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ABSTRACT

Automatic speech recognition (ASR) has progressed

significantly in recent years due to the emergence of

large-scale datasets and the self-supervised learning (SSL)

paradigm. However, as its counterpart problem in the

singing domain, the development of automatic lyric tran-

scription (ALT) suffers from limited data and degraded in-

telligibility of sung lyrics. To fill in the performance gap

between ALT and ASR, we attempt to exploit the similari-

ties between speech and singing. In this work, we propose

a transfer-learning-based ALT solution that takes advan-

tage of these similarities by adapting wav2vec 2.0, an SSL

ASR model, to the singing domain. We maximize the ef-

fectiveness of transfer learning by exploring the influence

of different transfer starting points. We further enhance the

performance by extending the original CTC model to a hy-

brid CTC/attention model. Our method surpasses previous

approaches by a large margin on various ALT benchmark

datasets. Further experiments show that, with even a tiny

proportion of training data, our method still achieves com-

petitive performance.

1. INTRODUCTION

Automatic lyric transcription (ALT) systems allow for

lyrics to be obtained from large musical datasets without

requiring laborious manual transcription. These lyrics can

then be used for many music information retrieval (MIR)

tasks, including query by singing [1], audio indexing [2],

etc. Besides, because lyric alignment systems are typically

built upon ALT models [3, 4], a strong-performing ALT

model can lay a solid foundation for better audio-to-text

alignment performance. Consequently, ALT is becoming

an increasingly active topic in the recent MIR community.

One option for improving ALT performance is to in-

corporate knowledge obtained from studies involving the

transcription of speech. Indeed, ALT is usually treated

as a separate problem from automatic speech recognition

(ASR), e.g., [3,5±8], eschewing large-scale speech datasets
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and well-developed ASR systems. However, the absence

of large-scale singing datasets has impeded the construc-

tion of high-performing ALT models. While there are dis-

tinctions between sung and spoken language, e.g., sung

language being less intelligible and hence harder to rec-

ognize [5, 9], they share many similarities, such as having

the same vocabularies and being produced by similar phys-

ical mechanisms. Therefore, we believe it is worth inves-

tigating whether we can use knowledge and datasets from

the speech domain to compensate for the inadequacy of

singing datasets and bolster the performance of ALT sys-

tems.

Transfer learning methods have been found to effec-

tively alleviate the requirement for a large amount of train-

ing data for some low-resource tasks [10,11]. For example,

speech recognition for non-native speakers [12], and ma-

chine translation for low-resource languages [13]. In such

scenarios, transfer learning helps mitigate the problem of

insufficient data by adapting data and knowledge from re-

lated high-resource tasks or domains.

In recent years, self-supervised learning (SSL) has be-

come a new paradigm in ASR research. Several SSL meth-

ods can perform excellently with access to only a few hours

or even a few minutes of labeled data [14±16]. Among

them, wav2vec 2.0 [16] has been shown to be a particu-

larly promising model for transfer learning [12]. wav2vec

2.0 is an effective few-shot learner that only requires a

small amount of data from the target domain or problem

to achieve impressive results [17,18]. This property makes

wav2vec 2.0 a promising candidate to help ALT systems

overcome the issue of limited training data by transferring

speech representation knowledge to the singing domain.

The contributions of this paper contain four aspects:

• We propose an ALT solution that takes advantage of

the similarities between spoken and singing voices.

This is achieved by performing transfer learning us-

ing wav2vec 2.0 on singing data after pretraining

and finetuning on speech data.

• We maximize the effectiveness of transfer learning

by exploring the influence of different transfer start-

ing points. We show that both pretraining and fine-

tuning on speech data contribute to the high perfor-

mance of our ALT system.

• We further enhance the system’s performance by
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extending the original connectionist temporal clas-

sification (CTC) model to a hybrid CTC/attention

model for better convergence and more accurate de-

coding.

• Our method surpasses previous ones on various

benchmark ALT datasets, including DSing [5],

DALI [19, 20], Jamendo [21], Hansen [22], and

Mauch [23], by about 25% relative WER reduction

on average. We further show that with less than

one-tenth of labeled singing data, our method can

still achieve state-of-the-art results on the test split

of DSing, demonstrating its effectiveness in low-

resource ALT setups.

2. RELATED WORK

2.1 Automatic Lyric Transcription

Recent progress in lyric transcription has been mainly

driven by three factors. First, the construction and cura-

tion of datasets containing aligned audio and lyrics, in-

cluding DAMP Sing! 300x30x2 [5,24] and DALI [19,20],

lay the foundation for data-driven ALT models. Second,

the design of ALT acoustic models benefits from archi-

tectures of automatic speech recognition (ASR) models

and can be further improved by adopting singing domain

knowledge as inductive bias. Representative work includes

TDNN-F with its variants [3,5±7] and vanilla/convolution-

augmented Transformers [8, 25, 26]. Additionally, [27]

proposed to leverage the complementary information of

additional modalities (video and wearable IMU sensors)

for ALT systems. Third, through data augmentation meth-

ods such as adjusting speech data to make it more ªsong-

likeº [28] or synthesizing singing voice from speech voice

[25,26], more training data can be created for ALT models,

thus alleviating the data sparsity problem.

2.2 Self-supervised speech representation learning

The success of deep learning methods is highly related to

the power of the learned representations. Although su-

pervised learning still dominates the speech representation

learning field, it has several drawbacks. For example, sub-

stantial amounts of labeled data are required to train su-

pervised learning ASR models [15, 16]. Moreover, repre-

sentations obtained through supervised learning tend to be

biased to specific problems, thus are difficult to extend to

other applications [29].

To mitigate the above problems, a series of self-

supervised learning (SSL) frameworks for speech repre-

sentation learning have emerged, e.g., Autoregressive Pre-

dictive Coding (APC) [30], Contrastive Predictive Cod-

ing (CPC) [15], and Masked Predictive Coding (MPC)

[14, 31, 32]. Moreover, wav2vec 2.0 takes advantage of

both CPC and MPC to conduct self-supervised learning

and has become the new paradigm for the ASR task [16].

wav2vec 2.0 has been also widely adopted as the fea-

ture extractor for other speech-related applications, e.g.

speech emotion recognition [33, 34], keyword spotting

[35], speaker verification and language identification [36],

demonstrating that speech representations learned from

wav2vec 2.0 are robust and transferable for downstream

tasks.

3. METHODOLOGY

In this section, we firstly recap the structure of wav2vec 2.0

[16]. Then we elaborate on the three training stages of the

proposed methods, including pretraining on speech data,

finetuning on speech data, and transferring to the singing

domain.

3.1 Structure of wav2vec 2.0

As shown in Fig. 1, wav2vec 2.0 is built with a CNN-based

feature encoder, a Transformer-based context network, and

a quantization module. For raw audio inputs x with a sam-

pling rate of 16 kHz, the feature encoder accepts x and

obtains the latent speech representations z. The feature en-

coder has seven blocks, each of which includes a 1D tem-

poral convolution with 512 channels followed by layer nor-

malization [37] and GELU activation [38]. Consequently,

z ∈ RT×1024 are 2D representations with a frequency of

49 Hz. To exploit the temporal relationship among differ-

ent frames of latent representations, z are further fed into

the context network, which is parameterized by 12 Trans-

former blocks [39]. Each block has a multi-head atten-

tion module with 16 attention heads and a Feed-Forward

Network (FFN) with 4,096 hidden dimensions. Result-

ing context representations c ∈ RT×1024 are the features

extracted from the audio signal and used for downstream

tasks.

In addition to being fed into the context network, z

are also accepted by a quantization module, which learns

quantized speech representations q, thus facilitating the

self-supervised training.

3.2 Stage I: Pretraining on speech data

wav2vec 2.0 is pretrained through an SSL method [16]

on large-scale unlabeled speech data, as displayed in Fig.

1(a). Before latent representations z are fed into the con-

text network, several consecutive frame sequences are ran-

domly masked. The masked frames are replaced by a train-

able vector. wav2vec 2.0 is trained by optimizing the com-

bination of contrastive loss and diversity loss Lm + αLd

(α refers to a balancing hyper-parameter). The contrastive

objective is defined as:

Lm = − log
exp(sim(ct, qt)/κ)∑

q̃∼Q
t

exp(sim(ct, q̃t)/κ)
(1)

where ct is t-th frame of context representations, Qt rep-

resents all possible quantized representations, the temper-

ature value κ is set as 0.1 and sim refers to the cosine sim-

ilarity. The diversity loss Ld is designed to encourage the

usage of all entries in codebooks. We refer readers to [16]

for more details.

Proceedings of the 23rd ISMIR Conference, Bengaluru, India, December 4-8, 2022

892



Figure 1. An overview of our training framework. (a) Stage I: Pretraining on speech data. (b) Stage II: Finetuning on

speech data. (c) Stage III: Transferring on singing data.

3.3 Stage II: Finetuning on speech data

The process of finetuning requires labeled speech data. As

shown in Fig. 1(b), the quantization module in wav2vec

2.0 is disabled since it is only used in Stage I, and a lin-

ear layer (CTC linear) is added on top of the Transformer.

The whole model is trained by optimizing the connection-

ist temporal classification (CTC) loss LCTC [40]. Suppose

the ground-truth transcription is w∗, which is a sequence

of character tokens. The CTC loss is defined as:

LCTC = − log
∑

π∈B−1(w∗)

T∏

t=1

p(πt|f t) (2)

where f t refers to ct in this stage, T is the number of

frames, B is a function to map an alignment sequence π1:T

to w∗
1:N (where N represents the number of character to-

kens) by removing duplicate characters and blanks while

its inverse function B−1(w∗) refers to all the CTC paths

mapped from w∗. For speech data, there are 31 tokens for

character targets, including 26 letters, the quotation mark,

a word boundary token, < bos >, < eos >, and CTC

blank token. The probability p(πt|f t) is computed by the

CTC linear layer followed by a softmax operation. Besides

the supervised CTC loss, pseudo-labeling is also adopted

during finetuning. Please refer to [16, 41] for more details.

3.4 Stage III: Transferring on singing data

3.4.1 From CTC to CTC/attention

To transfer the trained wav2vec 2.0 from the speech do-

main to the singing domain, we retain the weights of the

feature encoder and the context network after Stages I and

II. Furthermore, inspired by [42], we extend the original

CTC system into a hybrid CTC/attention system through

the addition of an ALT head on top of wav2vec 2.0 instead

of a single CTC linear layer (Fig. 1(c)).

The context representations c are first fed into a linear

layer followed by a leaky ReLU activation layer to obtain

the features f . Then f are sent to two network branches.

One branch is a CTC linear layer, which aims to compute

p(πt|f t) as explained in sec. 3.2.2. Another branch is an

attention-based GRU decoder [43] followed by a sequence-

to-sequence (S2S) linear layer. The GRU decoder has a

single layer with a hidden dimension of 1,024 and uti-

lizes location-aware attention [43] with attention dimen-

sion 256. The decoder and S2S linear layer autoregres-

sively compute the probability p(wn|w<n,f1:T ), n =
1, 2, ..., N .

3.4.2 Training and Evaluation

During Stage III, wav2vec 2.0 and the ALT head are

trained through the combination of CTC loss [40] and S2S

loss [44]:

Lw = λaLCTC + (1− λa)LS2S (3)

LS2S = − log
N∏

n=1

p(w∗
n|w

∗
<n,f1:T ) (4)

where λa is a hyper-parameter to balance the CTC loss

term and S2S loss term. To overcome catastrophic for-

getting, we adopt a smaller learning rate for wav2vec 2.0

compared to the ALT head.

To evaluate the performance of the trained model, the

most likely lyrics are predicted using beam search:

w′ = argmax
w

λb log
∑

π∈B−1(w)

T∏

t=1

p(πt|f t)

+ (1− λb) log
S∏

s=1

p(ws|w<s,f1:T )

+ λc log pLM (w) (5)

where λb and λc are two hyper-parameters in the decoding

process. The language model is implemented by a 3-layer

LSTM. The characters are firstly projected to embeddings

and then fed into the LSTM with a hidden dimension of

2,048 to obtain RNN features. Finally, the RNN features

are accepted by a 3-layer MLP with a hidden dimension of

1,024 to output the probability pLM (w).
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Split Dataset # Utt. Total Dur.

DSing1 8,794 15.1 h

Train
DSing3 25,526 44.7 h

DSing30 81,092 149.1 h

DALItrain 268,392 183.8 h

Dev
DSingdev 482 41 min

DALIdev 1,313 55 min

DSingtest 480 48 min

DALItest 12,471 9 h

Test Jamendo 921 49 min

Hansen 634 34 min

Mauch 878 54 min

Table 1. Statistics of segmented utterance-level datasets.

4. EXPERIMENTS

4.1 Datasets and preprocessing

We use various accessible mainstream lyric transcription

datasets for our experiments, including DALI [19, 20],

Hansen [22], Mauch [23], Jamendo [21], and a curated

version of DAMP Sing! 300x30x2 [24] called DSing [5].

The train/development/test splits in our experiments are

defined as follows. For the DSing dataset, we use the

same split configuration as in [5]. Specifically, there are

three different sizes of training sets (DSing1, DSing3, DS-

ing30), as well as a development set DSingdev and a test set

DSingtest. As for the DALI dataset, we divide all publicly

available audio in DALI v2 [20] into training and develop-

ment subsets (DALItrain and DALIdev respectively). 1 We

use DALItest [7], a subset of DALI v1 [19], as a test set for

experiments involving DALI. The full Hansen, Mauch, and

Jamendo datasets are used as additional out-of-domain test

sets. In the training and development splits of the DALI

dataset, songs that overlapped with any of our test sets are

removed for more objective testing.

The speech data used to pretrain and finetune the

wav2vec 2.0 is initially monophonic. Therefore, we ex-

pect wav2vec 2.0 to extract better representation features

for singing data if monophonic audios are given as the in-

puts. Thus, we extract vocal parts from all of the poly-

phonic recordings in DALI, Mauch, and Jamendo datasets

using Demucs v3 mdx_extra [45], which is the state-of-the-

art source separation model that achieved the first rank at

the 2021 Sony Music DemiXing Challenge (MDX). This

ensures that we are consistent with the input requirements

of wav2vec 2.0 and minimize the interference of musical

accompaniment. We adopt utterance-level input for both

training and testing. To facilitate the experiments, we per-

form utterance-level segmentation on all audios according

to their annotations. Utterances with obvious faulty an-

notations are removed (e.g., utterances labeled as several

words but have shorter than 0.1 s duration). The statistics

1 At the time of this research, some audios are not retrievable through
their YouTube links in the public-available metadata. Although audios
containing the same titles and artist names can be found online, we cannot
guarantee they perfectly match the annotations for the original audio ver-
sions in DALI. Discarding invalid audio is only performed for the training
and the development sets.

of all datasets after utterance-level segmentation are listed

in Table 1. The ªtotal durationº column refers to the sum

of durations of all utterances in the datasets, excluding the

instrumental-only parts between utterances, hence result-

ing in shorter durations than [7]. We notice that the average

utterance duration of DSing is longer than DALI (6.52 s vs.

2.47 s). Finally, lyric texts in training sets are normalized

by converting all letters to upper case, converting digits to

words, discarding out-of-vocabulary characters, discarding

meaningless lines (e.g., ª**guitar solo**º), and removing

redundant space.

4.2 Experiment setup

Our experiments are conducted through SpeechBrain

toolkit [46] 2 . Before transferring on singing data, the

wav2vec 2.0 has been pretrained on LibriVox (LV-60K)

and finetuned on LibriSpeech (LS-960) 3 [16]. Then we

randomly initialize the ALT head. During Stage III, we

downsample all audios to 16 kHz and convert them to

mono-channel by averaging the two channels of stereo au-

dio signals. Then the singing data is augmented through

SpecAugment [47]. wav2vec 2.0 and ALT head are trained

using Adam optimizer [48]. The initial learning rates of

ALT head and wav2vec 2.0 are 3× 10−4 and 1× 10−5 re-

spectively. Learning rates are scheduled using the Newbob

technique, with annealing factors of 0.8 and 0.9 respec-

tively. The batch size is set as 4, and hyper-parameter λa is

set as 0.2 during the experiments. We conduct our experi-

ments on 4 RTX A5000 GPUs. Utterances whose duration

is longer than 28 seconds are filtered out during training

to prevent the out-of-memory issue. This filtering is not

performed during the evaluation for a fair comparison with

other existing methods.

We firstly utilize DSing30 to train the whole model for

10 epochs. We evaluate the performance of our model on

DSingdev after each epoch. Finally, the best model is se-

lected to be evaluated on the test split DSingtest. Word er-

ror rate (WER) is adopted as the evaluation metric. During

the evaluation, WERs are averaged over all utterances in

a test set. The RNNLM is trained for 20 epochs using an

Adam optimizer [48] on texts of DSing30 split and vali-

dated on the DSingdev split after each epoch. The learning

rate is 1 × 10−3 and the batch size is 20. During the de-

coding, the beam size is 512, and the hyper-parameters λb

and λc are 0.4 and 0.5, respectively. The trained model is

evaluated on the DSingtest set.

For other test splits, we adopt both DSingtrain and

DALItrain to train the whole model. Since these two

datasets are collected from different domains, we adopt a

consecutive training strategy instead of training together

in order to reduce the difficulty of training. Specifically,

we continue training the whole model on DALItrain split

for 4 epochs. The weights of learnable parameters are ini-

tialized using the model trained on DSing30. After train-

ing, we evaluate the model on DALItest as well as the

Hansen, Mauch, and Jamendo datasets. The configuration

2 Our code is released at https://github.com/guxm2021/ALT_SpeechBrain
3 https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self
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Method DSingdev DSingtest DALItest Jamendo Hansen Mauch

TDNN-F [5] 23.33 19.60 67.12 76.37 77.59 76.98

CTDNN-SA [6] 17.70 14.96 76.72 66.96 78.53 78.50

Genre-informed AM [3] - 56.90 - 50.64 39.00 40.43

MSTRE-Net [7] - 15.38 42.11 34.94 36.78 37.33

DE2 - segmented [4] - - - 44.52 49.92 -

Ours 12.34 12.99 30.85 33.13 18.71 28.48

Table 2. WERs (%) of various ALT systems on different singing datasets. ª-º refers to ªnon-applicableº. We use bold

face to highlight the best results, and underline to mark the second-best results. Note that the results of [5±7] on DALItest,

Jamendo, Hansen, and Mauch datasets are obtained without utterance segmentation.

of RNNLM is the same as above, except that we utilize

texts of both DSing30 and DALItrain to train the model.

To decode the lyrics, we set the beam size as 512 and the

hyper-parameters λb and λc as 0.3 and 0.2, respectively.

5. RESULTS

In this section, we firstly compare our method with state-

of-the-art ALT systems on multiple benchmark datasets.

Then we conduct extensive ablation studies to show the

benefits of our design choices on the DSing dataset, which

has more accurate manual annotations on its development

and test splits. Finally, we show that our method is still

effective with a limited amount of singing data.

5.1 Comparison with the state-of-the-art

We compare the performance of the proposed method with

previous approaches, as shown in Table 2. Our method

outperforms all previously published results on all the

evaluation datasets. Our method achieves 5.36%, 1.97%,

11.26%, 1.81%, 18.07%, 8.85% absolute WER reduction

on the DSingdev, DSingtest, DALItest, Jamendo, Hansen,

and Mauch datasets, compared with the best results among

all the previous state-of-the-art approaches respectively.

Especially, on DALItest, Hansen, and Mauch datasets, our

method significantly exceeds MSTRE-Net [7] by an aver-

age of 12.73% absolute WER.

5.2 Effects of pretraining & finetuning on speech data

As shown in Fig. 1, wav2vec 2.0 is pretrained and fine-

tuned on speech data before transferring to singing data.

The feature representation knowledge learned from speech

data is the key to the success of our method. To validate

this statement, we conduct ablation studies by comparing

the proposed method to two alternative configurations. The

first alternative configuration is that we randomly initialize

the weights of wav2vec 2.0 and ALT head and then train

the whole model on the DSing dataset as per the experi-

ment setup in section 4.2. Note that the first alternative has

no transfer learning from the speech domain (without both

Stages I and II). The second alternative configuration is

that we only perform pretraining on speech data 4 without

4 https://huggingface.co/facebook/wav2vec2-large-lv60
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Figure 2. Comparison of different training configurations.

ªw/o PT & FTº refers to without Stages I and II. ªw/o FTº

refers to without Stage II. (Left) Training loss of all con-

figurations for the first 10 epochs; (Right) validation loss

of all configurations for the first 10 epochs.

Method DSingdev DSingtest

Ours 12.34 12.99

- Finetuning 12.64 (+ 0.30) 14.58 (+ 2.59)

- Pretraining 35.61 (+24.27) 39.13 (+26.14)

Table 3. WERs (%) of different training configurations on

DSing dataset.

Stage II before transferring the wav2vec 2.0 to the singing

domain.

We evaluate the above training configurations on the

DSing dataset. First, we show the curves of training loss

and validation loss (loss of the development set) during the

training for the first 10 epochs in Fig. 2. The losses are

computed through Eq. 3. We observe that without Stages I

and II, the training loss and validation loss are much higher

than in the other two training configurations. In addition,

its convergence is much slower. When we enable Stage

I but disable Stage II, the behavior of the training loss is

similar to the proposed configuration, except that the train-

ing loss is higher at the beginning. However, the validation

loss in this setup is higher than that of the proposed con-

figuration.

We continue training both alternatives until conver-

gence and display the resultant performances in Table 3.

We note that without Stage II, the performance drops by

0.30% higher WER on DSingdev and 2.59% higher WER

on DSingtest. Furthermore, without Stages I and II, the

performance degrades severely as WERs on DSingdev and
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Figure 3. Transcription performance comparison when using different training set sizes, testing on the DSingtest dataset.

Method DSingdev DSingtest

CTC 19.86 20.99

+ S2S 15.63 (-4.23) 16.95 (-4.04)

+ LM 12.34 (-7.52) 12.99 (-8.00)

Table 4. WERs (%) of CTC model and hybrid

CTC/attention model on DSing dataset.

DSingtest increase by 24.27% and 26.14% respectively,

compared to the proposed configuration. The results are

consistent with our observations in Fig. 2. Therefore, we

conclude that pretraining on speech data plays a significant

role in transferring wav2vec 2.0 to the singing domain. Al-

though finetuning on speech data is less crucial than pre-

training, it also contributes to empirical performance gains.

5.3 Effects of extending CTC to CTC/attention model

To validate the effectiveness of changing from CTC to

CTC/attention (as in Fig. 1), we compare the performance

of our hybrid CTC/attention model with its CTC version,

as shown in Table 4. We set λb = 1 in Eq. 5 to disable the

branch of the GRU decoder and the S2S linear during the

decoding. When λc = 0, the RNNLM is disabled.

We observe that the hybrid CTC/attention model

achieves better performance by 4.23% and 4.04% WER on

DSingdev and DSingtest respectively than its CTC counter-

part, which demonstrates the superiority of our ALT head

design. Furthermore, we evaluate the benefits brought by

the language model and find that the final model leads

to 3.29% and 3.96% further absolute WER improvements

compared to the hybrid CTC/attention model.

5.4 Effectiveness of transfer learning in low-resource

scenarios

To explore the effectiveness of our transfer learning

method in reducing the amount of required training data,

we conduct an ablation study with different training set

sizes. We first train our model on DSing30, DSing3,

and DSing1, respectively, to observe the performance dif-

ferences. Then, we further reduce the training set size

to a minimum of 10 minutes to create more demanding

low-resource setups. We report the WERs achieved on

DSingtest as the performance measure. When training on

10-minute and 30-minute datasets, the GRU decoder con-

verges too slowly; hence, WERs are computed according

to the CTC outputs.

As shown in Fig. 3, our method achieves 14.84% WER

with only 10 hours (about 6.7% size of DSing30) of labeled

singing data, which surpasses the state-of-the-art results of

14.96% WER achieved by CTDNN-SA [6] trained on DS-

ing30. It also has better performance with only 2 hours of

training data (about 1.3% size of DSing30) than TDNN-

F [5] trained on DSing30 (19.18% vs. 19.60% WER).

Further, with only 10 minutes of data (1.1% size of DS-

ing1), our method achieves better results than TDNN-F

trained on DSing1 (36.97% vs. 37.63% WER). These re-

sults demonstrate the feasibility of achieving competitive

results with much less training data by adopting the repre-

sentation knowledge from the speech domain.

6. CONCLUSION

We have introduced a transfer learning approach for the au-

tomatic lyric transcription (ALT) task by utilizing the rep-

resentation knowledge learned by self-supervised learning

models on speech data. By performing parameter transfer

on wav2vec 2.0 towards the singing domain and extending

the original CTC model to a hybrid CTC/attention version,

we achieved significant improvement compared to previ-

ous state-of-the-art methods on various singing datasets.

We demonstrated that both pretraining and finetuning on

speech data contribute to the final ALT performance and

that pretraining brings more performance gains than fine-

tuning on speech data. Additionally, our method still

showed competitive performance using only a tiny pro-

portion of training data, indicating its potential in low-

resource scenarios.
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