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1. Goals

To combine the flexibility of sampling-based inference with the speed
of optimized message-passing.

To allow practitioners to define any probabilistic model, press a but-
ton, and get accurate inference results within a matter of seconds.

2. Key observation

General algorithms appear to be
solving problems that are harder
than they need to be: in most
specific inference problems, we
only need to perform a small sub-
set of all possible computations. −40 −30 −20 −10 0 10
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3. The JIT learning approach

1. Initially use highly general algorithms for inference, e.g. by com-
puting messages in a message-passing algorithm via sampling.

2. Gradually learn to increase the speed of these computations by
regressing from input to output messages at run-time.

4. JIT message computation

Learn a mapping from variable-to-factor messages {mk→ψ} to a factor-to-variable message mψ→i:

mψ→i(xi) ≡ f ({mk→ψ}k∈ne(ψ)|θ). (1)

Along with each prediction, produce a measure u of the regressor’s uncertainty:

uψ→i ≡ u({mk→ψ}k∈ne(ψ)|θ). (2)

Use uncertainties at run-time to choose between regressor estimates and slow ‘oracle’ computations:

mψ→i(xi) =

{
mψ→i(xi) uψ→i < umax

moracle
ψ→i (xi) otherwise

(3)

where umax is the maximum tolerated uncertainty for a prediction. Set umax such that no held out
prediction has an error above a user-specified maximum tolerated value Dmax.

Oracle messages can be computed using generally-applicable Monte Carlo (Barthelme et al., 2011;
Heess et al., 2013), or via hand-implemented operators (e.g. those in Infer.NET, Minka et al., 2012).

5. Random forests for JIT learning

Aim. Learn a mapping from incoming messages {mk→ψ}k∈ne(ψ) to the outgoing message mψ→i.

Requirements. The regressor must: 1) train and predict efficiently, 2) model arbitrarily complex
mappings, 3) adapt dynamically, and 4) produce uncertainty estimates.

Representation. Let mout be the outgoing message and min the set of incoming messages.

• Represent the outgoing message mout by a vector of real valued numbers rout.

• Each set of incoming messages min is represented in two ways:

– Regression parameterization denoted by rin (e.g. concatenation of message parameters),

– Tree parameterization denoted by tin (e.g. moments and ψ evaluated at the mode of min).

Split and prediction model. tin is used to traverse message sets down to leaves, and rin is used
by a polynomial regressor to predict rout:

rout = W · φn(rin) + ε. (4)

Training objective function. At each node j, depending on the subset of the incoming training
set Sj we learn the function that ‘best’ splits Sj into the training sets corresponding to each child,

SLj and SRj , i.e. τj = argmaxτ∈Tj I(Sj, τ ). The objective function I is:

I(Sj, τ ) = −E(SLj ,W
L)− E(SRj ,W

R), (5)

where WL and WR are the parameters of the polynomial regression models corresponding to the
left and right training sets SLj and SRj , and the ‘fit residual’ E is:

E(S,W) =
1

2

∑
min∈S

Dmar
KL (mW

min
‖moracle

min
) +Dmar

KL (moracle
min
‖mW

min
). (6)

This objective function splits the training data at each node in a way that the relationship between
the incoming and outgoing messages is well captured by the polynomial regression in each child.

Mean squared error of message parameters is sensitive to parameterization. Instead, calculate the
marginals bi and boraclei induced on the target variable, and compute their KL:

Dmar
KL (mψ→i‖moracle

ψ→i ) ≡ DKL(bi‖boraclei ), (7)

Dmar
KL is the marginal KL and is used throughout the JIT framework, as it encourages the system to

focus efforts on the quantity that is ultimately of interest: the accuracy of the posterior marginals.

Ensemble model. Compute the moment average mout of the distributions {mt
out} by averaging

the first few moments of each predicted distribution across trees, and solving for the distribution
parameters which match the averaged moments.

The moment average can be interpreted as minimizing an objective function:

mout = argmin
m

U({mt
out},m), (8)

where

U({mt
out},m) =

∑
t

DKL(m
t
out‖m). (9)

The level of agreement between the predictions of the different trees can be used as a proxy of
the forest’s uncertainty about that prediction. If all the trees in the forest predict the same output
distribution, it means that their knowledge about the function f is similar despite the randomness
in their structures. We therefore set uout ≡ U({mt

out},mout).

6. Experimental results
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(b) Worst predicted messages
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(c) Awareness of uncertainty

Figure 1: Uncertainty aware regression. Learning a logistic factor for use in
logistic regression. (a) Histogram of marginal KLs of outgoing messages (Gaussian),
which are typically very small. (b) The forest’s most inaccurate predictions (black:
moracle, red: m, dashed black: boracle, purple: b). (c) The regressor’s uncertainty
increases with marginal KL, i.e. it does not make confident but inaccurate predictions.
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(a) Oracle consultation rate
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(b) Inference time
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(c) Inference error

Figure 2: (a) The factor consults the oracle for only a fraction of messages, (b)
leading to significant savings in time, (c) whilst maintaining (or decreasing) error.
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(a) Inference time
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(b) Inference error

−10 −5 0 5 10
−10

−5

0

5

10

Sampling inferred log precision

S
a
m

p
lin

g
 +

 J
IT

 i
n
fe

rr
e
d
 l
o
g
 p

re
c
is

io
n

(c) Accuracy

Figure 3: (a) JIT reduces inference time for sampling from ∼11 seconds to ∼1 ms.
(b) JIT’s posteriors agree highly with Infer.NET. Using fewer samples to match JIT
speed leads to degradation of accuracy. (c) Speed comes at limited loss of accuracy.
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11 451s 54% 195% — —
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Figure 4: (a) The yield factor relates temperatures and yields recorded at farms to the
optimal temperatures of their planted grain. JIT learning enables us to incorporate
arbitrary factors with ease, whilst maintaining inference speed. (b) FR is fraction of
regressions with no oracle consultation.


