
Scaling Decentralized Ledgers via Sharding

Ewa Syta
Trinity College

Swiss Blockchain Winter School
February 12, 2019

Talk Outline

Scalable Bias-Resistant Distributed Randomness

OmniLedger: A Secure, Scale-Out, Decentralized
Ledger via Sharding

 2

2017 IEEE Symposium on Security and Privacy

2018 IEEE Symposium on Security and Privacy

Acknowledgements

 3

Eleftherios Kokoris Kogias
(EPFL, CH)

Nicolas Gailly
(EPFL, CH)

Linus Gasser
(EPFL, CH)

Michael Fischer

Bryan Ford
(EPFL, CH)

Philipp Jovanovic
(EPFL, CH)

Ismail Khoffi
(EPFL, CH)

Michael Fischer
(Yale University, USA)

Talk Outline

Scalable Bias-Resistant Distributed Randomness

OmniLedger: A Secure, Scale-Out, Decentralized
Ledger via Sharding

 4

2017 IEEE Symposium on Security and Privacy

2018 IEEE Symposium on Security and Privacy

Talk Outline
• Motivation

• Two Randomness Protocols
‣ RandHound
‣ RandHerd

• Implementation, Experimental Results and Current Deployment

• Conclusions

 5

Talk Outline
• Motivation

• Two Randomness Protocols
‣ RandHound
‣ RandHerd

• Implementation, Experimental Results and Current Deployment

• Conclusions

 6

Public Randomness
• Different from secret randomness

‣ Secret randomness used for cryptographic keys, for example

• Collectively used

• Unpredictable ahead of time

• Not secret past a certain point in time

• Entropy is not enough

 7

Applications of Public Randomness
• Random selection

‣ lotteries, sweepstakes, jury selection, voting and election audits

• Games
‣ shuffled decks, team assignments

• Crypto
‣ challenges, authentication, cut-and-choose methods, “nothing up my sleeves” numbers

• Protocols
‣ leader election for consensus protocols (PoS), sharding (OmniLedger), Tor (path

selection)
 8

Failed / Rigged Randomness

 9

Vietnam War Lotteries (1969)

Public Randomness is not New
• 1955: Large table of random

numbers published as a book by the
Rand Corporation

• Today: Generating public random
numbers is (still) hard

• Main issues: trust and scale
‣ Both, in generation and usage

 10

Goals
1. Availability

Successful protocol
termination for up to

f=t-1 malicious nodes.

 11

2. Unpredictability
Output not revealed

prematurely.
3. Unbiasability

Output distributed
uniformly at random.

4. Verifiability
Output correctness
can be checked by

third parties.

5. Scalability
Executable with

hundreds of
participants.Decentralized,

public randomness
in the (t,n)-threshold

security model

Assumptions: n= 3f +1, Byzantine adversary and asynchronous network with eventual message delivery

Public Randomness Approaches
• With Trusted Third Party
‣ NIST Randomness Beacon 

• Without TTP
Unusual assumptions
‣ Bitcoin (Bonneau, 2015)
‣ Slow cryptographic hash functions (Lenstra, 2015)
‣ Lotteries (Baigneres, 2015)
‣ Financial data (Clark, 2010)

(t,n)-threshold security model but not scalable
‣ Coin-flipping (Cachin, 2015)
‣ Distributed key generation (Kate, 2009)

 12

Public Randomness is Hard

Strawman I
• Idea: Combine random

inputs of all participants.
• Problem: Last node fully

controls output.
 13

Strawman II
• Idea: Commit-then-reveal

random inputs.
• Problem: Dishonest nodes

can choose not to reveal.

Strawman III
• Idea: Secret-share random

inputs.
• Problem: Dishonest nodes

can send bad shares.

Availability Unpredictability Unbiasability Verifiability Scalability

Strawman I

Strawman II

Strawman III

Public Randomness is Hard

 14

Availability Unpredictability Unbiasability Verifiability Scalability

Strawman I

Strawman II

Strawman III

RandShare

RandShare
• Idea: Strawman III + verifiable secret sharing (Feldman, 1987)
• Problems:

‣ Not publicly verifiable
‣ Not scalable: O(n3) communication / computation complexity

Talk Outline
• Motivation

• Two Randomness Protocols
‣ RandHound
‣ RandHerd

• Implementation, Experimental Results and Current Deployment

• Conclusions

 15

RandHound
• Goals

‣ Verifiability: By third parties
‣ Scalability: Performance better than O(n3)

• Client/server randomness
scavenging protocol
‣ Untrusted client uses a large set of nearly-

stateless servers
‣ On demand (via configuration file)
‣ One-shot approach

 16

Client

Servers

verifiable
randomness

RandHound
• Scenario

‣ Lottery authority wants to pick a winner in a
fair and verifiable process

• Setup
‣ Run: announced in advance, publicly

available config
‣ Client: lottery authority
‣ Servers: a set of reputable and

independent parties
‣ Output: randomness + third-party proof

 17

Lottery Authority

Participating Servers

verifiable
choice

RandHound
Achieving Public Verifiability

• Publicly-VSS (Schoenmakers, 1999)
‣ Shares are encrypted and publicly verifiable

through zero-knowledge proofs
‣ No communication between servers

• CoSi Collective signing (Syta, 2016)
‣ Client publicly commits to their choices
‣ Any aggregate, threshold, or multi-signature

• Create protocol transcript from all
sent/received (signed) messages 18

Client

PVSS-Servers

randomness &
transcript

RandHound
Achieving Scalability

• Shard participants into constant size groups
‣ Secret sharing with everyone too expensive!
‣ Run secret sharing (only) inside groups
‣ Collective randomness: combination of  

all group outputs

Chicken-and-Egg problem?

• How to securely assign participants to
groups?

 19

PVSS 
group 1

PVSS 
group 2

Client

Servers

randomness &
transcript

RandHound
Solving the Chicken-and-Egg Problem

• Client selects server grouping

• Availability might be affected (self-DoS)

• Security properties through
‣ Pigeonhole principle: at least one group  

is not controlled by the adversary
‣ Collective signing: prevents client equivocation

by fixing the secrets that contribute to randomness

 20

Client
randomness &

transcript

PVSS 
group 1

PVSS 
group 2

Servers

RandHound

 21

1. Initialization (C) 
Send session config,

divide servers into PVSS groups

2. Share Distribution (S)
Send encrypted PVSS shares,

CoSi commits

…

… …

…

…(E0j,p0j) = pvss_share(Z0), 
V0

PVSS
group 1

PVSS
group 2

session_config

RandHound

 22

3. Secret Commitment (C) 
Verify PVSS shares,

CoSi challenge: client commits to secrets

4. Secret Acknowledgement (S)
Verify commitment,

send (partial) CoSi responses

r0 = v0 - cx0 

…

… …

…

…… …

…

(E00,P00)
(E01,P01)
(E02,P02)

(E00,P00) (E02,P02)

(E01,P01)

c = H(∏i(Vi) || “chosen secrets”)

RandHound

 23

5. Decryption Request (C)
Request PVSS share decryption:  

(aggregate) CoSi responses

6. Share Decryption (S)
Verify CoSi response,

If ok: decrypt valid PVSS shares

r = ∑i(ri): aggregate CoSi resp.

r :(E00,P00)

…

… …

…

…(D00,Q00)dec

RandHound

 24

7. Recover Randomness (C)
Verify decrypted PVSS shares,

compute collective randomness

(D00,Q00)
(D01,Q01)
(D02,Q02)

Z = ∏(Zi):
L:

randomness
protocol log

Verify Randomness (anyone)
‣ Use a protocol log (transcript) L to verify

randomness Z
‣ Replay and check all steps
‣ Accept if all correct

Z = recover(D00,D01,D02)
Output

Public Randomness is (not so) Hard

 25

Availability Unpredictability Unbiasability Verifiability Scalability

Strawman I

Strawman II

Strawman III

RandShare

RandHound

Communication / computation complexity: O(c2n)

RandHerd
• Goals

‣ Continuous, leader-coordinated
randomness generation

‣ Small randomness proof size  
(a single Schnorr signature)

‣ Better performance than O(n)

• Decentralized randomness beacon
‣ Built as a collective authority or cothority
‣ Randomness on demand, at frequent

intervals, or both

 26

Leader

Participants

verifiable
randomness

A collective authority

Availability
assumption only

RandHerd
Achieving RandHerd’s Goals

• Idea
‣ Collective randomness = collective Schnorr

signature
‣ Benefits: Small proofs, O(log n) complexity

• Problem
‣ Failing nodes influence output!
‣ If some nodes unavailable, then the signature not

a function of everyone’s input

 27

Leader

Participants

verifiable
randomness

A collective authority

RandHerd
Achieving RandHerd’s Goals

• Solution
‣ Arrange nodes into (t,n)-threshold Schnorr

signing (Stinson, 2001) groups (failure
resistance)

‣ Collective randomness = aggregate group
signatures

‣ Approach: Setup + round function

 28

Leader

Participants

verifiable
randomness

A collective authority

 29

RandHerd Setup

Leader

Servers
2.

Nodes
1.

X = X0X1X2  
(c,r)

4.
X1

X0 X2

3.

TSS group 0

TSS group 1 TSS group 2

• Goal: secure prep for RandHerd
Round

• Executed once followed by many
rounds of randomness

• Consists of 4 steps

 30

1. Leader Election 
Elect a temporary leader via lowest ticket  

ti = VRF(config, keyi)

Server group 1 Server group 2

Client
(temporary RandHerd Leader)

2. Sharding
Run RandHound to produce  

(Z,L) as sharding seed

RandHerd Setup

 31

3. Group Setup 
Create TSS groups using Z and

generate group keys Xi

RandHerd Setup

CL

TSS group 2 TSS group 3

TSS group 1

GLGL

4. Collective RandHerd Key
Certify aggregate public key X using CoSi

X1
X0 X2

X = X0X1X2  

(c,r)

collective
randomness

RandHerd Round

CL

TSS group 1 TSS group 2

TSS group 0

GLGL

 32

Randomness Generation

1.Cothority Leader (CL) broadcasts timestamp v

2.TSS-CoSi
a. Produce group Schnorr signatures (c,r0) (c,r1) (c,r2) on v
b. At least 2f+1 nodes fix and certify challenge c using CoSi
c. Aggregate into collective Schnorr signature (c,r = r0+r1+r2)
d. Publish (c,r) as collective randomness

(c,r0)

(c,r1) (c,r2)

(c,r)

collective
randomness

RandHerd Round

CL

TSS group 1 TSS group 2

TSS group 0

GLGL

 33

Randomness Verification

1.RandHerd produces a simple Schnorr signature

2.Anyone can efficiently verify (c,r) on v using the
collective public key X = X0X1X2

3.Single signature verification!

Public Randomness is (not so) Hard

 34

Availability Unpredictability Unbiasability Verifiability Scalability

Strawman I

Strawman II

Strawman III

RandShare

RandHound

RandHerd

Communication / computation complexity: O(c2log(n))

Talk Outline
• Motivation

• Two Randomness Protocols
‣ RandHound
‣ RandHerd

• Implementation, Experimental Results and Current Deployment

• Conclusions

 35

Implementation & Experiments
Implementation

• Go versions of DLEQ-proofs,
PVSS, TSS, CoSi-TSS,
RandHound, RandHerd

• Based on DEDIS code
‣ Crypto library
‣ Network library
‣ Cothority framework

• https://github.com/dedis
 36

DeterLab Setup

• 32 physical machines
‣ Intel Xeon E5-2650 v4  

(24 cores @ 2.2 GHz)
‣ 64 GB RAM
‣ 10 Gbps network link

• Network restrictions
‣ 100 Mbps bandwidth
‣ 200 ms round-trip latency

https://github.com/dedis

Experimental Results – RandHound

 37Randomness generation and verification time

Experimental Results – RandHound

 38Randomness generation and verification time

Take-away: In a RandHound run with 1024 nodes and group size 32,
generation takes 290 sec and verification takes 160 sec.

Experimental Results – RandHound

 39CPU cost for the client and the servers

Experimental Results – RandHound

 40CPU cost for the client and the servers

Take-away: Total cost for 1 RandHound run is 10 CPU min (EC2: < $0.02) with
1024 nodes, group size 32.

Experimental Results – RandHerd

 41Randomness generation time

Experimental Results – RandHerd

 42Randomness generation time

Take-away: Generation time for 1 RandHerd run with is 6 sec, after setup (10
mins) with 1024 nodes, group size 32.

drand
Proof-of-concept Randomness-as-a-Service

 43

https://github.com/dedis/drand

Nicolas Gailly
nicolas.gailly@epfl.ch

https://github.com/dedis/drand

drand: the protocol
• Implements the logic of RandHerd (leaderless, pairing-based crypto)

• Setup
‣ Threshold Distributed Key Generation (DKG) (Gennaro, 2007)
‣ Collective public key and each node has a share of the private key
‣ Can refresh shares without changing the public key (Wong, 2002)

• Randomness Generation
‣ Threshold Boneh-Lynn-Shacham (BLS) signature
‣ Each node requests a partial signature, waits for at least t responses and reconstructs
‣ First sign fixed seed and then the randomness from previous round

 44

1. Request

2. Response

3. Reconstruction

drand: the software
• Implemented in Go, open source (on GitHub)

• Meant to be very simple
‣ 1 command for setup as well as generation
‣ JSON API to fetch randomness (browser!)
‣ Docker container provided

• Deployment
‣ EPFL, NIST, Cloudflare, Kudelski Security and hopefully others to run drand nodes

 45

Conclusion
• Generation of public randomness: trust and scale issues

• Our solution: two protocols in the (t,n)-threshold security model

• Code: https://github.com/dedis/cothority

 46

Availability Unpredictability Unbiasability Verifiability Scalability Complexity

RandHound O(n)

RandHerd O(log(n))

https://github.com/dedis/cothority

Talk Outline

Scalable Bias-Resistant Distributed Randomness

OmniLedger: A Secure, Scale-Out, Decentralized
Ledger via Sharding

 47

2017 IEEE Symposium on Security and Privacy

2018 IEEE Symposium on Security and Privacy

Talk Outline

• Motivation

• OmniLedger

• Evaluation

• Conclusion

 48

Talk Outline

• Motivation

• OmniLedger

• Evaluation

• Conclusion

 49

 50

Scaling Blockchains is More Important Than Ever …

CryptoKitties

The Core of Bitcoin: Nakamoto Consensus
Drawbacks
• Transaction confirmation delay

‣ Bitcoin: Any tx takes >10 mins until confirmed

• Low throughput
‣ Bitcoin: ~4 tx/sec

• Weak consistency
‣ Bitcoin: You are not really certain your tx is

committed until you wait >1 hour

• Proof-of-work mining
‣ Wastes huge amount of energy

The Bitcoin p2p network

The Bitcoin blockchain

}10 mins

} 1 MB blocks

 51

Miner of the
latest block

“Permanently”
committed

transactions

… But Scaling Blockchains is Not Easy

 52

The Bitcoin p2p networkMiner of
latest block

Cannot just add

more hardware for

 better performance!

The Bitcoin blockchain
}

Still
10 mins

} Still 1 MB
blocks

“Permanently”
committed

transactions

What we Want: Scale-Out Performance

Scale-out: Throughput increases linearly with the available resources.
 53

Th
ro

ug
hp

ut
 [t

x/
se

c]

Number of Validators
n 2n 3n 4n 5n 6n

Ideal system
Bitcoin

Towards Scale-Out Performance via Sharding

• Concept:

‣ Validators are grouped into distinct subsets

‣ Each subset processes different transactions

‣ Achieves parallelization and therefore scale-out

• But:

‣ How to assign validators to shards?

‣ How to send transactions across shards?

Blockchain 1

Blockchain 2

Transactions

Transactions

!54

Ela
sti

co

L. Luu et al., A Secure Sharding
Protocol for Open Blockchains,
CCS 2016

Distributed Ledger Landscape

 55

Decentralization

Scale-Out Security

ByzCoin

E. Kokoris Kogias et al., Enhancing
Bitcoin Security and Performance with
Strong Consistency via Collective Signing,
USENIX Security 2016

OmniLedger

RSCoin

G. Danezis and S. Meiklejohn, Centrally Banked Cryptocurrencies, NDSS 2016

Talk Outline

• Motivation

• OmniLedger

• Evaluation

• Conclusion

 56

OmniLedger – Design Goals

 57

1. Full Decentralization
No trusted third parties or

single points of failure

2. Shard Robustness
Shards process txs

correctly and continuously

3. Secure Transactions
Txs commit atomically or

abort eventually

Security Goals

4. Scale-out
Throughput increases linearly in
the number of active validators

5. Low Storage
Validators do not need to store

the entire shard tx history

6. Low Latency
Tx are confirmed quickly

Performance Goals

Assumptions: <= 25% mildly adaptive Byzantine adversary, (partially) synchronous network, UTXO model

Strawman: SimpleLedger

 58

Shard coordinatorOverview

• Evolves in epochs e

• Trusted source releases shard
configuration confe

• Validators:

‣ Bootstrap from the shard ledger
according to confe

‣ Process transactions in parallel using
per-shard consensus (ByzCoin) Shard

ledgers

Validators

confe

Shard 1
(ByzCoin group)

Shard 3
(ByzCoin group)

Shard 2
(ByzCoin group)

Strawman: SimpleLedger

 59

Security Drawbacks

• Shard coordinator: trusted third party

• No tx processing during validator re-assignment

• No cross-shard tx support

Performance Drawbacks

• ByzCoin failure mode

• High storage and bootstrapping cost

• Throughput vs. latency trade-off
Shard 1

(ByzCoin group)
Shard 3

(ByzCoin group)
Shard 2

(ByzCoin group)

Shard
ledgers

Validators

Shard coordinator

confe

Roadmap

 60
OmniLedger

SimpleLedger

Randomized sharding

Secure system reconfigurations

Atomic cross-shard transactions

Failure-resistant Byzantine consensus

Blockchain pruning

High-throughput low-latency transaction validation

Security

Performance

Roadmap

 61
OmniLedger

SimpleLedger

Randomized sharding

Secure system reconfigurations

Atomic cross-shard transactions

Failure-resistant Byzantine consensus

Blockchain pruning

High-throughput low-latency transaction validation

Security

Performance

Roadmap

 62
OmniLedger

SimpleLedger

Randomized sharding

Secure system reconfigurations

Atomic cross-shard transactions

Failure-resistant Byzantine consensus

Blockchain pruning

High-throughput low-latency transaction validation

Security

Performance

Shard Validator Assignment
• How to assign validators to shards?

‣ Deterministically: Adversary can use
predictable assignments to his advantage

‣ Randomly: Adversary cannot control or
predict assignment

• How to ensure long-term shard security
against an adaptive adversary?

‣ Make shards large enough

‣ Periodically re-assign validators to shards

 63

Shard Validator Assignment

 64

Temp.
leader

Verifiable
randomness rnde

PVSS 
group 1

PVSS 
group 2

2. Randomness generation
via RandHound

1. Temp. leader election  
via VRFs

Validators

3. Shard assignment
(using rnde)

Validators
(sharded)

• Challenge: Unbiasable, unpredictable and scalable shard validator assignment

• Solution: Combine VRF-based lottery and unbiasable randomness protocol for sharding

Roadmap

 65
OmniLedger

SimpleLedger

Randomized sharding

Secure system reconfigurations

Atomic cross-shard transactions

Failure-resistant Byzantine consensus

Blockchain pruning

High-throughput low-latency transaction validation

Security

Performance

Problem: Does not work in a Byzantine setting as malicious nodes can always abort.

Coordinator Server

Vote yes / no

Query to commit

Commit / rollback

Acknowledgement

{Voting phase

{Completion phase

Two-Phase Commits

 66

Atomix: Secure Cross-Shard Transactions

 67

1 2 3

Client

(1) Initialize

tx tx

cross-shard

transaction tx

inputs outputs

1 3

2

Shards

• Challenge: Cross-shard transactions commit atomically or abort eventually

• Solution: Atomix, a secure cross-shard transaction protocol (utilizing secure BFT shards)

(3b) Rollback(2b) Lock

1 2 3

Client

ACK1 ERR2

1 2 3

Client

reclaim tx inputs

Shards Shards

(3a) Commit(2a) Lock

1 2 3

Client

ACK1 ACK2

1 2 3

Client

commit tx

ShardsShards

Roadmap

 68
OmniLedger

SimpleLedger

Randomized sharding

Secure system reconfigurations

Atomic cross-shard transactions

Failure-resistant Byzantine consensus

Blockchain pruning

High-throughput low-latency transaction validation

Security

Performance

• Challenge: Latency vs. throughput trade-off

• Solution: Two-level “trust-but-verify” validation to get low latency and high throughput

Trust-but-Verify Transaction Validation

 69

core

validatorsoptimistic

validators

clients

tx

tx

tx

shard ledger

large (e.g., 16MB),

re-validated blocks

small (e.g., 500KB)
optimistically validated blocks

Talk Outline

• Motivation

• OmniLedger

• Evaluation

• Conclusion

 70

Implementation & Experimental Setup
Implementation

• Go versions of OmniLedger and its
subprotocols (ByzCoinX, Atomix, etc.)

• Based on DEDIS code
‣ Kyber crypto library
‣ Onet network library
‣ Cothority framework

• https://github.com/dedis

 71

DeterLab Setup

• 48 physical machines
‣ Intel Xeon E5-2420 v2  

(6 cores @ 2.2 GHz)
‣ 24 GB RAM
‣ 10 Gbps network link

• Realistic network configurations
‣ 20 Mbps bandwidth
‣ 200 ms round-trip latency

https://github.com/dedis

Evaluation: Scale-Out

 72

Th
ro

ug
hp

ut
 [t

x/
se

c]

1

10

100

1,000

10,000

100,000

Number of Validators / Number of Shards
70 / 1 140 / 2 280 / 4 560 / 8 1120 / 16

4 4 4 4 4

439
869

1,674
3,240

5,850

OmniLedger
Bitcoin

For a 12.5%-adversary

Evaluation: Maximum Throughput

Results for 1800 validators 73

#shards, adversary 4, 1% 25, 5% 70, 12.5% 600, 25%

OmniLedger
regular 1.38 5.99 8.04 14.52

OmniLedger
confirmation 1.38 1.38 1.38 4.48

OmniLedger
consistency 1.38 55.89 41.89 62.96

Bitcoin
confirmation 600 600 600 600

Bitcoin
consistency 3600 3600 3600 3600

Transaction confirmation latency in seconds for regular and mutli-level validation

latency increase since optimistically validated blocks are batched
into larger blocks for final validation to get better throughput

1 MB blocks

500 KB blocks

16 MB blocks

1 MB blocks

!74

Evaluation: Latency

1 MB blocks

Talk Outline

• Motivation

• OmniLedger

• Experimental Results

• Conclusion

 75

Conclusion
• OmniLedger – Secure scale-out distributed ledger framework

‣ Sharding via unbiasable randomness for linearly-scaling throughput

‣ Atomix: Client-managed cross-shard transactions

‣ ByzCoinX: Robust intra-shard BFT consensus

‣ Trust-but-verify validation for low latency  
and high throughput

‣ For PoW, PoS, permissioned, etc.

• Paper: ia.cr/2017/406 (published at IEEE S&P’18)

• Code: https://github.com/dedis

 76

Shard 1
(ByzCoinX group)

Shard 3
(ByzCoinX group)

Shard 2
(ByzCoinX group)

Validators

Shard
ledgers

Client
(Atomix coordinator)

tx3,out

tx2,in

tx1,in

Epoch randomness rnde
(RandHound)

https://ia.cr/2017/406
https://github.com/dedis

Thank you!

Questions?

 77

Ewa Syta
ewa.syta@trincoll.edu

mailto:ewa.syta@trincoll.edu

