus_eval [23].

4.2 Separation Performance

Table 3 shows all four parts median SDR performance on

two standard datasets by four models. We can see that

the frequency-domain models Spec-U-Net and Res-U-Net

get similar results that are better than those of the time-

domain models Conv-TasNet and Wave-U-Net. Spec-U-

Net achieves the best average SDRs over four parts on two

datasets as 10.05 and 10.61. The Res-U-Net achieves very

close performance. When analyzing the results, frequency-

domain models can take advantage of spectrograms in

choral music to obtain better separation results. The per-

formance on soprano, alto and tenor in vocal is better than

that in the piano dataset, suggesting that the timbre dif-

ference can also help further discriminate different source

tracks. Time-domain models can model the piano acous-

tic features well to achieve a good performance, but find

it hard to model the vocal features solely on the waveform

and face the drops in the vocal dataset.

4.3 Fine-Tuning Evaluation on Real Datasets

After comparing models in standard datasets, we chose the

best model, Spec-U-Net, to conduct the next experiments.

We trained Spec-U-Net on the Expressive-Vocal dataset,

as we synthesized the data with the expressiveness incor-

poration. Then, as shown in the right of Figure 1, we saved
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Fine-Tuning Evaluation Set Pretraining Set
Avg. Median SDR (Fine-Tuning Ratio)

ratio=10% ratio=40% ratio=70%

Cantoria Dataset [13]

None 1.42 3.91 4.13

SoundFont-Synthesis [15] 2.39 3.90 4.03

Standard-Vocal (ours) 3.03 4.59 5.08

Expressive-Vocal (ours) 3.73 5.48 5.71

Choral Singing Dataset (CSD) [11]

None 1.98 2.78 5.26

SoundFont-Synthesis [15] 2.12 3.38 6.20

Standard-Vocal (ours) 3.43 4.23 6.91

Expressive-Vocal (ours) 4.19 4.78 7.50

Bach & Barbershop Collection (BBC) [14]

None 4.18 6.08 6.94

SoundFont-Synthesis [15] 4.19 6.17 6.93

Standard-Vocal (ours) 4.98 6.71 7.27

Expressive-Vocal (ours) 5.58 7.17 7.64

Table 4: The fine-tuning performance of three real datasets by our best model ± Spec-U-Net.

the best model checkpoints, and conducted a fine-tuning

experiment to verify whether our data is useful for trans-

fer learning on real choral music datasets. Table 4 and

Figure 2 illustrate the median SDR performance of three

real choral music datasets under different fine-tuning ra-

tios with different pretrained models.

For datasets, we chose the Cantoria Dataset, Choral

Singing Dataset (CSD), and Bach & Barbershop Collec-

tion 4 (BBC). The reason for these choices is that Canto-

ria contains the best recording quality, CSD is most fre-

quently used in previous works, and BBC contains the

longest length. The meta information of each dataset has

been described in Table 1.

We considered three ratios for fine-tuning: (1) 10% for

training, 90% for evaluation; (2) 40% for training, 60%

for evaluation; and (3) 70% for training, 30% for evalua-

tion. The fine-tuning experiments demonstrate if our syn-

thesized datasets can improve the separation performance

in real datasets under different settings (e.g., few-shot as

10% and fairly enough as 70%). The intermediate ratio

40% is conducted to further investigate the tendency of the

improvement brought by our datasets.

There are four dataset choices on which to pretrain

the models: (1) None: without any pretraining; (2)

SoundFont-Synthesis: the synthesis dataset in [15] by

the Musescore_General SoundFont as a baseline; (3)

the Standard-Vocal dataset; and (4) the Expressive-Vocal

dataset. Since the SoundFont-Synthesis dataset only con-

tains 248 minutes, instead of using two sampled libraries

(496 minutes), we only provide the data synthesized from

one library ± Voices Of Rapture [19] in Standard-Vocal and

Expressive-Vocal for the pretraining. Data augmentations

of ªoctave shifting" and ªtonality shifting" are applied in

all three datasets, except (4) incorporates more expressive-

ness settings. The fine-tuning learning rate is 1e-4, with

the scheduler in section 4.1.

Table 4 shows the average median SDR performance

of Spec-U-Net over four voice parts under different fine-

tuning ratios and different pretraining settings. We can see

that under all three training-test ratios, the performance of

the model pretrained on Standard-Vocal and Expressive-

4 We appreciate the help from authors in [14] to offer the dataset.

Vocal is better than that on SoundFont-Synthesis and

none-dataset, where the performance of Expressive-Vocal

achieves the best. When the training-test ratio is small as

10%, the performance of SoundFont-Synthesis and non-

dataset has the largeest difference, showing that the model

learns some priors from SoundFont-Synthesis and con-

verges to a better optimum. However, when the ratio in-

creases to 40% and 70%, their performance is close to each

other and does not vary much, especially on Cantoria and

BBC. Thus, pretraining on SoundFont-Synthesis dataset

provides a very useful initialization ± but gains diminish

(or even no gain) as the initializer is dominated by larger

and larger quantities of real training data.

However, when the model is pretrained on Standard-

Vocal, it has a strong generalization to real choral mu-

sic datasets under all fine-tuning ratios, because acous-

tic features of synthesis tracks share large similarity to

the real datasets. This performance is further boosted by

Expressive-Vocal as we introduce expressiveness during

synthesis, such as lyrics and velocity dynamics. Even un-

der the 70% fine-tuning ratio, as the model has received

many real data, Standard-Vocal and Expressive-Vocal pre-

trained model can still get improvements. In conclusion,

our synthesized datasets provide not only additional data

volume, but also high-quality and close-to-real choral mu-

sic samples for boosting the separation performance.

To further verify our analysis, we visualized the trends

of median SDRs (blue, orange, cyan, and magenta colors),

with a 25th-75th percentile range, for each voice part of

three real datasets in Figure 2. We can see the perfor-

mance of our synthesized datasets (magenta & cyan lines)

marks a clear performance increase and a large gap to that

of SoundFont-Synthesis and non-dataset (orange & blue

lines). However, the trends of SoundFont-Synthesis and

non-dataset are close to each other, and even overlap in

BBC. When analyzing the percentile range of each model,

on Cantoria and CSD, our Standard-Vocal and Expressive-

Vocal pretrained models reveal a clear difference of per-

centile ranges to the left two models, demonstrating that

our models get a large improvement. However, the per-

centile ranges of the SoundFont-Synthesis and non-dataset

pretrained models have a large overlap, demonstrating no
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(a) The Median SDR performance on the Cantoria Dataset.

(b) The Median SDR performance on the Choral Singing Dataset (CSD).

(c) The Median SDR performance on the Bach & Barbershop Collection Dataset (BBC).

Figure 2: The Median SDR performance, with a 25th±75th percentile range, of soprano, alto, tenor and bass on three

datasets by Spec-UNet with different pretrained models and different ratios of training-test sets.

difference even though their median SDRs differ a lit-

tle. On the BBC dataset, our models yield improvements

on both the 25th and 75th percentile values but are not

as pronounced as those observed on Cantoria and CSD.

The potential reason is because the BBC dataset contains

a relatively large data size (105 minutes), which makes

the model already achieve a good convergence and hard

to get more significant improvements without model de-

signs. These trends further demonstrates that our synthe-

sized dataset plays a role in making up the data scarcity

and improving generalization ability.

5. EXTENSIBILITY AND LIMITATIONS

Our provided synthesis pipeline from symbolic datasets to

real audio datasets not only benefits choral music separa-

tion tasks, but also other choral-related separation tasks.

For example, string quartet separation, to separate two vi-

olins, viola, and cello parts from a mixed audio, can also

be trained with synthesized data of our pipeline. The de-

tails of the string quartet separation experiment can be ac-

cessed in the code repository. Similarly, our best pretrained

model shows a 100%/30% performance increase to the

SoundFont-Synthesis and non-dataset pretrained models.

This further shows a potential application of our synthesis

pipeline to improve other choral-related separation tasks.

There are also some limitations and future improve-

ments to our work. First of all, our implementations of

expressiveness are still based on random template modes.

Deep learning methods can improve this expressiveness

modeling [24]. Second, the design of the choral separation

model is needed to learn more priors from weak synthe-

sized data that can be transferred to real data, then it will

complement our proposed pipeline better. These limita-

tions are planned for exploration in our future work.

6. CONCLUSION

In this paper, we proposed an automated pipeline for

synthesizing choral music data from sampled instrument

plugins, and created an 8.2-hour choral music dataset

to improve separation performance on real choral music

datasets. We comprehensively evaluated multiple separa-

tion models to demonstrate that synthesized choral data is

of sufficient quality to improve model’s performance on

real datasets. This provides additional experimental statis-

tics and data support for choral music separation study. In

the future, we will focus on the design of timbre-pitch dis-

entanglement model [25] for achieving better separation

performance. The application of choral music separation

results into other music-related tasks, such as music rec-

ommendation [26], is also planned as the future work.
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