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ABSTRACT

Deep generative neural networks have been successful in

tasks such as composing novel music and rendering ex-

pressive performance. Controllability is essential for build-

ing creative tools from such models. Recent work in this

area has focused on disentangled latent space representa-

tions, but this is only part of the solution. Efficient con-

trol of semantic attributes must handle non-linearities and

holes that occur in latent spaces, whilst minimising un-

wanted changes to other attributes. This paper introduces

SeNT-Gen, a neural traversal algorithm that uses a sec-

ondary neural network to model the complex relationships

between latent codes and musical attributes. This enables

precise editing of semantic attributes that adapts to context.

We demonstrate the method using the dMelodies dataset,

and show strong performance for several VAE models.

1. INTRODUCTION

Deep generative models show promise for music, with sys-

tems that can compose melodies and accompaniments, ren-

der expressive performances, or synthesise instrumental

sounds and singing voices [1, 2]. While many of these

work as “black boxes,” controllability is an essential factor

in creative tools for musicians. This raises important chal-

lenges such as controlling musically meaningful aspects of

the composition, balancing creativity versus imitation, pro-

viding interactivity and refinement, and producing a con-

vincing temporal structure that has a sense of direction [3].

In generative applications a neural network is trained to

find a low-dimensional representation for complex data. A

common approach uses a Variational Auto-Encoder (VAE)

in which an encoder learns to transform the data space X

into a simpler “latent space” Z. For music X is a repre-

sentation of a score such as a piano-roll that defines the

pitch and duration of notes over time. A decoder recov-

ers the original representation from the latent samples. In

learning the latent representation the network identifies the

essential attributes needed to construct the melody. The di-

mensions of the latent space represent semantic attributes
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such as note density [4], syncopation [5], genre [6] or

arousal [7]. Novel melodies can be generated by decod-

ing samples drawn from the latent space. Moving in the

latent space adjusts the semantic attributes, for example:

to smoothly “morph” between two melodies by interpolat-

ing a path between their latent positions.

Recent work on control of generative music has focused

on regularisation of the latent space, and disentanglement

of the semantic attributes. The aim is to relate each seman-

tic attribute of the melody to a unique dimension of the la-

tent space, which allows attributes to be adjusted by adding

an “attribute vector” [8, 9] in latent space. This approach

involves some challenges. First, there is often a tradeoff

between regularisation of the latent space and reconstruc-

tion quality. Second, effective disentanglement can only

be achieved through supervision [10] and unsupervised ap-

proaches are sensitive to inductive biases in both the data

set and learning model (such as network model, hyperpa-

rameters, random seeds). Third, the relationship between

the latent dimension and corresponding semantic attribute

value may be non-linear. Fourth, latent spaces may contain

“holes” where the decoder produces invalid results [11]

and these must be avoided when adjusting attributes, or

interpolating paths in the latent space. This means that

some additional work is required beyond disentanglement

to properly control the values of semantic attributes.

This paper proposes a new method to efficiently traverse

latent spaces frequently used in generative music. We

introduce the Semantic Neural Latent Traversal method

for Generative models (SeNT-Gen), which employs a sec-

ondary neural network to model the complex relationship

between latent codes and semantic attributes. The SeNT-

Gen traversal function predicts the new latent position

given a starting position and attribute change, supporting

non-linear relationships and adapting to the context of the

traversal. We evaluate the performance of SeNT-Gen for

musical control using the dMelodies [12] data set.

Our key contributions are:

1. A neural method to traverse the latent space, target-

ing precise changes to musical attributes, and sup-

porting non-linear contextual relationships between

the VAE latent space and semantic attributes;

2. Experiments and analysis of the proposed method

using the established dMelodies data set. The

method is independent of learning model, and shows

best performance for strongly regularised models;
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3. Objective quantitative metrics to measure perfor-

mance of the method through targeted attribute

changes, which improves on notions of “controlla-

bility” that are tied to interpolation heuristics.

2. RELATED WORK

Control of generative music is usually based on latent

space representations. Some of these approaches are sur-

veyed here, while alternative approaches for images do

not directly translate between image and musical domains

[12]. Music-VAE [5] uses a hierarchical recurrent VAE

to model temporal structure in music. Attribute vectors

are shown to partially control attributes such as note den-

sity, melodic interval and rhythmic syncopation. MIDI-

VAE [6] learns songs using a a parallel VAE with shared

latent space, and an attached style classifier enables a

chosen style (classic, jazz, pop, Bach, Mozart) to be ap-

plied to the output. GLSR-VAE [4] uses a novel regu-

larisation method to control note density of chorale-style

melodies. Music FaderNets [7] proposes a Gaussian mix-

ture VAE for learning piano performance, with control

over the arousal or “energy level” based on rhythm and

note density. AR-VAE [13] defines a supervised regu-

larisation method which is applied to controlling rhyth-

mic complexity, pitch range, note density, and contour for

melodies trained from chorales and folk tunes. Kawai

and colleagues [14] use a VAE with adversarial classifier-

discriminator to condition the decoder on semantic at-

tributes. This model is trained on folk tunes to control

orthogonal attributes such as number of notes, pitch vari-

ability, chromatic motion and amount of arpeggiation.

Apart from latent space approaches, other methods gen-

erally require ad-hoc modifications to the probability dis-

tribution of a model. Transformers are used to generate

music with long-term structure [15], but control is lim-

ited to providing a prompt stimulus for the system to ex-

tend. Pop Music Transformer [16] uses a Transformer-XL

model to learn expressive piano performances. Control

over tempo and chord is achieved by masking out corre-

sponding event probabilities in the model output. Coconet

[17] uses a convolutional model to generate chorales in the

style of Bach. Cococo [18] adds “semantic sliders” for

conventional/surprising and happy/sad output using “soft

priors” to modify the model’s sampling distribution.

Several factors make it difficult to compare the results

of these studies. Firstly, there are a wide variety of model

architectures, and each implements its own encoding of the

training data into a form suitable for model training. This

in turn depends on the data-sets used, which vary from sim-

ple scores in ABC notation, to traditional scores, to MIDI

transcriptions of actual performances either recorded from

a digital keyboard or automatically extracted from audio

recordings. Secondly, while there is a focus on disentan-

gled representations, these are not in themselves control

methods. Even in a disentangled latent space, more work

is required to accurately achieve a specific value of an at-

tribute, dealing with potential non-linearities and holes in

the latent space. In the absence of a particular control al-

Feature Values Description

Tonic 12 Notes C, C#, D ..., B
Octave 3 Octave 4, 5, or 6
Scale 3 major, minor, or blues

Rhythm Bar 1, 2 28
(

8

6

)

codes for 6 note onsets
Arp Chord 1, 2, 3, 4 2 arpeggio direction up or down

Figure 1. Each dMelodies two-bar melody is described by 9
attributes. Tonic, Octave and Scale apply to the entire melody.
Separate Rhythm attributes apply to each bar. Arpeggio attributes
apply to each of the 4 chords. The table (top) shows the number
of values for each attributes, and an example from [12] is shown
below.

gorithm some works assess “controllability” through inter-

polation [7, 11, 14] though there is no consistency in the

metrics used.

The dMelodies dataset [12] has been proposed for eval-

uation of musical disentanglement learning, similar to

dSprites in the image domain [19]. dMelodies includes

1,354,752 unique two-bar melodies, algorithmically con-

structed with independent factors of variation, with each

comprised of 4 arpeggios in a I-IV-V-I chord pattern (see

Table 1). Attributes are discrete, and most (except for

Tonic and Octave) are categorical. dMelodies provides

three unsupervised reference models including β-VAE

[20], and a subsequent paper [11] adds three supervised

models: I-VAE [21], AR-VAE [13], and S2-VAE [22].

Three measures of disentanglement are implemented [12]:

Mutual Information Gap [23], Modularity [24], and Sepa-

rated Attribute Predictability [25]. On these measures, su-

pervised learning is shown to give better disentanglement,

without sacrificing reconstruction quality [11].

2.1 Metrics

Suppose the VAE decoder G generates an object x = G(z)
for latent sample z, and let c = [c1, c2, ..., cK ] be the K

semantic attributes of x. Disentanglement is formalised

through the concepts of consistency and restrictiveness

[26] and establishes a relationship between a latent dimen-

sion zi and a corresponding semantic attribute ci. Consis-

tency says that when zi is fixed, ci of the generated x never

changes. Restrictiveness says that when only zi is changed,

the change is restricted to ci and there is no change to other

attributes cj for j 6= i.

Attributes may be controlled through a traversal func-

tion Tk(z, ck, c
∗
k) which predicts the latent value z∗ re-

quired to change attribute k of z from ck to c∗k. The accu-

racy of Tk can be evaluated for a set of changes (z, ck, c
∗
k)

by measuring the deviation of the result from the target,

and any side effects on non-target attributes. Alternative

approaches assess “controllabilty” in the absence of such

a traversal function. Instead, interpolation is used to tra-

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

818



VAE To Oc Sc R1 R2 A1 A2 A3 A4

β 1 .95 .14 .64 .64 .28 .23 .28 .24
AR 1 .95 .34 .09 .09 .02 .02 .02 .02
I 1 .99 .36 .73 .77 .50 .52 .54 .53
S2 1 .94 .12 .65 .70 .29 .23 .34 .25

Table 1. Latent Density Ratio (LDR) for four dMelodies

VAE models. Attributes are Tonic (To), Octave (Oc), Scale

(Sc), Rhythm Bar (R) and Arp Chord (A).

verse from a position z in the latent space, along the corre-

sponding dimension zd between a minimum and maximum

value over a number of steps. This is repeated over a small

batch of points. Three measures are defined by [7] based

on the work of [26]: Consistency measures how constant

the attribute is across the batch for the same value of zd,

Restrictiveness measures how constant other attributes are

when zd changes, and Linearity measures how linear the

attribute is with respect to the latent dimension zd. An at-

tribute change matrix A(d, n) is proposed by [11] which

computes the net change in the nth attribute while travers-

ing regularised dimension d. When an attribute is well

controlled A should be high on the diagonal, and low else-

where, and these relationships can be inspected by visu-

alising the matrix. Another measure of controllability is

the correlation between the interpolated value zd and the

resulting attribute [14], which measures linearity but not

restrictiveness.

Another important factor is the Latent Density Ratio (or

LDR), the proportion of a batch of random latent samples

that decode with valid attributes [11]. As shown in Table 1,

errors in dMelodies occur most frequently with the Scale,

Rhythm Bar and Arp Chord attributes. If notes are gener-

ated that are outside the three defined scales (major, mi-

nor, blues) the Scale attribute is invalid. If a bar does not

have exactly 6 note onsets the Rhythm Bar attribute does

not match one of the 28 codes, and is invalid. If the chord

notes are not consistently ascending or descending, the Arp

Chord attribute is invalid. A traversal function should aim

to be more accurate than these base-line LDR rates.

3. METHOD

3.1 Neural Latent Traversal

This section describes SeNT-Gen as applied to musical

VAE models. Further details are available for a GAN-

based image synthesis application [27].

Let x be a sample of the data space X = R
N , a piano-

roll encoding of a melody. Let z be a sample of the latent

space Z = R
D of the VAE model. Let c = [c1, c2, ..., cK ]

be the vector of K semantic attributes of x, and R1(.), ...,

Rk(.) be K functions that compute the value of attribute k

of x in the normalised range [0, 1]: ck = Rk(x). Let F(.)
be the encoder, and G(.) be the decoder of the VAE, so that

G(F(x)) ≈ x. We use x∗ for the target value of x, and x̂

for its predicted or achieved value.

Given a sample x, we aim to find the modified x∗ such

that the value of attribute k is changed from ck to c∗k while

all other attributes remain unchanged: c∗i = ci, i 6= k.

Dense: 1 → D

c

Dense: 1 → D

c*

subtract

concatenate

Dense: D → 2D

z

1 1 D

D D

D

2D

Dense: 3D → 2D

Dense: 2D → D

3D

2D

D

ẑ

Figure 2. Implementation of SeNT-Gen neural traversal

function Tk(z, ck, c
∗
k). Input is the latent code z, and the

desired attribute change from ck to c∗k. Each Dense layer

includes ReLU activation, except for the Tanh activation

on the final layer. Output is the latent code ẑ which ap-

proximates the solution z∗.

This adjustment will be done in the latent space. Given

the latent encoding z = F(x), we seek a modified z∗

that generates x∗ = G(z∗), with the desired attribute value

c∗k = Rk(G(z
∗)).

SeNT-Gen implements contextual traversal of the latent

space for each of the attributes. The traversal function Tk
predicts the new value ẑ given the old value z, and the old

and new values of the attribute ck and c∗k:

ẑ = Tk(z, ck, c
∗
k)

The traversal function Tk is implemented by training the

neural network shown in Figure 2 which outputs the value

ẑ, an approximate solution for z∗.

Three constraints are imposed during training. The first

constraint is to minimise the perceptual loss by ensuring

that the changed attribute value ĉk = Rk(G(ẑ)) is close to

the target c∗k:

Lc = Ez∼P (Z)

[

‖Rk(G(ẑ))− c∗k‖
2
2

]

(1)

The term ‖Rk(G(ẑ))−c∗k‖2 represents the deviation be-

tween ĉk and the target c∗k, and is in the range [0,1]. When

Rk is invalid for G(ẑ) a deviation of 1 is used instead.

The other two constraints are required to align the at-

tributes of the traversal function with the relevant dimen-

sions of the latent space. In a disentangled latent space

each semantic attribute corresponds to one latent dimen-

sion, but in general there will likely be a small number

of relevant dimensions that are strongly related to each at-

tribute. For relevant dimensions r, ẑr should be be close to

the correct solution z∗r . For the other irrelevant dimensions

i, ẑi should be close to the original location zi.

Relevance is expressed using the vector ρk ∈ R
D,

which is 1 for relevant dimensions and 0 otherwise. Un-

der supervised training, this relation will be known and

for a consistent numbering of attributes and dimensions

ρk[i] = 1 for i = k, and 0 for i 6= k. Otherwise, for

unsupervised models ρk can be calculated using mutual
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information as described below. The two remaining loss

functions are thus:

LI = Ez,z∗∼P (Z)

[

‖ρk
T (ẑ − z∗)‖22

]

(2)

L¬I = Ez,z∗∼P (Z)

[

‖(1− ρk)
T (ẑ − z)‖22

]

(3)

Equation 2 pulls ẑ towards z∗ for relevant dimensions, and

Equation 3 pulls ẑ towards z for irrelevant dimensions.

When ρk is not known a-priori it can be calculated using

the mutual information (MI) between the dimensions d ∈
{1, ..., D} of z and the ck values:

ρk = threshold (softmax(MI(zd, ck)), γ) (4)

Where γ is a hyper-parameter controlling the number of

latent dimensions related to each semantic attribute. Equa-

tion 4 selects γ dimensions of z that have the most mutual

information with each attribute ck.

3.2 Latent Traversal Training

The traversal function Tk is trained on similar pairs of la-

tent vectors (z, z∗) which differ only in attribute ck. Such

pairs are good examples of attribute modifications. We

sample pairs of the data space (x, x∗), and compute their

attributes (ck, c
∗
k), where ck = Rk(x), and c∗k = Rk(x

∗).
We use the encoder compute their latent representation

(z, z∗), where z = F(x) and z∗ = F(x∗). We discard

pairs where there is a significant difference in attributes

other than k. A training pair is considered valid if:

∑

j 6=k

‖cj − c∗j‖2 ≤ ǫ, for j ∈ {1, ...,K} (5)

Where ǫ ≥ 0 is a slack parameter. One implementation

is to enumerate all pairs from a set of candidate samples,

and adjust ǫ to be as small as possible while also yielding

enough similar pairs.

After generating the training pairs, we train the traversal

model Tk by minimising the loss:

Lk , λ1LI + λ2L¬I + λ3Lc (6)

where λ1, λ2, and λ3 are hyper-parameters that balance

perceptual loss versus semantic relevance.

4. EXPERIMENTS

We train each of the four dMelodies learning models (β-

VAE, AR-VAE, I-VAE and S2-VAE) for three different

hyperparameter settings and 3 different random seeds, a

total of 36 models. Input is a two-bar melody, with a la-

tent space of D = 32 dimensions. For β-VAE we vary

β ∈ {0.2, 1, 4}, and for the other models we vary the reg-

ularisation strength Γ ∈ {0.1, 1, 10} for β = 0.2. The

default settings use 1016k melodies (75%) for training

the original models, which leaves 338k melodies (25%)

as candidates for training and testing the SeNT traversal

function Tk. Setting ǫ = 0 yields between 42k and 157k

pairs (see Equation 5) and from these we allocate 80% for

training and 20% for testing. Since dMelodies is generated

by combinatorial expansion, attributes with the most states

(Tonic, Rhythm Bar) have the most pairs, while those with

the fewest states (Arp Chord) have the least. Latent codes

z are normalised to the range [−1, 1], and attributes ck to

[0, 1]. Neural traversal is trained for γ = 3 (see Equation

4), λ1 = λ2 = λ3 = 1 (Equation 6).

4.1 Performance Metrics

Performance of the traversal function Tk is evaluated by

measuring accuracy on a set of attribute changes. A set

of testing pairs (z, z∗) is generated using the same method

that generated the training pairs (see Equation 5). These

define a starting state z and an attribute change from ck
to c∗k that leaves other attributes unchanged. Using the

traversal function we predict the new latent code ẑ =
Tk(z, ck, c

∗
k), and compute its attributes ĉi = Ri(G(ẑ))

for all i. This approach ensures that only feasible attribute

changes are tested, and that these have been unseen during

training.

For a targeted change of an attribute, the important mea-

sures are: (1) How far is the edited attribute value ĉk from

the desired target c∗k? and (2) How far are the unedited

attributes ĉu from the original values cu? The target devi-

ation ∆k for target attribute k is defined as:

∆k = |ĉk − c∗k| (7)

where ĉk = Rk(G(ẑ)). The non-target deviation ∇u for

non-target attribute u is defined as:

∇u = |ĉu − cu| (8)

When ∆k is low, the traversal achieves the desired attribute

k value. When ∇u is low, the traversal avoids unintended

changes to other attributes u. When combined, these mea-

sures are similar to the attribute change matrix of [11], ex-

cept that ∆k is with respect to specific target values, rather

than arbitrary interpolation points.

Occasionally errors occur in the generated melodies,

due to the decoder quality and the proximity of samples

to holes in the latent space. Ideally Tk should avoid these

holes, and to measure this we define the Target Density Ra-

tio (or TDR) to be the proportion of the decoded target ẑ

values with valid attributes. We aim for TDR to be sub-

stantially higher than the underlying LDR (defined in 2.1).

5. RESULTS

For brevity we summarise the 36 models by selecting the

best performing hyper-parameters, and aggregate over the

three random seeds. For supervised models these are the

settings with the most regularisation Γ = 10, and for β-

VAE, the median β = 1. Source code is available online

with further results and technical details. 1

Figure 3 shows Mutual Information between semantic

attributes (vertical axis) and latent dimensions (horizon-

tal axis). The supervised S2-VAE (top) shows good dis-

entanglement, with each attribute uniquely related to one

1 https://github.com/stewartgreenhill/sentgen
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Figure 3. Mutual Information between semantic attributes

and dimensions of the latent space for supervised S2-VAE

(top), and unsupervised β-VAE (bottom).

of the first 9 latent dimensions. The strongest relation-

ships are for the attributes with the most states: Tonic and

Rhythm Bar. The unsupervised β-VAE (bottom) shows

some strong but less well separated relationships, and some

very weak relationships: Scale, Arp Chord. Mutual Infor-

mation is important in SeNT-Gen for determining ρk which

aligns semantic attributes to the latent space (Equations 2–

4).

Figure 4 shows SeNT-Gen traversal accuracy for the

S2-VAE. The bottom chart shows mean target deviation

∆k for target attributes k. Smaller deviations are better.

For most attributes the deviation is 2% or less, and the

worst performance is 8% for attribute Tonic. The top chart

shows the mean non-target deviation ∇k, with non-target

attributes on the vertical axis, and target attributes on the

horizontal axis. The Scale attribute is most influenced by

changes to other attributes, particularly Tonic, and Octave

where the influence approaches 60%. This makes sense

since these attributes are both changing the overall pitch of

the melody, and it only requires one transposition “error”

amongst the 12 melody notes to cause the scale to be in-

valid or altered. To a lesser extent the Arp Chord attributes

are also susceptible for the same reason. Changes to Arp

Chord attributes are the most accurate, with no deviation

in the target or non-target attributes other than Scale.

Figure 5 shows SeNT-Gen traversal accuracy for the β-

VAE which is the worst performing model. Rhythm at-

tributes show a good target deviation of 3%, with the pitch

based attribute deviations ranging from 7 to 22%. Non-

target errors are lowest for changes to Rhythm Bar 1 &

2, but are generally much higher than for the S2-VAE.

Here Scale and Arp Chord attributes are most influenced

by changes to other attributes. This is expected since these

attributes are only weakly related to dimensions of the la-

tent space (see Figure 3) so are essentially invisible to the

traversal constraints.

Another way to evaluate traversal accuracy is to look at

correlation R2 between target and achieved attribute val-

ues. Figure 6 shows the target c∗k value (horizontal) versus

the achieved ĉk (vertical) for rhythm_bar1, the attribute
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Figure 4. Accuracy of S2-VAE traversal, showing target de-
viation ∆ (bottom), and non-target deviation ∇ (top). Target at-
tributes are on the horizontal axis, and non-targets on the vertical.
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Figure 5. Accuracy of β-VAE traversal, showing target devi-
ation ∆ (bottom), and non-target deviation ∇ (top). Target at-
tributes are on the horizontal axis, and non-targets on the vertical.
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Figure 6. Correlation R2 between normalised target c∗k (horizontal axis) and result ĉk (vertical axis) for k = rhythm_bar1.

Dot area is proportional to number of samples. Models are (left to right) β-VAE, AR-VAE, I-VAE, and S2-VAE.

VAE To Oc Sc R1 R2 A1 A2 A3 A4

β .09 .78 .19 .96 .97 .11 .45 .56 .32
AR .07 0 -1.3 .95 .97 .98 .99 1 1
I .26 .34 .98 .99 .97 1 1 1 1
S2 .77 .93 .78 .98 .99 1 1 1 1

Table 2. Correlation R2 between ĉk versus c∗k for four

dMelodies VAE models. Attributes are Tonic (To), Octave

(Oc), Scale (Sc), Rhythm Bar (R) and Arp Chord (A).

VAE To Oc Sc R1 R2 A1 A2 A3 A4

β 1 1 .30 .92 .92 .57 .52 .64 .62
AR 1 1 .49 .76 .82 .72 .73 .73 .73
I 1 1 .92 .95 .91 .90 .91 .90 .92
S2 1 .99 .65 .93 .93 .91 .90 .91 .91

Table 3. Target Density Ratio (TDR) for four dMelodies

VAE models. See Table 1 for Latent Density Ratio (LDR).

with the most states. The frequency and location of er-

rors can be visualised by inspecting the off-diagonal ele-

ments. Table 2 shows the R2 values for each of the at-

tributes over four dMelodies VAE models, excluding sam-

ples which yield invalid results. As expected, this measure

shows high correlations where target deviation ∆ is low.

The three supervised models show strong control over the

Rhythm Bar and Arp Chord attributes with weaker control

over Tonic, Octave and Scale.

Table 3 shows the Target Density Ratio (TDR), the

proportion of the decoded targets x̂ = G(ẑ) that have

valid attributes, thus avoiding potential holes in the latent

space. The best performer from this perspective is the I-

VAE which exhibits good TDR for all attributes. All mod-

els score better than the corresponding latent density ratio

(LDR, Table 1). Notably, the AR-VAE shows good control

over Arp Chord with TDR=0.73 despite scoring very low

LDR=0.02 for these attributes.

6. CONCLUSION

This paper presents a novel algorithm to control musical at-

tributes of deep generative models. The SeNT-Gen method

implements a neural traversal function Tk(z, ck, c
∗
k) that

predicts the latent position z∗ required to change attribute

k of z from ck to c∗k. Previous works in this field focus on

disentanglement but do not implement traversal functions

and instead assess controllability via latent space interpo-

lation which does not allow the specification of a particular

target value c∗k for the controlled attribute.

The SeNT-Gen method is demonstrated using the

dMelodies data set and various VAE models. Performance

is strongest for highly regularised models. The best per-

formance was obtained using the S2-VAE model, which

shows strong control over most attributes, and few side-

effects except for Scale. Some attributes that depend on

note pitch (Scale and Arp Chord) are significantly less sta-

ble when adjusting overall pitch via Tonic or Octave, and

also show low LDR scores. The definition of these at-

tributes may be fragile to small changes in the melody

notes. The Target Density Ratio (TDR) measures the ro-

bustness of the method to holes in the latent space, aggre-

gating factors related to the latent space regularisation, the

traversal algorithm, and the fidelity of the decoder. TDR

for I-VAE and S2-VAE is good for most attributes, and AR-

VAE shows very strong improvement over a poor baseline

LDR.

Although each SeNT-Gen traversal function controls

only one attribute, more complex operations involving

multiple attributes could be performed using a sequence

of separate attribute changes. Future improvements to the

algorithm could include better support for categorical vari-

ables, as well as mixtures different variable types. Cate-

gorical variables would normally be one-hot encoded, but

alternative distance metrics might be required, for exam-

ple Jaccard distance where Euclidean distance is currently

used (Equations 1 and 5).

While demonstrated here using VAE models, SeNT-

Gen can also be used in other latent space models such as

Generative Adversarial Networks (GAN). There is an un-

derlying assumption that the relationship between seman-

tic attributes and the latent dimensions will be fairly sparse.

This is normally true for supervised models, but can also

apply in other models too. In any case the hyper-parameter

γ should be chosen to reflect this. An extensive study of

the other hyper-parameters λ1, λ2, and λ3 was outside the

scope of this work, but fine-tuning these values through

meta-optimisation may improve the overall performance.
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