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Outline

1. The segmentation task

2. The FSA model

3. Experimental results

4. Discussion
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The segmentation task
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The segmentation task
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The image X The segmentation S

The generative approach

I Construct a joint model of X and S parameterised by θ: p(X, S|θ)

I Learn θ given dataset Dtrain: arg maxθ p(Dtrain|θ)

I Return probable segmentation Stest given Xtest and θ: p(Stest|Xtest, θ)

Some benefits of this approach

I Flexible with regards to data:
I Unsupervised training,
I Semi-supervised training.

I Can inspect quality of model by sampling from it.

10



The segmentation task

0

0

1

1

0

1

0

1

1

0

1

1

1

1

0

0

0

1

1

0

1

1

1

1

1

The image X The segmentation S

The generative approach

I Construct a joint model of X and S parameterised by θ: p(X, S|θ)

I Learn θ given dataset Dtrain: arg maxθ p(Dtrain|θ)

I Return probable segmentation Stest given Xtest and θ: p(Stest|Xtest, θ)

Some benefits of this approach

I Flexible with regards to data:
I Unsupervised training,
I Semi-supervised training.

I Can inspect quality of model by sampling from it.

10



Factored Shapes and Appearances

Goal
Construct a joint model of X and S parameterised by θ: p(X, S|θ).

Factor appearances

I Reason about object shape independently of its appearance.

Factor shapes

I Represent objects as collections of parts,

I Systematic combination of parts generates objects’ complete shapes.

Learn everything

I Explicitly model variation of appearances and shapes.

11



Factored Shapes and Appearances

Goal
Construct a joint model of X and S parameterised by θ: p(X, S|θ).

Factor appearances

I Reason about object shape independently of its appearance.

Factor shapes

I Represent objects as collections of parts,

I Systematic combination of parts generates objects’ complete shapes.

Learn everything

I Explicitly model variation of appearances and shapes.

11



Factored Shapes and Appearances

Goal
Construct a joint model of X and S parameterised by θ: p(X, S|θ).

Factor appearances

I Reason about object shape independently of its appearance.

Factor shapes

I Represent objects as collections of parts,

I Systematic combination of parts generates objects’ complete shapes.

Learn everything

I Explicitly model variation of appearances and shapes.

11



Factored Shapes and Appearances
Schematic diagram
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Factored Shapes and Appearances
Graphical model

θs

v sd

θa a` xd

DL

n

n number of images

L parts

D pixels in each image

Parameters

θs – shape statistics

θa – appearance statistics

Latent variables

a` – per part appearance

v – global shape type

s – segmentation
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Factored Shapes and Appearances
Shape model

θs

v sd

θa a` xd

DL

n

p(X, A, S, v|θ) = p(v) p(A|θa)
D∏

d=1

p(sd |v, θs) p(xd |A, sd , θa)
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Factored Shapes and Appearances
Shape model

Continuous parameterisation

p(s`d = 1|v, θ) =
exp{m`d}

L∑
k=0

exp{mkd}

Efficient

I Finds probable assignment of pixels to parts without having to
enumerate all part depth orderings.

I Resolve ambiguities by exploiting knowledge about appearances.
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Factored Shapes and Appearances
Handling occlusion
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Factored Shapes and Appearances
Learning shape variability

Goal
Instead of learning just a template for each part, learn a distribution over
such templates.

Linear latent variable model
Part `’s mask m` is governed by a Factor Analysis-like distribution:

p(v) = N (0, IH×H)

m` = F`v + c`,

where v` is a low-dimensional latent variable, F` is the factor loading
matrix and c` is the mean mask. Shape parameters θs = {{F`}, {c`}}.
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Factored Shapes and Appearances
Appearance model

θs

v sd

θa a` xd

DL

n

p(X, A, S, v|θ) = p(v) p(A|θa)
D∏

d=1

p(sd |v, θs) p(xd |A, sd , θa)
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Factored Shapes and Appearances
Appearance model

Goal
Learn a model of each part’s RGB values that is as informative as possible
about its extent in the image.

Position-agnostic appearance model

I Learn about distribution of colours across images,

I Learn about distribution of colours within images.

Sampling process

For each part:

1. Sample an appearance ‘class’ for the current part,

2. Sample the part’s pixels from the current class’ feature histogram.
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Factored Shapes and Appearances
Appearance model

π

φ

` = 0 ` = 1 ` = 2

Training data
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Factored Shapes and Appearances
Learning

Use EM to find a setting of the shape and appearance parameters that
approximately maximises their likelihood given the data p(Dtrain|θ):

1. Expectation: Block Gibbs and elliptical slice sampling
(Murray et al., 2010) to approximate p(Zi |Xi , θold),

2. Maximisation: Gradient descent optimisation to find
arg maxθ Q(θ, θold) where

Q(θ, θold) =
n∑

i=1

∑
Zi

p(Zi |Xi , θold) ln p(Xi , Zi |θ).
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Related work

FACTORED FACTORED SHAPE SHAPE APPEARANCE

PARTS AND APPEARANCE VARIABILITY VARIABILITY

LSM Frey et al. X(layers) - X(FA) X(FA)

Sprites Williams and Titsias X(layers) - - -
LOCUS Winn and Jojic - X X(deformation) X(colours)

MCVQ Ross and Zemel - X - X(templates)

SCA Jojic et al. - X X(convex) X(histograms)

FSA X(softmax) X X(FA) X(histograms)
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Outline

1. The segmentation task

2. The FSA model

3. Experimental results

4. Discussion
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Learning a model of cars
Training images
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Learning a model of cars

Model details

I Number of parts L = 3,

I Number of latent shape dimensions H = 2,

I Number of appearance classes K = 5.

X

S
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Learning a model of cars
Shape model weights

` = 2

F2 column 1 F2 column 2

Convertible ←→ Coupé Low ←→ High
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Learning a model of cars
Latent shape space
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Learning a model of cars
Latent shape space
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Other datasets

Training data Mean model FSA samples
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Other datasets
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+2 0 -2
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Segmentation benchmarks

Datasets

I Weizmann horses: 127 train – 200 test.
I Caltech4

I Cars: 63 train – 60 test,
I Faces: 335 train – 100 test,
I Motorbikes: 698 train – 100 test,
I Airplanes: 700 train – 100 test.

Two variants

I Unsupervised FSA: Train given only RGB images.

I Supervised FSA: Train using RGB images and their binary masks.
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Segmentation benchmarks

Weizmann Caltech4

Horses Cars Faces Motorbikes Airplanes

GrabCut Rother et al. 83.9% 45.1% 83.7% 82.4% 84.5%
Borenstein et al. 93.6% - - - -
LOCUS Winn et al. 93.1% 91.4% - - -
Arora et al. - 95.1% 92.4% 83.1% 93.1%
ClassCut Alexe et al. 86.2% 93.1% 89.0% 90.3% 89.8%

Unsupervised FSA 87.3% 82.9% 88.3% 85.7% 88.7%
Supervised FSA 88.0% 93.6% 93.3% 92.1% 90.9%

Competitive – despite lack of CRF-style pixelwise dependency terms.
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Summary

FSA is a probabilistic, generative model of images that

I Reasons about object shape independently of its appearance,

I Represent objects as collections of parts,

I Explicitly models variation of both appearances and shapes.

Object segmentation with FSA is competitive.

The same FSA model can potentially also be used to

I Classify objects into sub-categories (using latent v variables),

I Localise objects (using a sliding window or branch and bound),

I Parse objects into meaningful parts.
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Questions



Learning a supervised model of cars
Latent shape space
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