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Public Randomness
• Different from secret randomness 

‣ Secret randomness used for cryptographic keys, for example 

• Collectively used 

• Unpredictable ahead of time  

• Not secret past a certain point in time 

• Entropy is not enough

 7



Applications of Public Randomness
• Random selection

‣ lotteries, sweepstakes, jury selection, voting and election audits 

• Games 
‣ shuffled decks, team assignments 

• Crypto 
‣ challenges, authentication, cut-and-choose methods, “nothing up my sleeves” numbers 

• Protocols 
‣ leader election for consensus protocols (PoS), sharding (OmniLedger), Tor (path 

selection)
 8



Failed / Rigged Randomness
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Vietnam War Lotteries (1969)



Public Randomness is not New
• 1955: Large table of random 

numbers published as a book by the 
Rand Corporation 

• Today: Generating public random 
numbers is (still) hard 

• Main issues: trust and scale
‣ Both, in generation and usage
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Goals
1. Availability

Successful protocol 
termination for up to 

f=t-1 malicious nodes.
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2. Unpredictability
Output not revealed 

prematurely.
3. Unbiasability

Output distributed 
uniformly at random.

4. Verifiability
Output correctness 
can be checked by 

third parties.

5. Scalability
Executable with 

hundreds of 
participants.Decentralized, 

public randomness 
in the (t,n)-threshold 

security model

Assumptions: n= 3f +1, Byzantine adversary and asynchronous network with eventual message delivery



Public Randomness Approaches
• With Trusted Third Party 
‣ NIST Randomness Beacon 

• Without TTP 
Unusual assumptions 
‣ Bitcoin (Bonneau, 2015) 
‣ Slow cryptographic hash functions (Lenstra, 2015) 
‣ Lotteries (Baigneres, 2015) 
‣ Financial data (Clark, 2010) 

(t,n)-threshold security model but not scalable 
‣ Coin-flipping (Cachin, 2015) 
‣ Distributed key generation (Kate, 2009)
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Public Randomness is Hard

Strawman I
• Idea: Combine random 

inputs of all participants. 
• Problem: Last node fully 

controls output.
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Strawman II
• Idea: Commit-then-reveal 

random inputs. 
• Problem: Dishonest nodes 

can choose not to reveal.

Strawman III
• Idea: Secret-share random 

inputs. 
• Problem: Dishonest nodes 

can send bad shares.

Availability Unpredictability Unbiasability Verifiability Scalability

Strawman I

Strawman II

Strawman III



Public Randomness is Hard
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Availability Unpredictability Unbiasability Verifiability Scalability

Strawman I

Strawman II

Strawman III

RandShare

RandShare
• Idea: Strawman III + verifiable secret sharing (Feldman, 1987) 
• Problems:  

‣ Not publicly verifiable 
‣ Not scalable: O(n3) communication / computation complexity
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RandHound
• Goals 

‣ Verifiability: By third parties 
‣ Scalability: Performance better than O(n3) 

• Client/server randomness 
scavenging protocol 
‣ Untrusted client uses a large set of nearly-

stateless servers 
‣ On demand (via configuration file) 
‣ One-shot approach
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Client

Servers
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randomness



RandHound
• Scenario 

‣ Lottery authority wants to pick a winner in a 
fair and verifiable process 

• Setup 
‣ Run: announced in advance, publicly 

available config 
‣ Client: lottery authority 
‣ Servers: a set of reputable and 

independent parties 
‣ Output: randomness + third-party proof
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Lottery Authority

Participating Servers

verifiable  
choice



RandHound 
Achieving Public Verifiability

• Publicly-VSS (Schoenmakers, 1999) 
‣ Shares are encrypted and publicly verifiable 

through zero-knowledge proofs 
‣ No communication between servers 

• CoSi Collective signing (Syta, 2016) 
‣ Client publicly commits to their choices 
‣ Any aggregate, threshold, or multi-signature 

• Create protocol transcript from all 
sent/received (signed) messages  18

Client

PVSS-Servers

randomness &  
transcript



RandHound
Achieving Scalability

• Shard participants into constant size groups 
‣ Secret sharing with everyone too expensive! 
‣ Run secret sharing (only) inside groups 
‣ Collective randomness: combination of  

all group outputs 

Chicken-and-Egg problem?

• How to securely assign participants to 
groups?
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PVSS 
group 1

PVSS 
group 2

Client

Servers

randomness &  
transcript



RandHound
Solving the Chicken-and-Egg Problem

• Client selects server grouping 

• Availability might be affected (self-DoS) 

• Security properties through 
‣ Pigeonhole principle: at least one group  

is not controlled by the adversary 
‣ Collective signing: prevents client equivocation    

by fixing the secrets that contribute to randomness

 20

Client
randomness &  

transcript

PVSS 
group 1

PVSS 
group 2

Servers



RandHound
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1. Initialization (C) 
Send session config,  

divide servers into PVSS groups

2. Share Distribution (S)
Send encrypted PVSS shares,  

CoSi commits

…

… …

…

…(E0j,p0j) = pvss_share(Z0), 
V0

PVSS  
group 1

PVSS  
group 2

session_config



RandHound
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3. Secret Commitment (C) 
Verify PVSS shares,  

CoSi challenge: client commits to secrets

4. Secret Acknowledgement (S)
Verify commitment,  

send (partial) CoSi responses

r0 = v0 - cx0 

…

… …

…

…… …

…

(E00,P00) 
(E01,P01) 
(E02,P02)

(E00,P00) (E02,P02)

(E01,P01)

c = H(∏i(Vi) || “chosen secrets”)



RandHound
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5. Decryption Request (C)
Request PVSS share decryption:  

(aggregate) CoSi responses

6. Share Decryption (S)
Verify CoSi response,  

If ok: decrypt valid PVSS shares

r = ∑i(ri): aggregate CoSi resp.

r   :(E00,P00)

…

… …

…

…(D00,Q00)dec



RandHound
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7. Recover Randomness (C)
Verify decrypted PVSS shares,  

compute collective randomness

(D00,Q00) 
(D01,Q01) 
(D02,Q02) 

Z = ∏(Zi): 
L:

randomness 
protocol log

Verify Randomness (anyone)
‣ Use a protocol log (transcript) L to verify 

randomness Z 
‣ Replay and check all steps 
‣ Accept if all correct 

Z = recover(D00,D01,D02)
Output



Public Randomness is (not so) Hard
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Availability Unpredictability Unbiasability Verifiability Scalability

Strawman I

Strawman II

Strawman III

RandShare

RandHound

Communication / computation complexity: O(c2n)



RandHerd
• Goals 

‣ Continuous, leader-coordinated 
randomness generation 

‣ Small randomness proof size  
(a single Schnorr signature) 

‣ Better performance than O(n) 

• Decentralized randomness beacon 
‣ Built as a collective authority or cothority 
‣ Randomness on demand, at frequent 

intervals, or both
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Leader

Participants

verifiable  
randomness

A collective authority

Availability 
assumption only



RandHerd
Achieving RandHerd’s Goals

• Idea 
‣ Collective randomness = collective Schnorr 

signature 
‣ Benefits: Small proofs, O(log n) complexity 

• Problem 
‣ Failing nodes influence output! 
‣ If some nodes unavailable, then the signature not 

a function of everyone’s input 

 27

Leader

Participants

verifiable  
randomness

A collective authority



RandHerd
Achieving RandHerd’s Goals

• Solution 
‣ Arrange nodes into (t,n)-threshold Schnorr 

signing (Stinson, 2001) groups (failure 
resistance) 

‣ Collective randomness = aggregate group 
signatures 

‣ Approach: Setup + round function
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Leader

Participants

verifiable  
randomness

A collective authority
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RandHerd Setup

Leader

Servers
2.

Nodes
1.

X = X0X1X2  
(c,r)

4.
X1

X0 X2

3.

TSS group 0

TSS group 1 TSS group 2

• Goal: secure prep for RandHerd 
Round 

• Executed once followed by many 
rounds of randomness  

• Consists of 4 steps
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1. Leader Election 
Elect a temporary leader via lowest ticket  

ti = VRF(config, keyi)

Server group 1 Server group 2

Client 
(temporary RandHerd Leader)

2. Sharding
Run RandHound to produce  

(Z,L) as sharding seed

RandHerd Setup
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3. Group Setup 
Create TSS groups using Z and 

generate group keys Xi

RandHerd Setup

CL

TSS group 2 TSS group 3

TSS group 1

GLGL

4. Collective RandHerd Key
Certify aggregate public key X using CoSi

X1
X0 X2

X = X0X1X2  



(c,r)

collective  
randomness

RandHerd Round

CL

TSS group 1 TSS group 2

TSS group 0

GLGL
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Randomness Generation

1.Cothority Leader (CL) broadcasts timestamp v 

2.TSS-CoSi  
a. Produce group Schnorr signatures (c,r0) (c,r1) (c,r2) on v
b. At least 2f+1 nodes fix and certify challenge c using CoSi
c. Aggregate into collective Schnorr signature (c,r = r0+r1+r2)
d. Publish (c,r) as collective randomness

(c,r0)

(c,r1) (c,r2)



(c,r)

collective  
randomness

RandHerd Round

CL

TSS group 1 TSS group 2

TSS group 0

GLGL
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Randomness Verification

1.RandHerd produces a simple Schnorr signature 

2.Anyone can efficiently verify (c,r) on v using the 
collective public key X = X0X1X2

3.Single signature verification!



Public Randomness is (not so) Hard
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Availability Unpredictability Unbiasability Verifiability Scalability

Strawman I

Strawman II

Strawman III

RandShare

RandHound

RandHerd

Communication / computation complexity: O(c2log(n))
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Implementation & Experiments
Implementation

• Go versions of DLEQ-proofs, 
PVSS, TSS, CoSi-TSS, 
RandHound, RandHerd 

• Based on DEDIS code 
‣ Crypto library 
‣ Network library 
‣ Cothority framework 

• https://github.com/dedis
 36

DeterLab Setup

• 32 physical machines 
‣ Intel Xeon E5-2650 v4  

(24 cores @ 2.2 GHz) 
‣ 64 GB RAM 
‣ 10 Gbps network link 

• Network restrictions 
‣ 100 Mbps bandwidth 
‣ 200 ms round-trip latency

https://github.com/dedis


Experimental Results – RandHound

 37Randomness generation and verification time



Experimental Results – RandHound
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Take-away: In a RandHound run with 1024 nodes and group size 32, 
generation takes 290 sec and verification takes 160 sec. 



Experimental Results – RandHound

 39CPU cost for the client and the servers



Experimental Results – RandHound

 40CPU cost for the client and the servers

Take-away: Total cost for 1 RandHound run is 10 CPU min (EC2: < $0.02) with 
1024 nodes, group size 32.



Experimental Results – RandHerd

 41Randomness generation time



Experimental Results – RandHerd

 42Randomness generation time

Take-away: Generation time for 1 RandHerd run with is 6 sec, after setup (10 
mins) with 1024 nodes, group size 32.



drand
Proof-of-concept Randomness-as-a-Service
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https://github.com/dedis/drand

Nicolas Gailly 
nicolas.gailly@epfl.ch 

https://github.com/dedis/drand


drand: the protocol
• Implements the logic of RandHerd (leaderless, pairing-based crypto) 

• Setup 
‣ Threshold Distributed Key Generation (DKG) (Gennaro, 2007) 
‣ Collective public key and each node has a share of the private key 
‣ Can refresh shares without changing the public key (Wong, 2002) 

• Randomness Generation 
‣ Threshold Boneh-Lynn-Shacham (BLS) signature  
‣ Each node requests a partial signature, waits for at least t responses and reconstructs
‣ First sign fixed seed and then the randomness from previous round

 44

1. Request 

2. Response 

3. Reconstruction 



drand: the software
• Implemented in Go, open source (on GitHub) 

• Meant to be very simple 
‣ 1 command for setup as well as generation 
‣ JSON API to fetch randomness (browser!) 
‣ Docker container provided 

• Deployment 
‣ EPFL, NIST, Cloudflare, Kudelski Security and hopefully others to run drand nodes
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Conclusion
• Generation of public randomness: trust and scale issues 

• Our solution: two protocols in the (t,n)-threshold security model 

• Code: https://github.com/dedis/cothority 

 46

Availability Unpredictability Unbiasability Verifiability Scalability Complexity

RandHound O(n)

RandHerd O(log(n))

https://github.com/dedis/cothority
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 50

Scaling Blockchains is More Important Than Ever …

CryptoKitties



The Core of Bitcoin: Nakamoto Consensus
Drawbacks
• Transaction confirmation delay 

‣ Bitcoin: Any tx takes >10 mins until confirmed 

• Low throughput 
‣ Bitcoin: ~4 tx/sec 

• Weak consistency 
‣ Bitcoin: You are not really certain your tx is 

committed until you wait >1 hour 

• Proof-of-work mining 
‣ Wastes huge amount of energy

The Bitcoin p2p network

The Bitcoin blockchain

}10 mins

} 1 MB blocks

 51

Miner of the 
latest block

“Permanently” 
committed  

transactions



… But Scaling Blockchains is Not Easy
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The Bitcoin p2p networkMiner of  
latest block

Cannot just add 

more hardware for


 better performance!

The Bitcoin blockchain
}

Still  
10 mins

} Still 1 MB  
blocks

“Permanently”  
committed  

transactions



What we Want: Scale-Out Performance

Scale-out: Throughput increases linearly with the available resources.
 53
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Number of Validators
n 2n 3n 4n 5n 6n

Ideal system
Bitcoin



Towards Scale-Out Performance via Sharding

• Concept: 

‣ Validators are grouped into distinct subsets


‣ Each subset processes different transactions


‣ Achieves parallelization and therefore scale-out


• But: 

‣ How to assign validators to shards?


‣ How to send transactions across shards?

Blockchain 1

Blockchain 2

Transactions

Transactions

!54



Ela
sti

co

L. Luu et al., A Secure Sharding 
Protocol for Open Blockchains, 
CCS 2016

Distributed Ledger Landscape
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Decentralization

Scale-Out Security

ByzCoin

E. Kokoris Kogias et al., Enhancing 
Bitcoin Security and Performance with 
Strong Consistency via Collective Signing, 
USENIX Security 2016

OmniLedger

RSCoin

G. Danezis and S. Meiklejohn, Centrally Banked Cryptocurrencies, NDSS 2016
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OmniLedger – Design Goals
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1. Full Decentralization 
No trusted third parties or 

single points of failure

2. Shard Robustness 
Shards process txs 

correctly and continuously

3. Secure Transactions 
Txs commit atomically or 

abort eventually

Security Goals

4. Scale-out 
Throughput increases linearly in 
the number of active validators

5. Low Storage 
Validators do not need to store 

the entire shard tx history

6. Low Latency 
Tx are confirmed quickly

Performance Goals

Assumptions: <= 25% mildly adaptive Byzantine adversary, (partially) synchronous network, UTXO model



Strawman: SimpleLedger
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Shard coordinatorOverview

• Evolves in epochs e 

• Trusted source releases shard 
configuration confe 

• Validators: 

‣ Bootstrap from the shard ledger 
according to confe 

‣ Process transactions in parallel using 
per-shard consensus (ByzCoin) Shard 

ledgers

Validators

confe

Shard 1
(ByzCoin group)

Shard 3
(ByzCoin group)

Shard 2
(ByzCoin group)



Strawman: SimpleLedger
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Security Drawbacks

• Shard coordinator: trusted third party 

• No tx processing during validator re-assignment 

• No cross-shard tx support 

Performance Drawbacks

• ByzCoin failure mode 

• High storage and bootstrapping cost 

• Throughput vs. latency trade-off
Shard 1

(ByzCoin group)
Shard 3

(ByzCoin group)
Shard 2

(ByzCoin group)

Shard 
ledgers

Validators

Shard coordinator

confe
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High-throughput low-latency transaction validation

Security

Performance
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Shard Validator Assignment
• How to assign validators to shards? 

‣ Deterministically: Adversary can use 
predictable assignments to his advantage 

‣ Randomly: Adversary cannot control or 
predict assignment 

• How to ensure long-term shard security 
against an adaptive adversary?

‣ Make shards large enough 

‣ Periodically re-assign validators to shards

 63



Shard Validator Assignment
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Temp.  
leader

Verifiable  
randomness rnde

PVSS 
group 1

PVSS 
group 2

2. Randomness generation  
via RandHound

1. Temp. leader election  
via VRFs 

Validators

3. Shard assignment  
(using rnde)

Validators 
(sharded)

• Challenge: Unbiasable, unpredictable and scalable shard validator assignment 

• Solution: Combine VRF-based lottery and unbiasable randomness protocol for sharding



Roadmap
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SimpleLedger

Randomized sharding

Secure system reconfigurations

Atomic cross-shard transactions

Failure-resistant Byzantine consensus

Blockchain pruning

High-throughput low-latency transaction validation

Security

Performance



Problem: Does not work in a Byzantine setting as malicious nodes can always abort.

Coordinator Server

Vote yes / no

Query to commit

Commit / rollback

Acknowledgement

{Voting phase

{Completion phase

Two-Phase Commits
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Atomix: Secure Cross-Shard Transactions
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1 2 3

Client

(1) Initialize

tx tx

cross-shard 

transaction tx

inputs outputs

1 3

2

Shards

• Challenge: Cross-shard transactions commit atomically or abort eventually 

• Solution: Atomix, a secure cross-shard transaction protocol (utilizing secure BFT shards)

(3b) Rollback(2b) Lock

1 2 3

Client

ACK1 ERR2

1 2 3

Client

reclaim tx inputs

Shards Shards

(3a) Commit(2a) Lock

1 2 3

Client

ACK1 ACK2

1 2 3

Client

commit tx

ShardsShards
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SimpleLedger

Randomized sharding

Secure system reconfigurations

Atomic cross-shard transactions

Failure-resistant Byzantine consensus

Blockchain pruning

High-throughput low-latency transaction validation

Security

Performance



• Challenge: Latency vs. throughput trade-off 

• Solution: Two-level “trust-but-verify” validation to get low latency and high throughput

Trust-but-Verify Transaction Validation

 69

core

validatorsoptimistic


validators

clients

tx

tx

tx

shard ledger

large (e.g., 16MB), 

re-validated blocks

small (e.g., 500KB) 
optimistically validated blocks
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Implementation & Experimental Setup
Implementation

• Go versions of OmniLedger and its 
subprotocols (ByzCoinX, Atomix, etc.) 

• Based on DEDIS code 
‣ Kyber crypto library 
‣ Onet network library 
‣ Cothority framework 

• https://github.com/dedis
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DeterLab Setup

• 48 physical machines 
‣ Intel Xeon E5-2420 v2  

(6 cores @ 2.2 GHz) 
‣ 24 GB RAM 
‣ 10 Gbps network link 

• Realistic network configurations 
‣ 20 Mbps bandwidth 
‣ 200 ms round-trip latency

https://github.com/dedis


Evaluation: Scale-Out
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1

10

100

1,000

10,000

100,000

Number of Validators / Number of Shards
70 / 1 140 / 2 280 / 4 560 / 8 1120 / 16

4 4 4 4 4

439
869

1,674
3,240

5,850

OmniLedger
Bitcoin

For a 12.5%-adversary



Evaluation: Maximum Throughput

Results for 1800 validators  73



#shards, adversary 4, 1% 25, 5% 70, 12.5% 600, 25%

OmniLedger  
regular 1.38 5.99 8.04 14.52

OmniLedger 
confirmation 1.38 1.38 1.38 4.48

OmniLedger 
consistency 1.38 55.89 41.89 62.96

Bitcoin 
confirmation 600 600 600 600

Bitcoin 
consistency 3600 3600 3600 3600

Transaction confirmation latency in seconds for regular and mutli-level validation

latency increase since optimistically validated blocks are batched 
into larger blocks for final validation to get better throughput

1 MB blocks

500 KB blocks

16 MB blocks

1 MB blocks

!74

Evaluation: Latency

1 MB blocks
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Conclusion
• OmniLedger – Secure scale-out distributed ledger framework 

‣ Sharding via unbiasable randomness for linearly-scaling throughput 

‣ Atomix: Client-managed cross-shard transactions 

‣ ByzCoinX: Robust intra-shard BFT consensus 

‣ Trust-but-verify validation for low latency  
and high throughput 

‣ For PoW, PoS, permissioned, etc. 

• Paper: ia.cr/2017/406 (published at IEEE S&P’18) 

• Code: https://github.com/dedis

 76

Shard 1
(ByzCoinX group)

Shard 3
(ByzCoinX group)

Shard 2
(ByzCoinX group)

Validators

Shard 
ledgers

Client
(Atomix coordinator)

tx3,out

tx2,in

tx1,in

Epoch randomness rnde  
(RandHound)

https://ia.cr/2017/406
https://github.com/dedis


Thank you! 

Questions?
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