Factored Shapes and Appearances for Parts-based Object Understanding

S. M. Ali Eslami

Christopher K. I. Williams

s.m.eslami@sms.ed.ac.uk

ckiw@inf.ed.ac.uk

1. Summary

Modern computer vision algorithms rely on prior knowledge about images for performance. In this project we wish to learn **parts-based** models of object classes from **highly variable** data, in order to perform

- object parsing,
- foreground/background segmentation, and
- fine-grained classification

on unseen images. Our probabilistic model employs a highly factored representation to learn and reason about both **appearance and shape variability** across datasets of images.

3. Results

Segmentations

Columns of ${f F}$ matrices

Using a leave-one-out SVM classifier on *only* the inferred vs, we can classify the cars into the 5 distinct categories with 100% accuracy:

2. The FSA model

Given a dataset $\mathbf{D} = {\mathbf{X}^i}, i = 1...n$ of images \mathbf{X} , each consisting of D pixels ${\mathbf{x}_d}$ in some feature space, we wish to obtain an accurate understanding of the parts' extents by inferring a segmentation \mathbf{S} for each image. Segmentations consist of labellings \mathbf{s}_d for every pixel, where L is the fixed number of parts that combine to generate the foreground and \mathbf{s}_d is a 1-of-(L+1) encoded variable.

Shape

$$\mathbf{v} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{H \times H}) \qquad \mathbf{m}_{l} = \mathbf{F}_{l} \mathbf{v} + \mathbf{c}_{l} \qquad p(\mathbf{s}_{ld} = 1 | \boldsymbol{\theta}) = \frac{\exp\{\mathbf{m}_{ld}\}}{\sum_{k=0}^{L} \exp\{\mathbf{m}_{kd}\}}$$
Appearance

Other datasets

Training images

Samples from FSA model

FSA uses shape information to increase segmentation accuracy, and its performance is comparable to that of state-of-the-art methods:

PIM

	Horses	Cars	Faces	Motorbikes	Airplanes
GrabCut [1]	83.9%	45.1%	83.7%	82.4%	84.5%
Borenstein [3]	93.6%	-	-	-	-
LOCUS [8]	93.1%	91.4%	-	-	-
Arora [2]	-	95.1%	92.4%	83.1%	93.1%
ClassCut [1]	86.2%	93.1%	89.0%	90.3%	89.8%
Unsupervised FSA Supervised FSA	87.3% 88.0%	82.9% 93.6%	88.3% 93.3%	85.7% 92.1%	88.7% 90.9%

4. Related work

Occlusion

	FACTORED PARTS	FACTORED SHAPE & APP.	SHAPE VARIABILITY	APPEARANCE VARIABILITY
LSM [4]	√ (layers)	-	√(FA)	√(FA)
Sprites [7]	√ (layers)	-	-	-
LOCUS [8]	-	\checkmark	\checkmark (deformation)	√ (colours)
MCVQ [6]	-	\checkmark	-	$\sqrt{(templates)}$
SCA [5]	-	\checkmark	√(convex)	√ (histograms)
FSA	√ (softmax)	\checkmark	√(FA)	√ (histograms)

[1] B. Alexe, T. Deselaers, and V. Ferrari. ClassCut for unsupervised class segmentation. In ECCV, 2010.

- [2] H. Arora, N. Loeff, D. Forsyth, and N. Ahuja. Unsupervised Segmentation of Objects using Efficient Learning. CVPR, 2007.
- [3] E. Borenstein, E. Sharon, and S. Ullman. Combining Top-Down and Bottom-Up Segmentation. In CVPR, 2004.
- [4] B. Frey, N. Jojic, and A. Kannan. Learning appearance and transparency manifolds of occluded objects in layers. In CVPR, 2003.
- [5] N. Jojic, A. Perina, M. Cristani, V. Murino, and B. Frey. Stel component analysis. In CVPR, 2009.
- [6] D. Ross and R. Zemel. Learning Parts-Based Representations of Data. JMLR, 7, 2006.
- [7] C. K. I. Williams and M. Titsias. Greedy learning of multiple objects in images using robust statistics and factorial learning. NC, 2004.
- [8] J. Winn and N. Jojic. LOCUS: Learning object classes with unsupervised segmentation. In ICCV, 2005.

Linear Variation