

Privacy and Economics

The Swiss Blockchain Winter School, Interlaken, 2019

Rainer Böhme

This is **not** Interlaken. (Picture taken last week.)

Privacy in Blockchain-based Systems

Fundamental conflict between:

- public blockchain data, required for distributed verification,
- and
 - users' right of personality, because the information contained in (financial) transactions reveals personal preferences and circumstances of life.

Hope of mitigation:

• Pseudonyms are not directly linkable to natural persons.

Nevertheless, EU lawyers consider blockchain data as **personal data** because:

- the link to natural persons can often be established with additional information (e.g. known by intermediaries, such as exchanges or network relays);
- **2.** the persistence of blockchain data increases the probability that this will happen some time in the future.

Source: xkcd.com

Outline

1. How to Plug Privacy into Economic Equations

- 2. Observing a Market for Anonymity
- 3. How to Price Anonymity

Acknowledgement: Part of the material in this talk is joint work with Malte Möser and Daniel G. Arce.

Challenge

Worst case: the system operator is the attacker.

fiction

reality

Bad, but almost unavoidable case: the system operator makes mistakes.

ightarrow Dead end: Quantifying the disutility of personal data abuse

Schools of Thought

Classical economic theory

Efficient markets, perfect information, ...

Why does advertising exist?

New institutional economics

Information matters, asymmetry causes misallocation, ...

Adverse selection: privacy protects bad risks

Asset pricing

Present value of expected future benefit of (re)identification

Berthold & Böhme 2009

Behavioral economics

Bounded rationality, human-subject experiments

Find price tags for personal data

ightarrow No general theory of information distribution between economic agents

niversität Privacy and Economics, 12 February 2019

Economics Value of Personal Data

Price discrimination by HTTP User-Agent string:

Source: The Wall Street Journal 2012

Privacy and Price Discrimination

Demand function $D: \pi \mapsto x$

Case 2: Seller knows each buyers' willingness to pay

Assumptions: monopolistic seller, no arbitrage, zero marginal cost

Odlyzko 2003

Privacy and Price Discrimination

Demand function $D: \pi \mapsto x$

Case 3: Seller knows one bit about each buyers' WTP

Odlyzko 2003

Assumptions: monopolistic seller, no arbitrage, zero marginal cost

Technical Approach

personal data

"Anonymity is the state of not being identifiable within a set of subjects, the anonymity set."

"anonymity loves company"

Dingledine & Mathewson 2006

Pfitzmann & Köhntopp 2001

Opportunity

The price of anonymity

Bitcoin as a social science lab

Icons based on Flask by Andrew Was from the Noun Project

Tag and Eye Mask by Creative Stall from the Noun Project

Outline

1. How to Plug Privacy into Economic Equations

2. Observing a Market for Anonymity

3. How to Price Anonymity

Acknowledgement: Part of the material in this talk is joint work with Malte Möser and Daniel G. Arce.

The Mixing Principle

Establish **unlinkability** of messages in communication systems.

The size of the **anonymity set** |S| is a measure of privacy.

Chaum. D. Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms. CACM, 24 (2), 1981, pp. 84-88.

innsbruck

Application of the Mixing Principle to Bitcoin

Establish unlinkability of flows in **transaction systems**.

Requires substantial **trust** in mix operator.

"CoinJoin" Transactions

Bitcoin's **transaction logic** allows multiple inputs and outputs.

More secure alternative: all participants must sign the transaction.

Maxwell 2013

innsbruck

Matchmaking for CoinJoins

Join Market Orders Size Distribution Depth Export orders GitHub Getting Started

JoinMarket Orderbook

364 orders found by 91 counterparties

Туре	Counterparty	Order ID	Fee	Miner Fee Contribution / BTC	Minimum Size / BTC	Maximum Size / BTC
Absolute Fee	J5BNWo4MhLbtAej1		0.00000400	0.0000002	0.00002730	0.00863625
Absolute Fee	J58HmZ2eFvZqELwx		0.00000400	0.0000002	0.00406800	0.00702015
Absolute Fee	J5E9nx6U7k976mCB		0.00000400	0.0000002	0.00644100	0.00863625
Absolute Fee	J5CUynfJ9hYrVWAc		0.00000500	0.00000000	0.00100000	13.58535521
Absolute Fee	J58HmZ2eFvZqELwx	22	0.00000539	0.0000060	0.00406800	0.00702015
Absolute Fee	J58HmZ2eFvZqELwx		0.00000800	0.00000000	0.00406800	0.00702015
Absolute Fee	J5E9nx6U7k976mCB	20	0.00000800	0.00000000	0.00644100	0.24100000
Absolute Fee	J59Z6KFWtWk4wcjM		0.00000800	0.00000000	0.00400000	0.24100000
Absolute Fee	J5Bmy7oTZ3irpdVV		0.00000889	0.0000065	0.08886283	1.82194683
Absolute Fee	J59pheQXDj7MZzFp		0.00000950	0.00000150	0.00100000	0.71455724
Absolute Fee	J58HmZ2eFvZqELwx		0.00000950	0.00000150	0.00406800	0.00702015
Absolute Fee	J5E9nx6U7k976mCB	0	0.00000950	0.00000150	0.00644100	0.71455724
Absolute Fee	J59Hm22eEvZqELwr	21	0.010009974	0.0000000	0.00405000	0.00702045

http://joinmarket.io, last access: February 25th, 2018

Supply and Demand

Identifying JoinMarket Transactions

Size of the Anonymity Set

S is composed of exactly one "taker" and $m \ge 1$ "makers".

Histogram of 16 K JoinMarket transactions

Empirical Prices of Anonymity

Order book analysis: fee per maker

For comparison: mix operators charge 1–3%.

Möser et al. 2013

innsbruck

Outline

- 1. How to Plug Privacy into Economic Equations
- 2. Observing a Market for Anonymity
- 3. How to Price Anonymity

Acknowledgement: Part of the material in this talk is joint work with Malte Möser and Daniel G. Arce.

Anonymity Market

"One cannot be anonymous alone."

Cooperative game theory to model the co-creation of anonymity.

Model

- 1 "taker" and $m \ge$ 1 "makers"
- **Only the taker pays** for anonymity: fee *f* to each maker.
- The taker **and all makers benefit** from anonymity set, |S| = m + 1.
- Taker has an outside option, e.g., a mix charging fee $F \gg f$.
- Solve for *f* endogenously.

ightarrow Shapley value as solution concept.

Utility of Anonymity

Assumption: the attacker guesses within the anonymity set (i. e., GPA)

Case 1: coalition with makers	Case 2: outside option		
Taker expects: $D \cdot \frac{m}{m+1}$	Taker expects: $\delta \cdot D$		
Maker expects: $d \cdot \frac{m}{m+1}$	Maker receives: 0		
$D \gg d$	$\delta \in (\mathtt{0},\mathtt{1})$		

Solution for m = 2 Makers (sketch)

Characteristic function V

$$V(\lbrace t \rbrace) = \lbrace x_t \mid x_t \le \delta D - F \rbrace$$
(1)

$$V(\{i\}) = \{x_i \mid x_i \le 0 : i = 1, 2\}$$
(2)

$$V(\{t,1\}) = \{(x_t, x_1) \mid x_t \le \frac{D}{2} - f, x_1 \le \frac{d}{2} + f\}$$
(3)

$$V(\{t,2\}) = \{(x_t, x_2) \mid x_t \le \frac{D}{2} - f, x_2 \le \frac{d}{2} + f\}$$
(4)

$$V(\{1,2\}) = \{(x_1,x_2) \mid x_1 \le 0, x_2 \le 0\}$$
(5)

$$V(\{t,1,2\}) = \{(x_t,x_1,x_2) \mid x_t \le 2/3D - 2f, x_{1,2} \le 2/3d + f\}$$
(6)

D, d: value of anonymity for taker/maker; f: fee per maker; δ , F: quality/fee of outside option

Solution for m = 2 Makers (sketch, cont'd)

Worth function $\boldsymbol{\omega}$

$$\omega(\{t\}) = \delta D - F \tag{7}$$

$$\omega(\{1\}) = \omega(\{2\}) = 0$$
(8)

$$\omega(\{t,1\}) = \frac{D}{2} + \frac{d}{2}$$
(9)

$$\omega(\{t,2\}) = \frac{D}{2} + \frac{d}{2}$$
(10)

$$\omega(\{1,2\}) = 0 \tag{11}$$

$$\omega(\{t, 1, 2\}) = \frac{2}{3D} + \frac{4}{3d}$$
(12)

D, d: value of anonymity for taker/maker; δ , F: quality/fee of outside option

Shapley Value and Associated Fee f

Shapley value φ

$$\varphi_t = \frac{14}{36}D + \frac{22}{36}d + \frac{1}{3}(\delta D - F)$$
(13)

$$\varphi_1 = \varphi_2 = \frac{5}{36}D + \frac{13}{36}d - \frac{1}{6}(\delta D - F)$$
(14)

"The Price of Anonymity"

$$f = \frac{5}{36}D - \frac{11}{36}d - \frac{1}{6}(\delta D - F)$$
(15)

\rightarrow **General solution** for m > 2 is efficiently computable.

D, d: value of anonymity for taker/maker; f: fee per maker; δ , F: quality/fee of outside option

innsbruck

Visualization

Normalization: D = 1

Upshot

We have introduced an NTU cooperative game-theoretic model of a CoinJoin anonymity market that is consistent with:

- 1. The prevalent measure of anonymity: the anonymity set.
- 2. The **peculiar nature** of anonymity markets:

One demand-side participant (the 'taker') pays for anonymity but all suppliers (the 'makers') **also** receive the good in demand (anonymity).

- 1. Blockchain data is (almost always) personal data.
- 2. It is possible (but not trivial) to plug privacy into a utility function.
- 3. Forgotten objective in protocol design: incentivize privacy-enhancing behavior.
- 4. Blockchain systems are crystal balls for studying the economics of privacy.

Privacy and Economics

The Swiss Blockchain Winter School, Interlaken, 2019

Thank you for your attention.

So Ba Till

Talk, research visit, post-doc? rainer.boehme@uibk.ac.at

Further Reading

- 1. Möser, M. and Böhme, R. The Price of Anonymity: Empirical Evidence from a Market for Bitcoin Anonymization. *Journal of Cybersecurity*, 3, 2 (2017), 127–135.
- 2. Arce, D. G. and Böhme, R. Pricing Anonymity. In S. Meiklejohn and K. Sako, eds., *Financial Cryptography and Data Security*. 2018.
- **3.** Abramova, S., Schöttle, P., and Böhme, R. Mixing Coins of Different Quality: A Game-Theoretic Approach. In *Financial Cryptography (4th Workshop on Bitcoin and Blockchain Research)*. Malta, 2017.
- **4.** Acquisti, A., Taylor, C., and Wagman, L. The Economics of Privacy. *Journal of Economics Literature*, 54, 6 (2016), 442–292.
- Böhme, R., Christin, N., Edelman, B., and Moore, T. Bitcoin: Economics, Technology, and Governance. *Journal of Economic Perspectives*, 29, 2 (2015), 213–238.

The Shapley Value Solution for *m* Makers

After overcoming some technical hurdles, e.g., specifying $\omega : V(\hat{S}) \to \mathbb{R}$, the **fees** of the Shapley value solution for *m* makers are:

$$f = \frac{1}{(m+1)}D - \frac{D}{m(m+1)}\sum_{n=1}^{m}\frac{n}{n+1} - \frac{d}{m(m+1)}\sum_{n=1}^{m}\frac{n^{2}}{n+1} + \frac{F - \delta D}{m(m+1)}$$

(A formula replacing the finite sums with harmonic numbers is given in the paper.)

- Increasing in D.
- Increasing in F.
- Decreasing in d.
- Theoretical lower bound for identifying dishonest makers.
- Experimentally/behaviorally testable by endowing subjects with *D*, *d*, δ and *F* values.