
Factored Shapes and Appearances for
Parts-based Object Understanding

S. M. Ali Eslami Christopher K. I. Williams
s.m.eslami@sms.ed.ac.uk ckiw@inf.ed.ac.uk

1. Summary

Modern computer vision algorithms rely on prior knowledge about im-
ages for performance. In this project we wish to learn parts-based
models of object classes from highly variable data, in order to perform

• object parsing,

• foreground/background segmentation, and

• fine-grained classification

on unseen images. Our probabilistic model employs a highly fac-
tored representation to learn and reason about both appearance and
shape variability across datasets of images.

2. The FSA model

Given a dataset D = {Xi}, i = 1...n of images X, each consisting of
D pixels {xd} in some feature space, we wish to obtain an accurate
understanding of the parts’ extents by inferring a segmentation S for
each image. Segmentations consist of labellings sd for every pixel,
where L is the fixed number of parts that combine to generate the
foreground and sd is a 1-of-(L + 1) encoded variable.
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3. Results

Segmentations Columns of F matrices

Using a leave-one-out SVM classifier on only the inferred vs, we can
classify the cars into the 5 distinct categories with 100% accuracy:
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FSA uses shape information to increase segmentation accuracy, and its
performance is comparable to that of state-of-the-art methods:

Horses Cars Faces Motorbikes Airplanes

GrabCut [1] 83.9% 45.1% 83.7% 82.4% 84.5%

Borenstein [3] 93.6% - - - -

LOCUS [8] 93.1% 91.4% - - -

Arora [2] - 95.1% 92.4% 83.1% 93.1%

ClassCut [1] 86.2% 93.1% 89.0% 90.3% 89.8%

Unsupervised FSA 87.3% 82.9% 88.3% 85.7% 88.7%

Supervised FSA 88.0% 93.6% 93.3% 92.1% 90.9%

4. Related work

FACTORED FACTORED SHAPE APPEARANCE
PARTS SHAPE & APP. VARIABILITY VARIABILITY

LSM [4] X(layers) - X(FA) X(FA)

Sprites [7] X(layers) - - -

LOCUS [8] - X X(deformation) X(colours)

MCVQ [6] - X - X(templates)

SCA [5] - X X(convex) X(histograms)

FSA X(softmax) X X(FA) X(histograms)
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