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Tasks thought to require 
intelligence

● Image understanding,
● Natural language processing,
● Knowledge acquisition,
● Text understanding,
● Planning,
● Robotics,
● Forecasting,
● And many others.

Can a general system achieve all these tasks?
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Convolutional neural networks for image classification
Torch (2015)

Deep Learning



Krizhevsky et al. (2012)



Clarifai (2014)



Where do the labels come from?



Reinforcement Learning
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ATARI agents

100+ classic 8-bit Atari games

● Observations: Raw video (~30k dimensional)
● Actions: 18 buttons but not told what they do
● Goal: Simply to maximize score

● Everything learnt from scratch
● Zero pre-programmed knowledge
● One algorithm to play all the different games



Human-level control through deep 
reinforcement learning

Mnih et al. (Nature, 2015)



Space Invaders agent

http://www.youtube.com/watch?v=wHDxF5N700Q


Breakout agent

http://www.youtube.com/watch?v=p4Kem0wQoHs


General Atari agent

http://www.youtube.com/watch?v=Erkt7HelEco


Human-level control through deep 
reinforcement learning

Mnih et al. (Nature, 2015)



Human-level control through deep 
reinforcement learning

Mnih et al. (Nature, 2015)



Deep Reinforcement Learning for 
Continuous Control

http://www.youtube.com/watch?v=JeVppkoloXs


How many experiences do we need?



1 epoch = 50,000 interactions = 30 minutes of experience
Total experience: 10m interactions = 5 days



Model-based Methods
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Learning to draw shapes



The Shape Boltzmann Machine



Sampling from an SBM



Learning to draw shapes

http://www.youtube.com/watch?v=tk9FTdKOL5Q


Learning to draw shapes

The Shape Boltzmann Machine: a Strong Model of Object Shape
S. M. Ali Eslami, Nicolas Heess, Christopher K. I. Williams, John Winn
International Journal of Computer Vision, Springer (IJCV, 2013)



Factored Shapes and Appearances

A Generative Model for Parts-based Object Segmentation
S. M. Ali Eslami, Christopher K. I. Williams
Neural Information Processing Systems (NIPS, 2012)



Learning to segment objects

A Generative Model for Parts-based Object Segmentation
S. M. Ali Eslami, Christopher K. I. Williams
Neural Information Processing Systems (NIPS, 2012)



Learning to segment objects

A Generative Model for Parts-based Object Segmentation
S. M. Ali Eslami, Christopher K. I. Williams
Neural Information Processing Systems (NIPS, 2012)



Recurrent Neural Networks for 
Image Generation

Gregor et al. (2015)
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Recurrent Neural Networks for 
Image Generation

Gregor et al. (2015)



Recurrent Neural Networks for 
Image Generation

Gregor et al. (2015)



Generative Modelling

Model p(x|z) can be:
● Fully learned (e.g. autoencoders)
● Partially specified
● Fully specified (e.g. renderers)

What models should we use?

Choice of model p(x|z) 
almost always  constrained 
by our ability to compute p(z|x)
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How should we do inference?



Reinforced Variational Inference



Modern Variational Inference
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Consensus Message Passing for Layered Graphical Models
Varun Jampani, S. M. Ali Eslami, Daniel Tarlow Pushmeet Kohli, John Winn
Artificial Intelligence and Statistics (AISTATS, 2015)
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Modern Variational Inference
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Modern Variational Inference
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Consensus Message Passing for Layered Graphical Models
Varun Jampani, S. M. Ali Eslami, Daniel Tarlow Pushmeet Kohli, John Winn
Artificial Intelligence and Statistics (AISTATS, 2015)
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Modern Variational Inference

● Approximate p(z|x) using q(z|x)

● Parameterise q(z|x)

● Minimise KL[ q(z|x) | p(z|x) ]

● Samples from q(z|x) can be used 
as codes representing the image x 
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Consensus Message Passing for Layered Graphical Models
Varun Jampani, S. M. Ali Eslami, Daniel Tarlow Pushmeet Kohli, John Winn
Artificial Intelligence and Statistics (AISTATS, 2015)



● Minimise KL[ q(z|x) | p(z|x) ]

● Maximise L(q) = Eq [ log p(x, z) - log q(z|x) ]

○ Potentially high variance
○ Can require knowledge of ∇p(x, z)

● RL objective to maximise J(p) = Ep [ ∑t r(st, at) ]

● Connection between VI and RL hinted at 
by many (e.g. VAE, DLGM, NVIL, etc.)

Minimising the KL
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Variational Inference as 
Reinforcement Learning

Reinforced Variational Inference
Theophane Weber, Nicolas Heess, S. M. Ali Eslami, John Schulman, David 
Wingate, David Silver. Neural Information Processing Systems, Workshop 
on Advances in Approximate Bayesian Inference (NIPS, 2015)

maximise



Summary

Prediction as a subset of inference

Inference as a reinforcement learning problem

Reinforcement learning as a deep learning problem
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