Modern Artificial Intelligence

S. M. Ali Eslami

December 2015

Elon Musk

Stephen Hawking

Chappie (2015)

Ex Machina (2015)

Outline

- 1. Artificial General Intelligence
- 2. Deep Learning
- 3. Reinforcement Learning
- 4. Model-based Methods
- 5. Reinforced Variational Inference

Algorithm

"Horse"

Input

Programmable Computer

Output

Search

Input

Human

Output

Image Classification

Image Classification

Tasks thought to require intelligence

- Image understanding,
- Natural language processing,
- Knowledge acquisition,
- Text understanding,
- Planning,
- Robotics,
- Forecasting,
- And many others.

Can a general system achieve all these tasks?

General Applicability

General Applicability

General Applicability

Deep Learning

Input

Computer

Output

Deep Learning

Convolutional neural networks for image classification Torch (2015)

mite	container ship	motor scooter	leopard	
mite	container ship	motor scooter	leopard	
black widow	lifeboat	go-kart	jaguar	
cockroach	amphibian	moped	cheetah	
tick	fireboat	bumper car	snow leopard	
starfish	drilling platform	golfcart	Egyptian cat	

grille	mushroom	cherry	Madagascar cat	
convertible	agaric	dalmatian	squirrel monkey	
grille	mushroom	grape	spider monkey	
pickup	jelly fungus	elderberry	titi	
beach wagon	gill fungus	ffordshire bullterrier	indri	
fire engine	dead-man's-fingers	currant	howler monkey	

Krizhevsky et al. (2012)

Clarifai (2014)

Where do the labels come from?

Reinforcement Learning

Architecture

ATARI agents

100+ classic 8-bit Atari games

- Observations: Raw video (~**30k dimensional**)
- Actions: 18 buttons but **not** told what they do
- Goal: Simply to maximize score
- Everything learnt from **scratch**
- **Zero** pre-programmed knowledge
- **One** algorithm to play **all** the different games

Human-level control through deep reinforcement learning

Mnih et al. (Nature, 2015)

Space Invaders agent

Breakout agent

General Atari agent

Human-level control through deep reinforcement learning

Mnih et al. (Nature, 2015)

Human-level control through deep reinforcement learning

Mnih et al. (Nature, 2015)

Deep Reinforcement Learning for Continuous Control

How many experiences do we need?

1 epoch = 50,000 interactions = 30 minutes of experience Total experience: 10m interactions = 5 days

Model-based Methods

Three learning paradigms

Three learning paradigms

Generative Modelling

Three learning paradigms

Learning to draw shapes

The Shape Boltzmann Machine

Sampling from an SBM

Learning to draw shapes

Learning to draw shapes

The Shape Boltzmann Machine: a Strong Model of Object Shape S. M. Ali Eslami, Nicolas Heess, Christopher K. I. Williams, John Winn International Journal of Computer Vision, Springer (**IJCV, 2013**)

Factored Shapes and Appearances

A Generative Model for Parts-based Object Segmentation S. M. Ali Eslami, Christopher K. I. Williams Neural Information Processing Systems (**NIPS, 2012**)

Learning to segment objects

A Generative Model for Parts-based Object Segmentation S. M. Ali Eslami, Christopher K. I. Williams Neural Information Processing Systems (**NIPS, 2012**)

Learning to segment objects

A Generative Model for Parts-based Object Segmentation S. M. Ali Eslami, Christopher K. I. Williams Neural Information Processing Systems (**NIPS, 2012**)

Recurrent Neural Networks for Image Generation

Recurrent Neural Networks for Image Generation

Recurrent Neural Networks for Image Generation

Recurrent Neural Networks for Image Generation

Generative Modelling

Model **p(x|z)** can be:

- Fully learned (e.g. autoencoders)
- Partially specified
- Fully specified (e.g. renderers)

What models should we use?

Choice of model **p(x|z)** almost always constrained by our ability to compute **p(z|x)**

How should we do inference?

Reinforced Variational Inference

- Approximate **p(z|x)** using **q(z|x)**
- Parameterise **q(z|x)**
- Minimise KL[q(z|x) | p(z|x)]
- Samples from **q(z|x)** can be used as codes representing the image **x**

Minimising the KL

- Minimise KL[**q(z|x)** | **p(z|x)**]
- Maximise $L(q) = E_q [\log p(x, z) \log q(z | x)]$
 - Potentially high variance
 - \circ Can require knowledge of $\nabla p(x,z)$
- RL objective to maximise $J(p) = E_p [\sum_t r(s_t, a_t)]$
- Connection between VI and RL hinted at by many (e.g. VAE, DLGM, NVIL, etc.)

Variational Inference as Reinforcement Learning

maximise $\int p_{ heta}(y) f(y) \mathrm{d}y$

Generic expectation		RL		VI	
Optimization var.	θ	Policy param.	θ	Variational param.	θ
Integration var.	y	Trajectory	τ	Latent trace	2
Distribution	$p_{ heta}(y)$	Trajectory dist.	$p_{ heta}(au)$	Posterior dist.	$q_{ heta}(z x)$
Integrand	f(y)	Total return	R(au)	Free energy	$\log\left(rac{p(x,z)}{q_{ heta}(z x)} ight)$

Reinforced Variational Inference

Theophane Weber, Nicolas Heess, S. M. Ali Eslami, John Schulman, David Wingate, David Silver. Neural Information Processing Systems, Workshop on Advances in Approximate Bayesian Inference (**NIPS, 2015**)

Summary

Prediction as a subset of inference

Inference as a **reinforcement learning** problem

Reinforcement learning as a **deep learning** problem

http://arkitus.com

ali@arkitus.com