
The Stellar Consensus Protocol
Byzantine agreement from the Internet hypothesis

David Mazières, Giuliano Losa, Eli Gafni

Stellar Development Foundation
UCLA

Tuesday February 19, 2019

The Internet hypothesis

How did we end up with The Internet?
- Structure results from individual peering & transit relationships
- Transitively, everyone wants to talk to everyone
- An ISP can’t sell access to alternate IP network
Could systems similarly agree on The global consensus state?
- Hypothesis: other relationships are like Internet peering
- I.e., no one can a�ord to disagree with the rest of the world

2 / 37

Transitive global agreement

commit
commit

commit

commit

commit
commit

commitcommit

commit

commit

commit

commit

commit

commit

commit

commit
commit

commit

commit

commit

commit

Imagine you agree on transaction only when your friends do
- They agree only when their friends do, and so forth
Guarantees you agree with everyone you depend on
- Through transitivity anyone you’d ever care about will agree
Approach currently used bymulti-asset Stellar blockchain
- Atomically trade through intermediary assets without trusting issuer

3 / 37

Transitive global agreement

commit
commit

commit

commit

commit
commit

commitcommit

commit

commit

commit

commit

commit

commit

commit

commit
commit

commit

commit

commit

commit

Imagine you agree on transaction only when your friends do
- They agree only when their friends do, and so forth
Guarantees you agree with everyone you depend on
- Through transitivity anyone you’d ever care about will agree
Approach currently used bymulti-asset Stellar blockchain
- Atomically trade through intermediary assets without trusting issuer

3 / 37

What about mining?
Definition (Mining)
Obtaining cryptocurrency tokens as a reward for making digital
transactions harder to reverse.

Most blockchains get consensus throughmining
- Makes token creation and consensus a package deal
- Weaker guarantees than asynchronous Byzantine agreement

What if you want onlywant consensus?
- Trade digitized real-world assets backed by known counterparties
- Don’t want or need to create new cryptocurrency
- Don’t want to pay for mining (directly or indirectly)

An approach: piggyback on an existing mined blockchain
- E.g., Colored coins, ERC-20 tokens, . . .

4 / 37

https://www.nytimes.com/2016/07/03/business/dealbook/bitcoin-china.html

Blockchain forks

In July 2016, Ethereum executed an irregular state change
- 85% of miners opted to bail out DAO contract (lost $50M to bug)
- Remaining miners kept original rules, became Ethereum Classic
In August 2017, Bitcoin split in two (Bitcoin/Bitcoin cash)
In November 2018, Bitcoin cash split again (ABC/SV)
What would this mean for token issuers?

5 / 37

https://blog.ethereum.org/2016/07/20/hard-fork-completed/

Blockchain forks

In July 2016, Ethereum executed an irregular state change
- 85% of miners opted to bail out DAO contract (lost $50M to bug)
- Remaining miners kept original rules, became Ethereum Classic
In August 2017, Bitcoin split in two (Bitcoin/Bitcoin cash)
In November 2018, Bitcoin cash split again (ABC/SV)
What would this mean for token issuers?

5 / 37

https://blog.ethereum.org/2016/07/20/hard-fork-completed/

Blockchain forks

USD USD
In July 2016, Ethereum executed an irregular state change
- 85% of miners opted to bail out DAO contract (lost $50M to bug)
- Remaining miners kept original rules, became Ethereum Classic
In August 2017, Bitcoin split in two (Bitcoin/Bitcoin cash)
In November 2018, Bitcoin cash split again (ABC/SV)
What would this mean for token issuers?

5 / 37

https://blog.ethereum.org/2016/07/20/hard-fork-completed/

Mining is scary for digital asset issuersMining is scary for digital asset issuers

Mining is anonymous
- Anyone with su�icient resources can extend or fork history
- Can’t even name branch if no policy di�erence (just dueling miners)
Yet mining rewards insu�icient to secure fiat-currency tokens
- And crypto futures let badminers hedge positions before attack
Non-financial (geo-political) incentives to disrupt blockchain
Global Byzantine agreement would allow Fed, ECB to issue
trillions in assets and enjoy liquid markets between assets

6 / 37

http://cfe.cboe.com/cfe-products/xbt-cboe-bitcoin-futures/contract-specifications

Outline

Background: centrally-mandated quorums

Quorums from the Internet hypothesis

Stellar Consensus Protocol

7 / 37

Fail-stop systems
Quorum A Quorum B

v0
vote: 9

. . .
vN−T
vote: 9

. . .
vT−1
vote: 9

. . .
vN−1
vote: 7FAILFAIL

Suppose you have N nodes, some of whichmight crash
- Each node can vote for at most one value

Pick a quorum size T > N/2
Only one value can receive unanimous quorum vote
- T > N/2 =⇒ Any two quorums intersect
- If Quorum A votes for a, Quorum B either votes for a or isn’t unanimous

Voting is a key tool for ensuring agreement in consensus

8 / 37

Byzantine failure
Quorum A Quorum B

v0 . . . vN−T . . . vT−1 . . . vN−1

2T − N N− T

What if faulty nodes can act arbitrarily (“Byzantine failure”)
- Now faulty nodes can issue conflicting votes

For safety, want at most one (valid) value to get a quorum
- Requires: # failures≤ fS = 2T − N− 1
- Hence, any two quorums share a non-faulty node, can’t lose history

For liveness, want at least some hope of a unanimous quorum
- Requires: # failures≤ fL = N− T (1 non-faulty quorum)

Typically N = 3f + 1 and T = 2f + 1 to tolerate fS = fL = f failures
9 / 37

Byzantine failure
Quorum A Quorum B

v0 . . . vN−T . . . vT−1 . . . vN−1

2T − N N− T

EVILEVIL EVILEVIL

What if faulty nodes can act arbitrarily (“Byzantine failure”)
- Now faulty nodes can issue conflicting votes

For safety, want at most one (valid) value to get a quorum
- Requires: # failures≤ fS = 2T − N− 1
- Hence, any two quorums share a non-faulty node, can’t lose history

For liveness, want at least some hope of a unanimous quorum
- Requires: # failures≤ fL = N− T (1 non-faulty quorum)

Typically N = 3f + 1 and T = 2f + 1 to tolerate fS = fL = f failures
9 / 37

Byzantine failure
Quorum A Quorum B

v0 . . . vN−T . . . vT−1 . . . vN−1

2T − N N− T

EVILEVIL EVILEVIL

What if faulty nodes can act arbitrarily (“Byzantine failure”)
- Now faulty nodes can issue conflicting votes

For safety, want at most one (valid) value to get a quorum
- Requires: # failures≤ fS = 2T − N− 1
- Hence, any two quorums share a non-faulty node, can’t lose history

For liveness, want at least some hope of a unanimous quorum
- Requires: # failures≤ fL = N− T (1 non-faulty quorum)

Typically N = 3f + 1 and T = 2f + 1 to tolerate fS = fL = f failures
9 / 37

Stuck votes

Quorum A Quorum B

v0
vote: a

. . .
vN−T
vote: a

. . .
vT−1
vote: a

. . .
vN−1
vote: aFAILFAIL

Say Quorum A unanimously votes for statement a
- Any contradictory statement (a) cannot receive a quorum
- So we say the system is a-valent

Two reasons voting alone doesn’t solve consensus
- Node failure could mean not everyone learns of unanimous quorum
- Split vote could make unanimous quorum impossible

10 / 37

Stuck votes

Quorum A Quorum B

v0
vote: a

. . .
vN−T
vote: a

. . .
vT−1
vote: a

. . .
vN−1
vote: aFAILFAIL

Say Quorum A unanimously votes for statement a
- Any contradictory statement (a) cannot receive a quorum
- So we say the system is a-valent

Two reasons voting alone doesn’t solve consensus
- Node failure could mean not everyone learns of unanimous quorum
- Split vote could make unanimous quorum impossible

10 / 37

Stuck votes

Quorum A Quorum B

v0
vote: a

. . .
vN−T
vote: b

. . .
vT−1
vote: c

. . .
vN−1
vote: aFAILFAIL

Say Quorum A unanimously votes for statement a
- Any contradictory statement (a) cannot receive a quorum
- So we say the system is a-valent

Two reasons voting alone doesn’t solve consensus
- Node failure could mean not everyone learns of unanimous quorum
- Split vote could make unanimous quorum impossible

10 / 37

When has a vote succeeded?

bivalent

a-valent a agreed

a-valent

stuck

a agreed

If fS + 1 = 2T − N nodes malicious, system loses safety
Suppose fS + 1 nodes all claim to have seen T votes for a
- Can assume system is a-valent with no loss of safety
Now say fL + fS + 1 = T nodes all make same assertion
- If> fL fail, system loses liveness (0 correct nodes in whole system)
- If≤ fL fail,≥ fS + 1 remain able to convince rest that system a-valent
- All correct nodes believe system a-valent=⇒ none stuck=⇒ a agreed

11 / 37

When has a vote succeeded?

bivalent

a-valent a agreed

a-valent

stuck

a agreed

Reached here
if you saw T
votes for a.

How do you
know if you
reached here?

If fS + 1 = 2T − N nodes malicious, system loses safety
Suppose fS + 1 nodes all claim to have seen T votes for a
- Can assume system is a-valent with no loss of safety
Now say fL + fS + 1 = T nodes all make same assertion
- If> fL fail, system loses liveness (0 correct nodes in whole system)
- If≤ fL fail,≥ fS + 1 remain able to convince rest that system a-valent
- All correct nodes believe system a-valent=⇒ none stuck=⇒ a agreed

11 / 37

When has a vote succeeded?
Quorum A Quorum B

v0 . . . vN−T . . . vT−1 . . . vN−1EVILEVIL EVILEVIL EVILEVIL

We know a quorum
voted for a

If fS + 1 = 2T − N nodes malicious, system loses safety
Suppose fS + 1 nodes all claim to have seen T votes for a
- Can assume system is a-valent with no loss of safety
Now say fL + fS + 1 = T nodes all make same assertion
- If> fL fail, system loses liveness (0 correct nodes in whole system)
- If≤ fL fail,≥ fS + 1 remain able to convince rest that system a-valent
- All correct nodes believe system a-valent=⇒ none stuck=⇒ a agreed

11 / 37

When has a vote succeeded?
Quorum A Quorum B

v0 . . . vN−T . . . vT−1 . . . vN−1EVILEVIL EVILEVIL EVILEVIL

We know a quorum
voted for a

If fS + 1 = 2T − N nodes malicious, system loses safety
Suppose fS + 1 nodes all claim to have seen T votes for a
- Can assume system is a-valent with no loss of safety
Now say fL + fS + 1 = T nodes all make same assertion
- If> fL fail, system loses liveness (0 correct nodes in whole system)
- If≤ fL fail,≥ fS + 1 remain able to convince rest that system a-valent
- All correct nodes believe system a-valent=⇒ none stuck=⇒ a agreed

11 / 37

When has a vote succeeded?
Quorum A Quorum B

v0 . . . vN−T . . . vT−1 . . . vN−1EVILEVIL EVILEVIL EVILEVIL

We know a quorum
voted for a

If fS + 1 = 2T − N nodes malicious, system loses safety
Suppose fS + 1 nodes all claim to have seen T votes for a
- Can assume system is a-valent with no loss of safety
Now say fL + fS + 1 = T nodes all make same assertion
- If> fL fail, system loses liveness (0 correct nodes in whole system)
- If≤ fL fail,≥ fS + 1 remain able to convince rest that system a-valent
- All correct nodes believe system a-valent=⇒ none stuck=⇒ a agreed

11 / 37

5 tricks of Byzantine agreement protocols
op1 op2 op3 op4 ?view 1:

op′4 op5 op6 . . .

op5 op6 . . .

view 2:

view 3:

failed

Ensure some probability of non-faulty nodes voting identically
- Assume partial synchrony (Ra�, PBFT, SCP, . . .)
assumption o�en used for some sort of leader election

- Everyone flips a coin [Ben Or] (finite chance of flipping same coin)
- Common coin [Rabin] (Mostéfaoui, HoneyBadger, Algorand, . . .)
Survive stuck votes
- Vote on what goes in log entries, then vote on which log entries matter
(Viewstamped Replication, PBFT, Ra�, . . .)

- Vote that value is “safe” before really voting for it (Paxos, SCP, . . .)
12 / 37

5 tricks of Byzantine agreement protocols
op1 op2 op3 op4 ?view 1:

op′4 op5 op6 . . .

op5 op6 . . .

view 2:

view 3:

failed

Ensure some probability of non-faulty nodes voting identically
- Assume partial synchrony (Ra�, PBFT, SCP, . . .)
assumption o�en used for some sort of leader election

- Everyone flips a coin [Ben Or] (finite chance of flipping same coin)
- Common coin [Rabin] (Mostéfaoui, HoneyBadger, Algorand, . . .)
Survive stuck votes
- Vote on what goes in log entries, then vote on which log entries matter
(Viewstamped Replication, PBFT, Ra�, . . .)

- Vote that value is “safe” before really voting for it (Paxos, SCP, . . .)
12 / 37

5 tricks of Byzantine agreement protocols
op1 op2 op3 op4 ?view 1:

op′4 op5 op6 . . .

op5 op6 . . .

view 2:

view 3:

failed

Ensure some probability of non-faulty nodes voting identically
- Assume partial synchrony (Ra�, PBFT, SCP, . . .)
assumption o�en used for some sort of leader election

- Everyone flips a coin [Ben Or] (finite chance of flipping same coin)
- Common coin [Rabin] (Mostéfaoui, HoneyBadger, Algorand, . . .)
Survive stuck votes
- Vote on what goes in log entries, then vote on which log entries matter
(Viewstamped Replication, PBFT, Ra�, . . .)

- Vote that value is “safe” before really voting for it (Paxos, SCP, . . .)
12 / 37

5 tricks of Byzantine agreement protocols

a b c d e f g h
1 % % % % % % % %

2 % % % % % ? % %

3 % % % % % ! % %

candidate values

co
un
te
r counter

Ensure some probability of non-faulty nodes voting identically
- Assume partial synchrony (Ra�, PBFT, SCP, . . .)
assumption o�en used for some sort of leader election

- Everyone flips a coin [Ben Or] (finite chance of flipping same coin)
- Common coin [Rabin] (Mostéfaoui, HoneyBadger, Algorand, . . .)
Survive stuck votes
- Vote on what goes in log entries, then vote on which log entries matter
(Viewstamped Replication, PBFT, Ra�, . . .)

- Vote that value is “safe” before really voting for it (Paxos, SCP, . . .)
12 / 37

Outline

Background: centrally-mandated quorums

Quorums from the Internet hypothesis

Stellar Consensus Protocol

13 / 37

Federated Byzantine Agreement (FBA)
Based on Byzantine agreement—consensus among closed group
- But majority-based Byzantine agreement vulnerable to Sybil attacks
- Idea: defeat Sybil attacks with decentralized quorum selection

Each node v picks one ormore sets of nodes called quorum slices
- v considers each slice important enough to speak for whole network
- Choice based on real-world identities
E.g., put issuers of all tokens you care about in all of your slices

Definition (Federated Byzantine Agreement System)
An FBAS is of a a set of nodes V and a quorum functionQ, where
Q(v) is the set slices chosen by node v.

Definition (Quorum)
A quorum U ⊆ V is a set of nodes that contains at least one slice of
each of its members: ∀v ∈ U,∃q ∈ Q(v) such that q ⊆ U

14 / 37

Federated Byzantine Agreement
Based on Byzantine agreement—consensus among closed group
- But majority-based Byzantine agreement vulnerable to Sybil attacks
- Idea: defeat Sybil attacks with decentralized quorum selection

Each node v picks one ormore sets of nodes called quorum slices
- v considers each slice important enough to speak for whole network
- Choice based on real-world identities
E.g., put issuers of all tokens you care about in all of your slices

Definition (Federated Byzantine Agreement System)
An FBAS is of a a set of nodes V and a quorum functionQ, where
Q(v) is the set slices chosen by node v.

Definition (Quorum)
A quorum U ⊆ V is a set of nodes that contains at least one slice of
each of its members: ∀v ∈ U,∃q ∈ Q(v) such that q ⊆ U

14 / 37

Definition (Quorum)
A quorum U ⊆ V is a set of nodes that encompasses at least one
slice of each of its members: ∀v ∈ U,∃q ∈ Q(v) such that q ⊆ U

quorum for v2, v3, v4

quorum slice for v1, but not a quorumquorum for v1, . . . , v4v1

v2 v3

v4

Q(v1) = {{v1, v2, v3}}
Q(v2) = Q(v3) = Q(v4) = {{v2, v3, v4}}

Visualize quorum slice dependencies with arrows
v2, v3, v4 is a quorum—contains a slice of eachmember
v1, v2, v3 is a slice for v1, but not a quorum
- Doesn’t contain a slice for v2, v3, who demand v4’s agreement
v1, . . . , v4 is the smallest quorum containing v1

15 / 37

Definition (Quorum)
A quorum U ⊆ V is a set of nodes that encompasses at least one
slice of each of its members: ∀v ∈ U,∃q ∈ Q(v) such that q ⊆ U

quorum for v2, v3, v4

quorum slice for v1, but not a quorumquorum for v1, . . . , v4v1

v2 v3

v4

Q(v1) = {{v1, v2, v3}}
Q(v2) = Q(v3) = Q(v4) = {{v2, v3, v4}}

Visualize quorum slice dependencies with arrows
v2, v3, v4 is a quorum—contains a slice of eachmember
v1, v2, v3 is a slice for v1, but not a quorum
- Doesn’t contain a slice for v2, v3, who demand v4’s agreement
v1, . . . , v4 is the smallest quorum containing v1

15 / 37

Definition (Quorum)
A quorum U ⊆ V is a set of nodes that encompasses at least one
slice of each of its members: ∀v ∈ U,∃q ∈ Q(v) such that q ⊆ U

quorum for v2, v3, v4

quorum slice for v1, but not a quorumquorum for v1, . . . , v4v1

v2 v3

v4

Q(v1) = {{v1, v2, v3}}
Q(v2) = Q(v3) = Q(v4) = {{v2, v3, v4}}

Visualize quorum slice dependencies with arrows
v2, v3, v4 is a quorum—contains a slice of eachmember
v1, v2, v3 is a slice for v1, but not a quorum
- Doesn’t contain a slice for v2, v3, who demand v4’s agreement
v1, . . . , v4 is the smallest quorum containing v1

15 / 37

Definition (Quorum)
A quorum U ⊆ V is a set of nodes that encompasses at least one
slice of each of its members: ∀v ∈ U,∃q ∈ Q(v) such that q ⊆ U

quorum for v2, v3, v4

quorum slice for v1, but not a quorumquorum for v1, . . . , v4v1

v2 v3

v4

Q(v1) = {{v1, v2, v3}}
Q(v2) = Q(v3) = Q(v4) = {{v2, v3, v4}}

Visualize quorum slice dependencies with arrows
v2, v3, v4 is a quorum—contains a slice of eachmember
v1, v2, v3 is a slice for v1, but not a quorum
- Doesn’t contain a slice for v2, v3, who demand v4’s agreement
v1, . . . , v4 is the smallest quorum containing v1

15 / 37

Tiered quorum slice example

v1 v2 v3 v4EVILEVIL EVILEVIL EVILEVIL
Top tier: slice is three out of
{v1, v2, v3, v4} (including self)

v5 v6 v7 v8 Middle tier: slice is self + any
two top tier nodes

v9 v10 Leaf tier: slice is self + any
two middle tier nodes

2/4

2/4

3/4

Like the Internet, no central authority appoints top tier
- But market can decide on de facto tier one organizations
- Don’t even require exact agreement on who is a top tier node

16 / 37

Tiered quorum slice example

EVILEVIL EVILEVIL EVILEVIL

v5 v6 v7 v8 Middle tier: slice is self + any
two top tier nodes

v9 v10 Leaf tier: slice is self + any
two middle tier nodes

2/4

2/4

3/4

Like the Internet, no central authority appoints top tier
- But market can decide on de facto tier one organizations
- Don’t even require exact agreement on who is a top tier node

16 / 37

Tiered quorum slice example

EVILEVIL EVILEVIL EVILEVIL

v5 v6 v7 v8 Middle tier: slice is self + any
two top tier nodes

v9 v10 Leaf tier: slice is self + any
two middle tier nodes

2/4

+1/3

3/4 +2/3

2/4

3/4

Like the Internet, no central authority appoints top tier
- But market can decide on de facto tier one organizations
- Don’t even require exact agreement on who is a top tier node

16 / 37

Tiered quorum slice example

EVILEVIL EVILEVIL EVILEVIL

v5 v6 v7 v8

!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!

Middle tier: slice is self + any
two top tier nodes

v9 v10 Leaf tier: slice is self + any
two middle tier nodes

2/4

+1/3

3/4 +2/3

2/4

3/4

Example: Citibank pays $1,000,000,000 to v7
- Colludes to reverse transaction and double-spend samemoney to v8
- Stellar & EFF won’t revert, so ACLU cannot accept and v8 won’t either

16 / 37

Tiered quorum slice example

EVILEVIL EVILEVIL EVILEVIL

v5 v6 v7 v8!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!

Middle tier: slice is self + any
two top tier nodes

v9 v10 Leaf tier: slice is self + any
two middle tier nodes

2/4

+1/3

3/4 +2/3

2/4

3/4

Example: Citibank pays $1,000,000,000 to v7
- Colludes to reverse transaction and double-spend samemoney to v8
- Stellar & EFF won’t revert, so ACLU cannot accept and v8 won’t either

16 / 37

Tiered quorum slice example

EVILEVIL EVILEVIL EVILEVIL

v5 v6 v7 v8!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!

I don’t believe
anything unless EFF
or Stellar does

Middle tier: slice is self + any
two top tier nodes

v9 v10 Leaf tier: slice is self + any
two middle tier nodes

2/4

+1/3

3/4 +2/3

2/4

3/4

Example: Citibank pays $1,000,000,000 to v7
- Colludes to reverse transaction and double-spend samemoney to v8
- Stellar & EFF won’t revert, so ACLU cannot accept and v8 won’t either

16 / 37

FBAS failure is per-node

Byzantine,
including
crashed

ill-behaved well-behaved

safe but
not live not safe correct

failed correct

Each node is eitherwell-behaved or ill-behaved (faulty)

All ill-behaved nodes have failed
Enough ill-behaved nodes can cause well-behaved nodes to fail
- Bad: well-behaved nodes blocked from any progress (safe but not live)
- Worse: well-behaved nodes in divergent states (not safe)

Well-behaved nodes are correct if they have not failed

17 / 37

What is necessary to guarantee safety?

v2

v1

v3

Q(v1) =
Q(v2) =
Q(v3) =
{{v1, v2, v3}} v5

v4

v6

Q(v4) =
Q(v5) =
Q(v6) =
{{v4, v5, v6}}

Suppose there are two entirely disjoint quorums
- Each canmake progress with no communication from the other
- No way to guarantee the two externalize consistent statements

Like traditional consensus, safety requires quorum intersection

Definition (Quorum intersection)
An FBAS enjoys quorum intersection when every two quorums
share at least one node.

18 / 37

What about Byzantine failures?

Quorum A Quorum B

v2

v1

v3

Q(v1) =
Q(v2) =
Q(v3) =
{{v1, v2, v3, v7}} v5

v4

v6

Q(v4) =
Q(v5) =
Q(v6) =
{{v4, v5, v6, v7}}

v7

Q(v7) = {{v7}}

EVILEVIL

What if two quorums intersect only at faulty nodes?
- No way to guarantee safety when nodes not intertwined

Definition (Quorum-revised)
A quorum U ⊆ V is a set of nodes that encompasses at least one
slice of each of its well-behavedmembers (ignoring faulty slices).

Definition (intertwined)
Nodes v1 and v2 are intertwined i� every quorum of v1 intersects
every quorum of v2 at a well-behaved node.

19 / 37

What about Byzantine failures?

Quorum A Quorum B

v2

v1

v3

Q(v1) =
Q(v2) =
Q(v3) =
{{v1, v2, v3, v7}} v5

v4

v6

Q(v4) =
Q(v5) =
Q(v6) =
{{v4, v5, v6, v7}}

v7

Q(v7) = {{v7}}

EVILEVIL

What if two quorums intersect only at faulty nodes?
- No way to guarantee safety when nodes not intertwined

Definition (Quorum-revised)
A quorum U ⊆ V is a set of nodes that encompasses at least one
slice of each of its well-behavedmembers (ignoring faulty slices).

Definition (intertwined)
Nodes v1 and v2 are intertwined i� every quorum of v1 intersects
every quorum of v2 at a well-behaved node.

19 / 37

Adapting Byzantine agreement to slices

bivalent

a-valent a agreed

a-valent

stuck

a agreed

Slice-based quorums yield same outcomes as T-of-N
Apply the same reasoning as in centralized voting?
- Premise was whole system couldn’t fail; now failure is per node
- Cannot assume correctness of quorums you don’t belong to
Any place a classical Byzantine agreement protocol waits for
fS + 1 nodes, there is no equivalent with quorum slices
- First-hand quorums are the only way to know system a-valent
- Once you vote for a, can’t be in a quorum voting a

20 / 37

Adapting Byzantine agreement to slices
Quorum A Quorum B

v0 . . . vN−T . . . vT−1 . . . vN−1

We know a quorum
voted for a I don’t care!

Slice-based quorums yield same outcomes as T-of-N
Apply the same reasoning as in centralized voting?
- Premise was whole system couldn’t fail; now failure is per node
- Cannot assume correctness of quorums you don’t belong to
Any place a classical Byzantine agreement protocol waits for
fS + 1 nodes, there is no equivalent with quorum slices
- First-hand quorums are the only way to know system a-valent
- Once you vote for a, can’t be in a quorum voting a

20 / 37

Adapting Byzantine agreement to slices
Quorum A Quorum B

v0 . . . vN−T . . . vT−1 . . . vN−1

We know a quorum
voted for a I don’t care!

Slice-based quorums yield same outcomes as T-of-N
%Apply the same reasoning as in centralized voting? No!

- Premise was whole system couldn’t fail; now failure is per node
- Cannot assume correctness of quorums you don’t belong to
Any place a classical Byzantine agreement protocol waits for
fS + 1 nodes, there is no equivalent with quorum slices
- First-hand quorums are the only way to know system a-valent
- Once you vote for a, can’t be in a quorum voting a

20 / 37

Federated voting

v
vote a, slices = {q1, . . . ,qn}

Nodes unilaterally join the systemw/o permission
- Nodes are named by their public signature keys

Each node chooses one or more quorum slices
- In theory, could be arbitrary sets
- To represent compactly, use recursive k-of-n threshold specification

Nodes exchanges signed vote messages to agree on statements
- Every vote specifies quorum slices
- Allows dynamic quorum discovery while assembling votes

21 / 37

Federated voting

v
vote a, slices = {q1, . . . ,qn}

Nodes unilaterally join the systemw/o permission
- Nodes are named by their public signature keys

Each node chooses one or more quorum slices
- In theory, could be arbitrary sets
- To represent compactly, use recursive k-of-n threshold specification

Nodes exchanges signed vote messages to agree on statements
- Every vote specifies quorum slices
- Allows dynamic quorum discovery while assembling votes

21 / 37

Ratifying statements

v1 v2 v3
Quorum

Quorum

vote a vote a vote a

Definition (ratify)
A quorum U ratifies a statement a i� every member of U votes for a.
A node v ratifies a i� v is a member of a quorum U that ratifies a.

Well-behaved nodes cannot vote for contradictory statements
Theorem: Intertwined nodes won’t ratify contradictory
statements
Problem: even in a well-behaved quorum, some node vmay be
unable to ratify some statement a a�er other nodes do
- v or nodes in v’s slices might have voted against a, or
- Some nodes that voted for amay subsequently have failed

22 / 37

Accepting statements

v1 v2 v3 v4

3/4
vote a

system is
a-valent

system is
a-valent

EVILEVIL EVILEVIL
Q(v1) = {{v1, v2, v3}, {v1, v2, v4},

{v1, v3, v4}}

What if one node in each of v1’s slices says system is a-valent?
- Either true or v1 notmember of any well-behaved quorum (no liveness)

Definition (accept)
Node v accepts a statement a consistent with history i� either:
1. A quorum containing v each either voted for or accepted a, or
2. Each of v’s quorum slices has a node claiming to accept a.
#2 lets a node accept a statement a�er voting against it, but. . .
1. Still no guarantee all supposedly live nodes can accept a statement
2. Intertwined nodes can accept diverging statements
(Intuition: we wanted fS + 1 notes, but have to settle for fL + 1) 23 / 37

Accepting statements

v1 v2 v3 v4

3/4
vote a

system is
a-valent

system is
a-valent

EVILEVIL EVILEVIL
Q(v1) = {{v1, v2, v3}, {v1, v2, v4},

{v1, v3, v4}}

What if one node in each of v1’s slices says system is a-valent?
- Either true or v1 notmember of any well-behaved quorum (no liveness)

Definition (accept)
Node v accepts a statement a consistent with history i� either:
1. A quorum containing v each either voted for or accepted a, or
2. Each of v’s quorum slices has a node claiming to accept a.
#2 lets a node accept a statement a�er voting against it, but. . .
1. Still no guarantee all supposedly live nodes can accept a statement
2. Intertwined nodes can accept diverging statements
(Intuition: we wanted fS + 1 notes, but have to settle for fL + 1) 23 / 37

Confirmation

v1 v2 v3
Quorum

Quorum

accept a accept a accept a

Idea: Hold a second vote on the fact that the first vote succeeded
Definition (confirm)
A quorum confirms a statement a by ratifying the statement “We
accepted a.” A node confirms a i� it is in such a quorum.

Solves problem 2 (suboptimal safety) w. straight-up ratification
Solves problem 1 (live nodes unable to accept)
- Nodes with liveness guarantee may vote against accepted statements
- Won’t vote against the fact that those statements were accepted
- Hence, can’t get split confirmation vote
Theorem: If 1 node in well-behaved quorum confirms a, all will

24 / 37

Summary of federated voting process
quorum votes
for/accepts a

quorum
accepts a

a is valid

a node in each
slice accepts a

uncommitted

voted a accepted a confirmed a

voted a

A vote might still get stuck
But if any node v confirms a, vote not stuck, system agrees on a
- If intertwined, well-behaved nodes can’t contradict a
- If v in intact quorum, whole quorumwill eventually confirm a

25 / 37

Outline

Background: centrally-mandated quorums

Quorums from the Internet hypothesis

Stellar Consensus Protocol

26 / 37

Stellar Consensus Protocol [SCP,spec]

Guarantees safety when nodes are intertwined
- This is optimal—if not intertwined, no protocol can guarantee safety
- I.e., you may regret your choice of quorum slices, but you won’t regret
choosing SCP over other slice-based Byzantine agreement protocols

Guarantees liveness for an intact quorum
- Intact = non-faulty quorum that enjoys quorum intersection a�er
removing non-intact nodes

- Weaker notions of intact are possible (e.g., intertwined quorum), but
seem to have limitations:
I Must prove each statement youmake (requires large history, messages),
I Can’t change quorums slices mid-protocol, and/or
I Must prove some some set of nodes necessary for a node’s quorum

27 / 37

https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://datatracker.ietf.org/doc/draft-mazieres-dinrg-scp/

SCP’s two standard tricks

Employ a synchronous FBA protocol as a nomination subroutine
- Challenge: can’t have leader election w/o agreement on who exist
- Nomination eventually converges and all nodes get same value
- But okay if agreement fails—happens when synchrony violated

Use balloting to deem a value “safe” before voting for it (~Paxos)
- Ensures intact nodes never gets stuck
- Guarantees termination under partial synchrony w. Byzantine failure if
you repeat nomination on timeout

- Otherwise, termination guaranteed w. crash-stop nodes or a�er
manually removing malicious nodes from slices

- Should remove bad nodes from anyway, so single-nomination faster

28 / 37

Strawman nomination

v1

NOMINATE
vote: tx1
accept: ∅

v2

NOMINATE
vote: tx2
accept: ∅

v3

NOMINATE
vote: tx3
accept: ∅

Idea: every node reliably broadcasts proposed value (~Bracha)
Every node votes for its own proposed value
Every node also votes for values it learns from others
Eventually, nodes accept and confirm nominated values
- Stop voting for new values once any value confirmed
e.g., v1 and v2 will never vote for v3

Deterministically combine all confirmed nominated values
29 / 37

Strawman nomination

v1

NOMINATE
vote: tx1, tx2
accept: ∅

v2

NOMINATE
vote: tx1, tx2
accept: ∅

v3

NOMINATE
vote: tx1, tx2, tx3
accept: ∅

Idea: every node reliably broadcasts proposed value (~Bracha)
Every node votes for its own proposed value
Every node also votes for values it learns from others
Eventually, nodes accept and confirm nominated values
- Stop voting for new values once any value confirmed
e.g., v1 and v2 will never vote for v3

Deterministically combine all confirmed nominated values
29 / 37

Strawman nomination

v1

NOMINATE
vote: tx1, tx2
accept: tx1, tx2

v2

NOMINATE
vote: tx1, tx2
accept: tx1, tx2

v3

NOMINATE
vote: tx1, tx2, tx3
accept: tx1, tx2

Idea: every node reliably broadcasts proposed value (~Bracha)
Every node votes for its own proposed value
Every node also votes for values it learns from others
Eventually, nodes accept and confirm nominated values
- Stop voting for new values once any value confirmed
e.g., v1 and v2 will never vote for v3

Deterministically combine all confirmed nominated values
29 / 37

Strawman nomination

v1

NOMINATE
vote: tx1, tx2
accept: tx1, tx2

v2

NOMINATE
vote: tx1, tx2
accept: tx1, tx2

v3

NOMINATE
vote: tx1, tx2, tx3
accept: tx1, tx2

Idea: every node reliably broadcasts proposed value (~Bracha)
Every node votes for its own proposed value
Every node also votes for values it learns from others
Eventually, nodes accept and confirm nominated values
- Stop voting for new values once any value confirmed
e.g., v1 and v2 will never vote for v3

Deterministically combine all confirmed nominated values
29 / 37

Strawman nomination

v1

x = tx1 ∪ tx2

v2

x = tx1 ∪ tx2

v3

x = tx1 ∪ tx2

Idea: every node reliably broadcasts proposed value (~Bracha)
Every node votes for its own proposed value
Every node also votes for values it learns from others
Eventually, nodes accept and confirm nominated values
- Stop voting for new values once any value confirmed
e.g., v1 and v2 will never vote for v3

Deterministically combine all confirmed nominated values
29 / 37

Properties of nomination strawman
+At least one value will get nominated (assuming intact quorum)
+Once an intact node confirms a value nominated, all will

- Direct consequence of federated voting

+A bounded number of values can get nominated
- Need votes from intact nodes to nominate values
- Can only cast bounded number of votes before confirming first value

+Nomination guaranteed to converge eventually
- Attacker perturb bounded number of times—each time “consuming”
an as yet unconfirmed value nominated by intact nodes

–Never knowwhen nomination has converged—have to guess
- Inevitable given partial synchrony, but still unfortunate

– Lots of values floating around wastes bandwidth, computation
- Can we use some sort of leader election to reduce costs?

30 / 37

Reducing # nominated values

v1 v2 v3 v4 v5 · · · v1004

3/4 667/10003/4

3/1000

Choose leader pseudorandomly by highest H(PubKey‖round)?
- Works for Algorand because coins quantify clout
- Here risks censorship from organizations/countries with more nodes
Select leaders based on local slice weight & hashes:

weight(v) = fraction of local quorum slices containing v
neighbors(round) = { v | H1(round‖v) < hmax ·weight(v) }
priority(round, v) = H2(round‖v)

- Round leader is neighbor with highest priority
- A�er n rounds, echo nomination votes of leaders of round ≤ n
- Tends to converge, always does if identical quorum slices

31 / 37

Balloting

v1

PREPARE 〈1, x〉
COMMIT 〈1, x〉

v2

PREPARE 〈1, x〉
COMMIT 〈1, x〉

v3

PREPARE 〈1, x〉
COMMIT 〈1, x〉

Use Paxos-like Balloting for asynchronous agreement
Define ballot as a pair b = 〈n, x〉
- n is a ballot counter (allows arbitrarily many ballots)
- x is a candidate value
- Conceptually vote to commit and abort individual ballots
Must prepare a ballot before voting to commit
- Requires aborting lesser conflicting ballots before voting to commit
Balloting mechanics:
- Prepare 〈1, x〉 by confirming {abort 〈n, x′〉 | 〈n, x′〉 < 〈1, x〉 ∧ x′ 6= x}
- Vote and confirm “commit 〈1, x〉”; output value x 32 / 37

Balloting

v1

PREPARE 〈1, x〉
COMMIT 〈1, x〉

v2

PREPARE 〈1, x〉
COMMIT 〈1, x〉

v3

PREPARE 〈1, x〉
COMMIT 〈1, x〉

Use Paxos-like Balloting for asynchronous agreement
Define ballot as a pair b = 〈n, x〉
- n is a ballot counter (allows arbitrarily many ballots)
- x is a candidate value
- Conceptually vote to commit and abort individual ballots
Must prepare a ballot before voting to commit
- Requires aborting lesser conflicting ballots before voting to commit
Balloting mechanics:
- Prepare 〈1, x〉 by confirming {abort 〈n, x′〉 | 〈n, x′〉 < 〈1, x〉 ∧ x′ 6= x}
- Vote and confirm “commit 〈1, x〉”; output value x 32 / 37

Balloting example

a b c d e f g h
1 ? ? ? ? ? ? ? ?
2 ? ? ? ? ? ? ? ?
3 ? ? ? ? ? ? ? ?

candidate values
co
un
te
r counter

? = bivalent
% = aborted

= stuck
! = commited

0. Initially, all ballots are bivalent
1. Prepare 〈1,g〉 and vote to commit it
2. Lose vote on 〈1,g〉; agree 〈2, f 〉 prepared and vote to commit it
3. 〈2, f 〉 seems stuck; agree 〈3, f 〉 prepared and vote to commit it
4. Confirm commit 〈3, f 〉 and externalize f

- At this point nobody cares that 〈2, f 〉 is stuck

Key invariant: all committed & stuck ballots have same value
Before vote to commit, only one “non-aborted rectangle”

33 / 37

Balloting example

a b c d e f g h
1 % % % % % % ? ?
2 ? ? ? ? ? ? ? ?
3 ? ? ? ? ? ? ? ?

candidate values
co
un
te
r counter

? = bivalent
% = aborted

= stuck
! = commited

0. Initially, all ballots are bivalent
1. Prepare 〈1,g〉 and vote to commit it
2. Lose vote on 〈1,g〉; agree 〈2, f 〉 prepared and vote to commit it
3. 〈2, f 〉 seems stuck; agree 〈3, f 〉 prepared and vote to commit it
4. Confirm commit 〈3, f 〉 and externalize f

- At this point nobody cares that 〈2, f 〉 is stuck

Key invariant: all committed & stuck ballots have same value
Before vote to commit, only one “non-aborted rectangle”

33 / 37

Balloting example

a b c d e f g h
1 % % % % % % % %

2 % % % % % ? ? ?
3 ? ? ? ? ? ? ? ?

candidate values
co
un
te
r counter

? = bivalent
% = aborted

= stuck
! = commited

0. Initially, all ballots are bivalent
1. Prepare 〈1,g〉 and vote to commit it
2. Lose vote on 〈1,g〉; agree 〈2, f 〉 prepared and vote to commit it
3. 〈2, f 〉 seems stuck; agree 〈3, f 〉 prepared and vote to commit it
4. Confirm commit 〈3, f 〉 and externalize f

- At this point nobody cares that 〈2, f 〉 is stuck

Key invariant: all committed & stuck ballots have same value
Before vote to commit, only one “non-aborted rectangle”

33 / 37

Balloting example

a b c d e f g h
1 % % % % % % % %

2 % % % % % % %

3 % % % % % ? ? ?

candidate values
co
un
te
r counter

? = bivalent
% = aborted

= stuck
! = commited

0. Initially, all ballots are bivalent
1. Prepare 〈1,g〉 and vote to commit it
2. Lose vote on 〈1,g〉; agree 〈2, f 〉 prepared and vote to commit it
3. 〈2, f 〉 seems stuck; agree 〈3, f 〉 prepared and vote to commit it
4. Confirm commit 〈3, f 〉 and externalize f

- At this point nobody cares that 〈2, f 〉 is stuck

Key invariant: all committed & stuck ballots have same value
Before vote to commit, only one “non-aborted rectangle”

33 / 37

Balloting example

a b c d e f g h
1 % % % % % % % %

2 % % % % % % %

3 % % % % % ! ? ?

candidate values
co
un
te
r counter

? = bivalent
% = aborted

= stuck
! = commited

0. Initially, all ballots are bivalent
1. Prepare 〈1,g〉 and vote to commit it
2. Lose vote on 〈1,g〉; agree 〈2, f 〉 prepared and vote to commit it
3. 〈2, f 〉 seems stuck; agree 〈3, f 〉 prepared and vote to commit it
4. Confirm commit 〈3, f 〉 and externalize f

- At this point nobody cares that 〈2, f 〉 is stuck

Key invariant: all committed & stuck ballots have same value
Before vote to commit, only one “non-aborted rectangle”

33 / 37

Balloting example

a b c d e f g h
1 % % % % % % % %

2 % % % % % % %

3 % % % % % ! ? ?

candidate values
co
un
te
r counter

? = bivalent
% = aborted

= stuck
! = commited

0. Initially, all ballots are bivalent
1. Prepare 〈1,g〉 and vote to commit it
2. Lose vote on 〈1,g〉; agree 〈2, f 〉 prepared and vote to commit it
3. 〈2, f 〉 seems stuck; agree 〈3, f 〉 prepared and vote to commit it
4. Confirm commit 〈3, f 〉 and externalize f

- At this point nobody cares that 〈2, f 〉 is stuck

Key invariant: all committed & stuck ballots have same value
Before vote to commit, only one “non-aborted rectangle”

33 / 37

SCP state andmessages
struct SCPPrepare {
// Current ballot you are trying to ratify prepared
SCPBallot ballot;

// Most recent accepted prepared ballot if any
// (highest ballot of "non-aborted rectangle")
SCPBallot *prepared;

// Ballot counter below which everything aborted
// (lowest counter of "non-aborted rectangle")
uint32 aCounter;

// Counter of most recent confirmed prepared ballot or 0
// (only if value same as ballot field)
uint32 hCounter;

// Oldest ballot counter node is voting to commit or 0
// (ballot value must be same as ballot field)
uint32 cCounter;
};

Complete prepare state only 5 counters, 2 values
34 / 37

Self-clocking ballot counters

Bump ballot counter on increasing timeout
- Standard trick for terminating with partial synchrony

Need intact nodes to spend increasing time on same ballot
- Arm timer only when you say quorum at same or higher counter
- Immediately increase counter if blocking set higher
- C.f. DLS partial synchrony roundmodel

Two options for updating value when updating ballot counter
1. Use value from highest confirmed prepared ballot, else latest
nomination output (terminates w. fail-stop nodes & partial synchrony)

2. Re-run nomination protocol at each counter (terminates w. Byzantine
failure & partial synchrony)

35 / 37

SCP in the real world

Used by the Stellar DEX/payment network
- ~120 nodes today, achieving consensus every ~5 seconds
- In use today for trading a wide range of tokens
- Better for real-world assets thanmining—issuers can run validators
Other blockchains using SCP: MobileCoin, NCNT
Applications beyond blockchain: certificate transparency,
firmware transparency, delegated namespaces

36 / 37

http://stellarbeat.io/
https://stellarterm.com/#markets

Questions?
www.stellar.org

37 / 37

https://www.stellar.org/

	Background: centrally-mandated quorums
	Quorums from the Internet hypothesis
	Stellar Consensus Protocol

