Scaling Decentralized Ledgers via Sharding

Ewa Syta

Trinity College

Swiss Blockchain Winter School
February 12, 2019

Talk Outline

Scalable Bias-Resistant Distributed Randomness

2017 IEEE Symposium on Security and Privacy

OmnilLedger: A Secure, Scale-Out, Decentralized
Ledger via Sharding

2018 IEEE Symposium on Security and Privacy

Acknowledgements

Philipp Jovanovic Eleftherios Kokoris Kogias Nicolas Gailly lsmail Khoffi Linus Gasser
(EPFL, CH) (EPFL, CH) (EPFL, CH) (EPFL, CH) (EPFL, CH)

Michael Fischer Bryan Ford
(Yale University, USA) (EPFL, CH)

Talk Outline

Scalable Bias-Resistant Distributed Randomness

2017 IEEE Symposium on Security and Privacy

Talk Outline

Motivation

Two Randomness Protocols

» RandHounad
» RandHerd

Implementation, Experimental Results and Current Deployment

Conclusions

Talk Outline

Motivation

Two Randomness Protocols

» RandHounad
» RandHerd

Implementation, Experimental Results and Current Deployment

Conclusions

Public Randomness

Different from secret randomness
» Secret randomness used for cryptographic keys, for example

Collectively used
Unpredictable ahead of time

Not secret past a certain point in time

Entropy IS not enoughn

Applications of Public RandOmness

SDRAFT

EQUWERD

P OWE R IJIWVEE

 Random selection | VOTED
» |otteries, sweepstakes, jury selection, voting and election audit

« Games
» shuffled decks, team assignments

* Crypto

» challenges, authentication, cut-and-choose methods, "nothing up my sleeves” numbers

* Protocols

» |leader election for consensus protocols (PoS), sharding (OmniLedger), Tor (path
selection)

Falled / Rigged Randomness

Vietnam War Lotteries (1969) 'European draws have been rigged':
Ex-FIFA president Sepp Blatter claims

to have seen hot and cold balls used to
aid cheats

Former FIFA president Sepp Blatter said he had witnessed rigged draws for European football
competitions

Man hacked random-number generator
to rig lotteries, investigators say

New evidence shows lollery machines were rigged (o produce prediclable
jackpot numbers on specific days of the year netting millions in winnings

Public Randomness I1s not New

A MILLION

e 1955: Large table of random Lty
numbers published as a book by the Random Dagits
Rand Corporation

100,000 Normal Deviates

e Today: Generating public random
numbers is (still) hard

 Main issues: trust and scale
» Both, in generation and usage

10

1. Availability

Successtul protocol
termination forup to .
f=t-1 malicious nodes. ...

2. Unpredictability

Qutput not revealed
orematurely.

Assumptions: n= 3f +1, Byzantine adversary and asynchronous network with eventual message delivery

(Goals

Decentralized,
public randomness
in the (t,n)-threshold

security model

3. Unbiasability

Qutpu

- distributed

uniform

y at random.

5. Scalability

hur

—xecutable with

dreds of

par

icipants.

4. Verifiability

Qutput
can be

correctness
checked by

third parties.

11

Public Randomness Approaches

 With Trusted Third Party

» NIST Randomness Beacon

+ Without TTP

Unusual assumptions
» Bitcoin (Bonneau, 2015)
» Slow cryptographic hash functions (Lenstra, 2015)
» Lotteries (Baigneres, 2015)
» Financial data (Clark, 2010)
(t,n)-threshold security model but not scalable
» Coin-tlipping (Cachin, 2015)
» Distributed key generation (Kate, 2009)

12

Public Randomness Is Haro

Avallability

Strawman |

Strawman |l

Strawman Il

@
@

Strawman |

. Combine rar

dom

inputs of all partici

pants.

 Problem: Last node fully

controls output.

Unpredictability Unbiasability

@

@

@

Strawman |l

Commit-then-reveal
random Inputs.

Problem: Dishonest nodes
can choose not to reveal.

Veritiability Scalability

- -
@ -
- -

Strawman il

Secret-share random
iInputs.

Problem: Dishonest nodes
can send bad shares.

13

Public Randomness Is Haro

Strawman |

Strawman I

Strawman |11

RandShare

Availability Unpredictability Unbiasability Veritiability

@ @ @ -
@ @

RandShare

Strawman Il + verifiable secret sharing (Feldman, 1987)

e Problems:

4

4

Not publicly veritiable
Not scalable: O(n3) communication / computation complexity

Scalability

@

O 0 O

14

4

4

Talk Outline

Motivation

Two Randomness Protocols
RandHound
RandHerd

Implementation, Experimental Results and Current Deployment

Conclusions

15

RandHounao

Client ...
e Goals T > verifiable
» Verifiability: By third parties \::;;u\raﬂdO”rﬂeSS
» Scalability: Performance better than O(n3) N

e Client/server randomness
scavenging protocol

» Untrusted client uses a large set of nearly- ‘ ‘ ‘ ‘
stateless servers

» On demand (via configuration file)

Servers
» One-shot approach

16

RandHounao

Lottery Authority

e Scenario T

4

o Setup

4

fair and verifiable process

_ottery authority wants to pick a winner in a SRR choice

Run: announced in advance, publicly
available config

Client: |ottery authority

Servers: a set of reputable and
independent parties Participating Servers

Output: randomness + third-party proof

17

RandHounao

Achieving Public Verifiability Client ...

randomness &
. el transcript
» Publicly-VSS (Schoenmakers, 1999) et T
» Shares are encrypted and publicly verifiable A
through zero-knowledge proofs

» NoO communication between servers

‘.
)
A 3
\
\
.

Y4 4
Y4 24
4 24
24 4
4 ’
4
4
A}
L}
L}
1
|
v

v v

» Any aggregate, threshold, or multi-signature PVSS-Servers

o CoSi Collective signing (Syta, 2016) ‘

» Client publicly commits to their choices

e Create protocol transcript from all
sent/received (signed) messages 18

RandHounao

Achieving Scalability Client

......

randomness &
.. transcript

-
-
" A
-
)

» Shard participants into constant size groups ...
» Secret sharing with everyone too expensive! '

» Run secret sharing (only) inside groups

» Collective randomness: combination of
all group outputs

PVSS
group 2

gt)cy uSpS1 ‘ ‘

Chicken-and-Egg problem?

...................... " Servers
How to securely assign participants to

groups”

19

RandHounao

Solving the Chicken-and-Egg Problem Client ..

» Client selects server grouping
- Availability might be affected (self-DoS) .

e Security properties through

4

randomness &
e transcript

-
-
=" e
Y X' 4
s 4

Pigeonhole principle: at least one group ‘ PVSS PVSS
IS not controlled by the adversary group group 2
Collective signing: prevents client equivocatlon TP Servers

by tixing the secrets that contribute to randomness

20

sSession

oup 0 0
group 1

1. Initialization (C)

Send session config,

PVSS
group 2

RandHound

config

(Eoj,poj) = pvss_share(Zo),
................ Vo

2. Share Distribution (S5)
Send encrypted PVSS shares,

divide servers into PVSS groups CoSi commits

21

RandHound

= H(TTi(V)) || “chosen secrets”)

3. Secret Commitment (C)
Verity PVSS shares,
CoSi challenge: client commits to secrets

[0 = Vo - CXp

4. Secret Acknowledgement (S5)
Verity commitment,
send (partial) CoSi responses

22

RandHound

r = >i(r): aggregate CoSi resp.

5. Decryption Request (C)
Request PVSS share decryption:
(aggregate) CoSi responses

6. Share Decryption (S5)
Verify CoSi response,
If ok: decrypt valid PVSS shares

23

RandHounao

(Do1,Qo1)
(Do2,Qo2)

Z = recover(Doog,Do1,Do2)

7. Recover Randomness (C)
Verity decrypted PVSS shares,
compute collective randomness

(Doo,Qoo0) Lem T -

"¢ Output
/ = TI(Zi): randomness

L: protocol log

Verify Randomness (anyone)

4

4

4

Jse a protocol log (transcript) L to verity
randomness /

Replay and check all steps
Accept If all correct

24

Public Randomness is (not so) Haro

Availability Unpredictability Unbiasability Verifiability Scalability

Strawman | @ (— (= (= (=
Strawman || (= (= (= @
Strawman 1 (= e

RandShare - @
RandHound

Communication / computation complexity:

RandHerao

Availability
. Goa\s /{assumptlon only
» Continuous, leader-coordinated cader
randomness generation verifiable
» Small randomness proof size g randomness

(a single Schnorr signature)

» Better performance than O(n) S articinant
articipants

e Decentralized randomness beacon
» Bullt as a collective authority or cothority

» Randomness on demand, at frequent A collective authority
iIntervals, or both

20

RandHerao

Achieving RandHerd’s Goals

e |dea
Collective randomness = collective Schnorr

4

signature

* Problem
Failing nodes influence output!

4

4

If some nodes unavailable,
a function of everyone’s inp

Benefits: Small proofs, O(log n) complexity

‘hen the signhature not

A

{

Participants

A collective authority

verifiab
>

randormn

NESS

27

RandHerao

Achieving RandHerd’s Goals

e Solution

» Arrange nodes into (t,n)-threshold Schnorr
signing (Stinson, 2001) groups (failure
resistance)

» Collective randomness = aggregate group
signatures

. verifiaple
randomness

Participants

» Approach: Setup + round function

A collective authority

28

RandHerd Setup

 Goal: secure prep for RandHerd
Round

 Executed once followed by many
rounds of randomness

o Consists of 4 steps

RandHerd Setup

1. Leader Election
~lect a temporary leader via lowest ticket
t: = VRF(config, key))

Client
(temporary RandHerd Leader)

Server group Server group 2

2. Sharding
Run RandHound to produce
(Z,L) as sharding seed

30

RandHerd Setup

TSS group 1

TSS group 2 TSS group 3

3. Group Setup 4. Collective RandHerd Key

Create 1TSS groups using Z and Certifv agareaate public kev X using CoS
generate group keys X; 1Y AYYreydis PUDIG Key A USINY L0 31

RandHerd Rouna

Randomness Generation TSS group O

1. Cothority Leader (CL) broadcasts timestamp v

collective
randomness

2. 1SS-CoS

a. Produce group Schnorr signatures (¢, 0) (e,r1) (c,r2) on v
b. At least 2f+1 nodes fix and certity challenge ¢ using CoSi
c. Aggregate into collective Schnorr signature (c,r = ro+ri+rz)
d. Publish (c,r) as collective randomness

TSS group 1 TSS group 2

32

RandHerd Rouna

Randomness Verification TSS group 0

1. RandHerd produces a simple Schnorr signature

collective

2. Anyone can efficiently verity (c,r) on v using the randomness

collective public key X = X0 X1 X2

3.3Single signature verification!

TSS group 1 TSS group 2

33

Public Randomness is (not so) Haro

Availability Unpredictability Unbiasability Verifiability Scalability

Strawman | @ (— (= (= (=
Strawman || (= o

Strawman Il

O 0 O

RandShare
RandHound

RandHerd

Communication / computation complexity:

34

Talk Outline

e Motivation

e [wo Randomness Protocols

» RandHounad
» RandHerd

* Implementation, Experimental Results and Current Deployment

e Conclusions

35

Implementation & Experiments

Implementation DeterLab Setup
» (Go versions of DLEQ-proofs, e 32 physical machines
PVSS, TSS, CoSI-TSS, » Intel Xeon E5-2650 v4
RandHound, RandHerad (24 cores @ 2.2 GHz)
» 64 GB RAM

 Based on DEDIS code
» Crypto library

» Network library e Network restrictions
» Cothority framework » 100 Mbps bandwidth

» 10 Gbps network link

» 200 ms round-trip latency

e https://github.com/dedis

36

https://github.com/dedis

Experimental Results — RandHouna

Number of Nodes

128 256 512 768 1024
Transcript Verification (External)
Randomness Generation (RandHound)
10° | -
(%)
Q
v
2
2 - -
= 10
V4
O
o
@)
S
= 10| :
100 | | | | | | | | | | | | | | | | | | |
O < N O O <r N O O < (N O O < NN O O <rr N O
—~ (N ™M <t —~ N ™M < —~ N ™M < —~ N ™M < — (N M <
Group Size

Randomness generation and verification time

37

-xperimental Results — RandRouno

Number of Nodes
128 256 512 768 1024

Transcript Verification (External)
Randomness Generation (RandHound)

Take-away: In a RandHound run with 1024 nodes and group size 32,
generation takes 290 sec and verification takes 160 sec.

Randomness generation and verification time

38

Experimental Results — RandHouna

CPU Usage (sec)

Number of Nodes

128 256 512 768 1024
Randomness Generation Cost to Client
Randomness Generation Cost to Servers
10° ;
10% } -
10° ¢ E
100 | | | | | | | | | | | | | | | | | | |
O < N O O <r N O O < (N O O < NN O O <rr N O
—~ (N ™M <t —~ N ™M < —~ N ™M < —~ N ™M < — (N M <
Group Size

CPU cost for the client and the servers

39

-xperimental Results — RandRouno

Number of Nodes
128 256 512 768 1024

Randomness Generation Cost to Client
Randomness Generation Cost to Servers

Take-away: Total cost for 1 RandHound run is 10 CPU min (EC2: < $0.02) with

1024 nodes, group size 32.

10°

] |
O < N O O < N O O < N O O < N O O < N O
— N M < — N M < — N ™M < — N M <

CPU cost for the client and the servers

40

Experimental Results — RanaHero

Number of Nodes
128 256 512 768 1024

101 }

Wall Clock Time (sec)

100 i N

O < N O
— N M <

O < N O < N O < N O O < N O
— N M < N ™M — N M < — N M <

@16}

-
q—
roup Size

Randomness generation time

41

-Xperimental Results — RandHerd

Number of Nodes
128 256 512 768 1024

| | |
10' L - -

Take-away: Generation time for 1 RandHerd run with is 6 sec, after setup (10
mins) with 1024 nodes, group size 32.

Wall

100 '

O < N O O < N O
— N M <r — N ™M <

O < N O O < N O O < N O
— N M < — N M <t — N ™M <
Group Size

Randomness generation time

42

drand

Proof-of-concept Randomness-as-a-Service

https://github.com/dedis/drano

Nicolas Gailly
nicolas.gailly@eptl.ch

https://github.com/dedis/drand

drand: the protocol

* Implements the logic of RandHerd (leaderless, pairing-based crypto)

¢ Setup
» Threshold Distributed Key Ge
» (Collective public key and eac

» Can refresh shares without changing t

Randomness Generation

» Threshold Boneh-Lynn-Shacham (BLS) signatt

» Each node requests a partia

signature, walits

neration (DKG) (Gennaro, 2007) 3 Reconstruction

N node has a share of the private key

ne public key (Wong, 2002) / \
1. Requey

re 2. Response

or at least t responses and reconstructs

» First sign fixed seed and then the randomness from previous round

44

drand: the software

» Implemented in Go, open source (on GitHub) @

* Meant to be very simple y p
» 1 command for setup as well as generation \(>/
» JSON API to fetch randomness (browser!)
» Docker container providead ﬁ*

WORK IN PROGRESS

* Deployment
» EPFL, NIST, Cloudflare, Kudelski Security and hopetully others to run drand nodes

45

Conclusion

e (Generation of public randomness: trust and scale issues

e Qur solution: two protocols in the (t,n)-threshold security model

Availability Unpredictability Unbiasabillity Verifiability Scalability Complexity
RandHound O(n)
RandHerd O(log(n))

e Code: https://github.com/dedis/cothority

46

https://github.com/dedis/cothority

Talk Outline

OmnilLedger: A Secure, Scale-Out, Decentralized
Ledger via Sharding

2018 IEEE Symposium on Security and Privacy

47

e Motivation
 OmniLedger
e Evaluation

e Conclusion

Talk Outline

48

e Motivation
 OmniLedger
e Evaluation

e Conclusion

Talk Outline

49

Scaling Blockchains is More Important Than Ever ...

CATS RULE THE BLOCKCHAIN, TOO

The ethereum network is getting jammed
up because people are rushing to buy
cartoon cats on its blockchain

CryptoKitties

50

The Core of Bitcoin: Nakamoto Consensus

Drawbacks |
Miner of the -
| | | latest block ‘ The Bitcoin p2p network
e [ransaction confirmation delay | ‘
» Bitcoin: Any tx takes >10 mins until confirmed P ‘
e Low throughput ‘
“Permanently”
» Bitcoin: ~4 tx/sec committed ‘
transactions
* \Weak consistency ‘
» Bitcoin: You are not really certain your tx is ‘
committed until you wait >1 hour / _
. 10 mins
* Proof-of-work mining * —
< — [([([[} 1 MB blocks

» Wastes huge amount of energy

The Bitcoin blockchain
51

... But Scaling Blockchains is Not Easy

- .
s S e

bl
-
L]
-
-
-
-
bl .
-

- .
o~ S o

“Permanently”

committed
transactions

latest block

Miner of ‘ The Bitcoin p2p network

- .
s S e

— |[—

e

The Bitcoin blockchain

Still 1 MB
blocks

-
-
-
-
-
-
-
-
-
-
-
-
PR
-

-
-
-
-
-
-
-
-
-
-
-
-
L
”
-

- .
s S o

- =
e”

Cannot just add
more hardware for
better performance!

52

What we Want: Scale-Out Performance

O Ideal system
Bitcoin

Throughput [tx/sec]

N 2N 3n 4n 5n 6N

Number of Validators

Scale-out: Throughput increases linearly with the available resources.

53

Towards Scale-Out Performance via Sharding

 Concept: Blockchain 1

------- — W |e—

> Validators are grouped into distinct sulbsets

OO

> Each subset processes different transactions SO@

Transactions

> Achieves parallelization and therefore scale-out

° But: Blockchain 2

...... —] | |e—

> How to assign validators to shards®

Ren Yan Xan RN
)

Transactions

» How to send transactions across shards?

Distributed Ledger Landscape

Decentralization
. / / \ E. Kokoris Kogias et al., Enhancing
}5}!;;% s /t fglll’g\ 256550525 ar%/;g o/ \ O Bitcoin Security and Performance with
CCS 2016 X | ' | Strong Consistency via Collective Signing,
\ Oo USENIX Security 2016
Scale-Out RSCoin Security

G. Danezis and S. Meiklejohn, Centrally Banked Cryptocurrencies, NDSS 2016
55

e Motivation
 OmnilLedger
e Evaluation

e Conclusion

Talk Outline

56

OmniLedger — Design Goals

Security Goals

1. Full Decentralization 2. Shard Robustness 3. Secure Transactions
No trusted third parties or Shards process txs Xs commit atomically or
single points of failure correctly and continuously abort eventually

Performance Goals

4. Scale-out 5. Low Storage 6. Low Latency
Throughput increases linearly in Validators do not need to store Tx are confirmed quickly
the number of active validators the entire shard tx history

Assumptions: <= 25% mildly adaptive Byzantine adversary, (partially) synchronous network, UTXO model

57

Strawman: SimplelLedger

Overview

Evolves In epochs e

Trusted source releases shard
configuration confe

Valigators:

» Bootstrap from the shard ledger
according to confe

» Process transactions in parallel using

per-shard consensus (ByzCoin)

Shard

ledgers

- <

<

Shard 1
(ByzCoin group)

<> Shard coordinator

—’-------...
- ~
- ~
- N
L 4 N

Shard 2
(ByzCoin group)

; Validators

- l——

Shard 3
(ByzCoin group) 58

Strawman: SimplelLedger

Security Drawbacks

o Shard coordinator: trusted third party

 No tx processing during validator re-assignment

 No cross-shard tx support
Performance Drawbacks

* ByzCoin failure mode

 High storage and bootstrapping cost

 Throughput vs. latency trade-off

Shard

ledgers

- <

<

Shard 1
(ByzCoin group)

<> Shard coordinator

—’-------...
- ~
- ~
- ~N
L 4 N

Shard 2
(ByzCoin group)

; Validators

- l——

Shard 3
(ByzCoin group) sg

Roadmap

SimpleLedger

Secure system reconfigurations O Security

Performance

--------------- Failure-resistant Byzantine consensus

............... Blockchain pruning
‘ --------------- High-throughput low-latency transaction validation
v
OmnilLedger

60

Roadmap

SimpleLedger

................ pA Security

Atomic cross-shard transactions

Performance

‘ --------------- High-throughput low-latency transaction validation

OmniLedger

61

Roadmap

SimpleLedger

Security

62

Shard Validator Assignment

* How to assign validators to shards?

4

* How to ensure long-term shard security

Dete

predictable assignments to his advantage @

‘ministically: Adversary can use

Randomly: Adversary cannot control or

predict assignment

against an adaptive adversary?

» Make shards large enough

4

Periodically re-assign validators to shards

|—|
o
N

| —— Failure Probability ~107°

Required Shard Size

0 5 10 15 20 25 30
Adversarial Power (%)

03

Shard

Validator Assignment

* Challenge: Unbiasable, unpredictable and scalable shard validator assignment

e Solution: Combine V

1. Temp. leader election
via VRFs

© @
@ O
@ O
O

Validators

RF-based lottery and unbiasable randomness protocol for sharding

2. Randomness generation 3. Shard assignment
via RandHound (using rnde)

A O O
Verifiable
randomness rnde Q .

@ O
O

Validators
(sharded)

.............
.......
.]
““““
* L
. Y
. -
. -
* .

oz

Roadmap

SimpleLedger
) 4 -
® Security
Atomic cross-shard transactions ‘

65

Two-Phase Commits

Coordinator Server

............. Query to commit
Voting phase {
D
Vote yes / no
............. Commit /rollback |
Completion phase {
4. ...
Acknowledgement
\ \

Problem: Does not work in a Byzantine setting as malicious nodes can always abort.

Atomix: Secure Cross-Shard Transactions

Challenge: Cross-shard transactions commit atomically or abort eventually

Solution: Atomix, a secure cross-shard transaction protocol (utilizing secure BFT shards)

(1) Initialize (2a) Lock (3a) Commit
cross-shard v’ Client i i Q. Client
transaction tx ACK..~ 1 ACKz commit tx

@ o8 ¥ YORO
1 3 Shards Shards

7 [T
. (2b) Lock & » (3b) Rollback @
. Client 9 Client ’ Client
ACK1 . ERR: reclalm tx inputs
Shards Shards Shards

6/

Roadmap

SimpleLedger

:

O

Performance

‘ --------------- High-throughput low-latency transaction validation

OmniLedger

63

Trust-but-Verity Transaction Validation

* Challenge: Latency vs. throughput trade-off

* Solution: Two-level “trust-but-verity” validation to get low latency and high throughput

small (e.g., 500KB)
optimistically validated blocks

PR large (e.g., 16MB),
o _.:'O O 1B g e] re-validated blocks
e ':"a O A)

f ’ tx O ® "
clients «--------- > Fennasees >
.......... shard ledger
...... Q ' ¥

tx E e

O O [] -

e core

optimistic validators

validators

e Motivation
 OmniLedger
e Evaluation

e Conclusion

Talk Outline

70

Implementation & Experimental Setup

Implementation DeterLab Setup
e (5o versions of OmniLedger and its e 48 physical machines
subprotocols (ByzCoinX, Atomix, etc.) » Intel Xeon E5-2420 y2
(6 cores @ 2.2 GHz)
 Based on DEDIS code » 24 GB RAM
> Kyber crypto library » 10 Gbps network link
» Onet network library
» Cothority framework » Realistic network configurations

» 20 Mbps bandwidth
» 200 ms round-trip latency

o https://github.com/dedis

71

https://github.com/dedis

Throughput [tx/sec]

Fvaluation: Scale-Out

O Omniledger
Bitcoin

100,000

10,000

1,000
439
100
10
4 4 4 4 4
170/1 140/ 2 280/ 4 560/ 8 1120/ 16

Number of Validators / Number of Shards

For a 12.5%-adversary

/2

Evaluation: Maximum Throughput

107 -
_ OmniLedger (regular)

- 10° - OmniLedger (trust-but-verify)
o _
O 10°
)
p
—
@ 104
& I S S IS A S I vy S Visa (~4000_tx/sec).
-
O 10° -
-
O
q0)
2 102
(O
-
|_]

101 ;

10° _ _

[4, 1%] [25, 5%] 70, 12.5%] [600, 25%]

[Shard Size, Adversarial Power]

Results for 1800 validators

cvaluation: Latency

Transaction confirmation latency in seconds for regular and mutli-level validation

#shards, adversary 4, 1% 25, 5% 70, 12.5% 600, 25%
OmniLedger 1.38 5.9 8.04 14.52 1 MB blocks
regular
OmniLedger

. . 1.38 1.38 1.38 4.48 500 KB blocks
confirmation

OmniLedger 138 55 89 41.89 16 MB blocks
consistency

Bitcoin 600 600 600 600 1 MB blocks
confirmation

Bitcoin 3600 3600 3600 3600 1 MB blocks

consistency

latency increase since optimistically validated blocks are batched

into larger blocks for final validation to get better throughput
74

Talk Outline

Motivation
OmniLedger
ExXperimental Results

Conclusion

/9

. Epoch randomness rmde
O n C u S I O n JUPCETELLEEEED «_ (RandHound)

;T 00000 .,
_ L ; ; Validators
OmnilLedger — Secure scale-out distributed ledger framework . O0O0000
» Sharding via unbiasable randomness for linearly-scaling throughput RIS
» Atomix: Client-managed cross-shard transactions O O O
o v %o

» ByzCoinX: Robust intra-shard BFT consensus

» Trust-but-verify validation for low latency i E QAQ
and high throughput Shard

ledgers
» For PoW, PoS, permissioned, etc. e B
Shard 1 Shard 2 Shard 3
Paper: ia.cr/2017/406 (published at I[EEE S&P'18) Byt orou) (ByeCorX group) (BuzCon group)
Code: https://github.com/dedis txm. <v>tX2mtX30m
Client

(Atomix coordinator)

/0

https://ia.cr/2017/406
https://github.com/dedis

Thank you!

Questions?

Ewa Syta
ewa.syta@trincoll.edu

77

mailto:ewa.syta@trincoll.edu

