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Introduction

EP is a widely used message passing based inference algorithm.

m Problem: Expensive to compute outgoing from incoming messages.

m Goal: Speed up computation by a cheap regression function (message
operator):

iIncoming messages —» outgoing message.

Merits:

m Efficient online update of the operator during inference.

m Uncertainty monitored to invoke new training examples when needed.
m Automatic random feature representation of incoming messages.

Expectation Propagation (EP)

Under an approximation that each factor fully factorizes, an outgoing EP
message my_.y, takes the form
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(a) Message passing on a factor graph.

Projected message:
mqg:.v(v) =projlri.v(v)] € ExpFam with sufficient statistic w.(v).
mMoment matching: E,, , [u(v)] =E,, , [u(v)].

Kernel on Incoming Messages

Propose to incrementally learn during inference a kernel-based EP mes-

sage operator (distribution-to-distribution regression)
|:m\/j%fi| ]-C:1 — Jt—V,

for any factor f that can be sampled.
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m Product distribution of ¢ incoming messages: r := xj_;17,
m Mean embedding of r: 1, := E.k(-, a).
m Gaussian kernel on (product) distributions:
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K(r,s) = exp ( .
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Two-staged random feature approximation:
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Message Operator: Bayesian Linear Regression

mlnput: X = (x4]---|xn): N training incoming messages represented as

random feature vectors.

= Output: Y — (@TLVu(\))\ B
of outgoing messages.

m Inexpensive online update.

m Bayesian regression gives prediction and predictive variance.

m |f predictive variance < threshold, query importance sampling oracle.

u(v)) c RPv<N: sufficient statistics

Two-Staged Random Features

In: F(k): Fourier transform of k, Di,: #inner features, Dy : #outer fea-
tures, kgauss: Gaussian kernel on R

Out: Random features {(r) € RPeu

k), {bygPr < ulo, 2n).

1: Sample {wl} "
r COS({ X + by)).") € RPn

2 (1) = /2 (E
3: Sample {Vl} ou ?(kgauss(yz))s {Cl}l 1 o 2 u|0, 2.

4 P(r) = \C(cos( Th(r) + ¢1)) " € RPos

Experiment 1: Uncertainty Estimates

@ Binary Logistic Regression

: 4>©10g18‘51c (f )><> Bernoulli >@

1=1,.
m Approximate the logistic factor: f(z|x) = & (z 1+ex1)( )).
m Incoming messages: m, .+ = N(z;; 1, 0°), m,,. ¢ = Beta(pi; &, 3).

m Training set = messages collected from 20 EP runs on toy data.
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Experiment 2: Classification Errors
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Fix true w. Sequentially present 30 problems. Generate {(x;, yi)}2] for each.
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Sampling + KJIT = proposed KJIT with an importance sampling oracle.

Experiment 3: Compound Gamma Factor

Infer posterior of the precision t of x ~ N(x; 0, t) from observations {x;} ,:
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Inference quality: as good as hand-crafted factor;

Experiment 4: Real Data

Infered by Infer.NET + KJIT
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much faster.

m Binary logistic regression. Sequentially present 4 real datasets to the operator.

m Diverse distributions of incoming messages.
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m KJIT operator can adapt to the change of input message distributions.
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Code available at: wittawat.com



