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Abstract
While on-demand ride-sharing services have be-
come popular in recent years, traditional on-
demand transit services cannot be used by every-
one, e.g., people who use wheelchairs. Paratran-
sit services, operated by public transit agencies,
are a critical infrastructure that offers door-to-door
transportation assistance for individuals who face
challenges in using standard transit routes. How-
ever, with declining ridership and mounting finan-
cial pressure, public transit agencies in the USA
struggle to operate existing services. We collabo-
rate with a public transit agency from the southern
USA, highlight the specific nuances of paratransit
optimization, and present a vehicle routing problem
formulation for optimizing paratransit. We validate
our approach using real-world data from the tran-
sit agency, present results from an actual pilot de-
ployment of the proposed approach in the city, and
show how the proposed approach comprehensively
outperforms existing approaches used by the tran-
sit agency. To the best of our knowledge, this work
presents one of the first examples of using open-
source algorithmic approaches for paratransit opti-
mization.

1 Introduction
There are more than 7,000 public transit agencies in the
USA (and many more private agencies), and together, they
are responsible for serving 60 billion passenger miles each
year. A well-functioning public transit system fosters the
growth and expansion of businesses, distributes social and
economic benefits, and links the capabilities of community
members, thereby enhancing what they can accomplish as a
society [Beyazit, 2011; Harvey, 2010; Federal Highway Ad-
ministration, 2003]. Transit infrastructure is especially im-
portant for low-income communities and individuals with dis-
abilities (or short-term issues) as they often do not own or
are unable to use private vehicles and must rely on public
transit for connecting to employment opportunities, educa-
tion, healthcare, and other essential services [Federal High-
way Administration, 2003]. However, many transit agen-

Figure 1: (left) The van that the public transit agency uses for
paratransit operations. (right) A driver helping a passenger with a
wheelchair board the paratransit van. Paratransit services are com-
pliant with the Americans with Disabilities Act (ADA) and offer
competitive transit services to the section of the population who can-
not avail standard transit routes.

cies struggle to meet their mission due to decreasing rider-
ship and increasing operational costs. Indeed, existing pub-
lic transit infrastructure often shows stark inequities; e.g.,
low-wage workers, people with disabilities, and the elderly
have poorer access to transit in USA [Stacy et al., 2020;
DeGood, 2011].

A particularly critical component of public transit service
in the USA is the paratransit service, which offers door-to-
door transportation assistance for individuals who face chal-
lenges in using standard transit routes (e.g., individuals with
physical disabilities). Paratransit services are directly tied
to the United Nations Sustainable Development Goal (UN-
SDG) 11, which focuses on sustainable cities and commu-
nities; indeed, indicator 11.2.1 of UN-SDG 11 specifically
seeks to measure the “proportion of the population that has
convenient access to public transport, by sex, age, and per-
sons with disabilities” [United Nations, 2020]. Despite its
importance, transit agencies typically face operational chal-
lenges as there are often limited resources (vehicles, oper-
ational budget, and personnel), and paratransit requests are
compliant with the regulations of the Americans with Dis-
abilities Act (ADA), i.e., requested pickup and dropoff times
must be adhered to (modulo some caveats, e.g., the difference
between the pickup and dropoff time must be greater than the
minimum time for traveling between the locations).1

We directly work with a public transit agency in the

1Specifically, the ADA regulation states that transit agencies
must provide service to “individuals with disabilities that is com-
parable to the level of service provided to individuals without dis-
abilities who use the fixed route system.”
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southern USA, the Chattanooga Area Regional Transporta-
tion Agency (CARTA), that exemplifies the transit chal-
lenges faced by mid-sized southern cities, where agencies
have to balance the dichotomy between improving service
coverage, improving ridership, and lowering operational
costs [Shrikant, 2018]. CARTA spends more than USD $1.1
million annually on fuel while supporting a number of differ-
ent transportation modalities, including a fixed-route service,
demand-response service (using neighborhood shuttles), and
paratransit service (we show a snapshot of the paratransit ser-
vice in Figure 1). CARTA provides over 3 million passenger
trips per year through these three services. However, oper-
ations are inefficient regarding productivity and energy con-
sumption per passenger per mile. In particular, the paratran-
sit operations account for 22% of total service miles but
less than 4% of passenger trips. We work with CARTA to
improve the efficiency of their paratransit fleet.

From a technical standpoint, the operational challenge of
optimizing transit fleets entails solving a set of complex
mathematical optimization and planning problems. At the
core of transit optimization lies a vehicle routing problem
(VRP). VRPs can be divided into two major categories: of-
fline VRPs consider how to optimally allocate vehicles to a set
of requests that is known completely apriori, whereas online
VRPs, process requests as they arrive in real-time. Paratransit
service, in practice, deals with both these problems. Para-
transit trips are usually scheduled at least a day beforehand,
i.e., before each day, agencies can strategically plan para-
transit vehicle routes based on requested pickup and drop-
off spots and designated pickup time frames. A small per-
centage of the requests arrive in real-time, and operators seek
to accommodate these requests as the vehicles move around
the city. Second, to ensure that the algorithms translate to
deployment in practice, we must develop production-quality
software and visualization interfaces for transit operators and
drivers. Third, and arguably most importantly, deploying ar-
tificial intelligence and data-driven solutions in practice re-
quires active and sustainable collaborations with transit agen-
cies. These problems of prediction, optimization, planning,
and software development must be solved together to trans-
late algorithmic development into practice.

In this paper, we discuss how we develop a set of princi-
pled data-driven optimization modules for improving the effi-
ciency of paratransit services in a mid-sized city in the south-
ern USA. We describe our collaboration with CARTA in this
paper , provide a background of the algorithmic approaches
we developed, share an overview of the software tool for op-
timizing paratransit, present simulation results for validation
on real-world data, and finally present results from the de-
ployment of our toolchain in the city. We make the following
contributions:

1. We describe the paratransit optimization problem from
the perspective of a real-world transit agency and discuss
both offline and online versions of the problem.

2. We describe how our formulation accommodates spe-
cific constraints faced by paratransit services (often not
by traditional ride-sharing services). Then, we describe
an offline and an online solution approach for solving the
paratransit service problem. Our solution approaches are

simple and can be implemented by using off-the-shelf
VRP solvers, thereby facilitating easier deployment.

3. We present results from real-world data and a pilot study
from a mid-sized southern city in the USA.

2 Background
We begin by providing a brief overview of VRPs. Broadly,
the VRP is a well-studied combinatorial optimization prob-
lem that deals with the optimal design of routes to be used
by a fleet of vehicles to serve a set of customers [Dantzig
and Ramser, 1959]. Such problems have been extensively
modeled as mixed-integer linear programs (MILP), a class
of optimization problems known to be NP-hard, i.e., they
are computationally intractable to solve for large problem
instances [Lenstra and Kan, 1981]. Often, VRPs are also
modeled as planning problems that involve optimizing de-
cisions over time under future uncertainty, e.g., optimiz-
ing the set of routes for a fleet of vehicles in real-time to
serve a given set of customers while new customer orders ar-
rive dynamically [Toth and Vigo, 2002; Pillac et al., 2013].
Such problems are often modeled as Markov decision pro-
cesses (MDP) [Archetti et al., 2020; Wilbur et al., 2022;
Joe and Lau, 2020]. While both the ILP and the MDP
settings for transportation optimization are computationally
challenging to solve for large problem instances (e.g., opti-
mizing city-wide transit), there are well-established heuris-
tic approaches [Alonso-Mora et al., 2017; Kim et al., 2023;
Wilbur et al., 2022], that can solve these problems reasonably
well (i.e., close to optimality). While these approaches can be
used to model generic on-demand ride-sharing problems, the
paratransit domain presents several unique challenges that we
highlight below.

2.1 Paratransit Challenges
Paratransit services can resemble traditional on-demand ride-
pooling services in some ways (e.g., the arrival of real-time
requests and ride-sharing); however, our collaboration with
CARTA revealed several critical differences between tradi-
tional DVRPs and paratransit services. We point out some of
these key differences below, which are especially important
for deployment.
Variable capacity constraints: Similar to traditional on-
demand ride-pooling services, paratransit services have con-
straints on pickup times, dropoff times, and vehicle capac-
ities. However, unlike most applications (or models) of
VRPs, paratransit services pose the unique challenge of vary-
ing capacities due to the presence of both ambulatory and
wheelchair-bound passengers. A wheelchair requires more
space than a regular seat in a paratransit vehicle. In this
setting, most agencies have flexible seating-enabled vehi-
cles whose seats can be folded to accommodate additional
wheelchair passengers at the expense of ambulatory passen-
gers. Wheelchair passengers can also take longer to board
and depart the vehicle, which must be considered as this con-
straint might potentially cause the vehicle to violate a future
pickup or dropoff constraint.
Travel time constraint: In the case of our partner agency (and
many other public transit agencies that operate paratransit ser-
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(a) Paratransit ridership (b) Paratransit deadhead miles

Figure 2: CARTA’s paratransit metrics: (a) Paratransit wheelchair and ambulatory riders per day in February 2020. (b) Deadhead and
passenger miles per day in February 2020 for paratransit vehicles. Deadhead miles are defined as miles driven without passengers.

vices), regulations dictate that paratransit trips must not take
longer than the longest comparable fixed-line route.
Strict time windows: The Federal Transit Administration
presents guidelines about the maximum wait times for para-
transit passengers. Consequently, transit agencies must add
substantial slack to their schedules and limit trips to only a
few passengers each, leading to low efficiency.
Guaranteed service: Additionally, not all requests are equal.
Requirements associated with the Americans with Disabili-
ties Act (ADA) mandate that ADA-eligible clients must be
serviced when requesting trips within a certain radius of pub-
lic fixed-line services (with some caveats on the agency be-
ing given enough time to plan for the trip). We show a sum-
mary of paratransit ridership and miles traveled by vehicles
for CARTA in Figures 2a and 2b, respectively.

3 Model
The core decision-making and computational problem that
transit agencies must tackle for operating paratransit services
is a VRP, i.e., the agency must assign routes to vehicles that
pick up and drop off passengers at designated locations and
times. As we highlighted before, paratransit requests can ei-
ther be made (at least) a day in advance or in real-time. While
agencies are not obligated to serve requests made in real-time,
most public transit agencies, including CARTA, strive to ac-
commodate these requests. As a result, transit agencies typ-
ically require two variants of VRPs—an offline VRP model
(and solver) that handles the day-ahead requests and an online
VRP model (and solver) for handling requests made in real-
time. While both offline and online VRPs have been studied
extensively, they have not been studied in the context of para-
transit services, which pose domain-specific challenges. A
notable exception is a prior work by Sivagnanam et al., who
study offline VRPs (specifically, a VRPPDTW) with online
bookings in the context of paratransit services [Sivagnanam et
al., 2022]. Our offline model is closely related to theirs with
a simplified booking process. Note that our focus on lever-
aging prior work and not seeking to present a novel problem
definition is rooted in our goal of deployability. Crucially, as
we highlight later, our model can be directly solved by off-
the-shelf solvers.

We begin by introducing our model for the offline VRP,
which builds upon the classical VRPPDTW model with time
windows [Toth and Vigo, 2002]. We use the same notation as
Toth and Vigo to allow readers to cross-reference between our
formulation and the formulation provided in prior work [Toth
and Vigo, 2002]. We use a request-based model for the VRP-
PDTW, which deals with n requests, each with its pickup
and delivery locations (or nodes), and associated time win-
dows. Let i be a request in the network made up of two
nodes, i and n + i, which correspond to the request’s pickup
and dropoff locations, respectively. Naturally, in this formu-
lation, different nodes can be simultaneously at the same ge-
ographical location. Let P be the set of pickup nodes, where
P = {1, . . . , n} and let D be the set of drop-off nodes, where
D = {n + 1, . . . , 2n} Let the set of all nodes be N , i.e.,
N = P ∪ D. Let the number of ambulatory passengers and
passengers who use wheelchairs for request i be denoted by
dai

and dwi
, respectively. We use ℓai

and ℓwi
denote the in-

cremental capacity affected by request i; therefore, ℓai
= dai

,
ℓwi

= dwi
and thus ℓan+1

= −dai
, ℓwn+i

= −dwi
.

Next, we define the set of vehicles as K. Where each ve-
hicle has a set of nodes it can service, Nk = Pk ∪Dk, where
Nk, Pk, and Dk are subsets of their respective sets. Each
vehicle k has its own network where we let Gk = (Vk, Ak)
be a directed graph. We set Vk = N ∪ {o(k), d(k)} to con-
tains the set nodes of for vehicle k, including the origin, o(k),
and destination d(k), which are its depots. Ak is the subset of
Vk×Vk, which is made up of all feasible arcs. Each vehicle k
has a capacity Cak

for ambulatory passengers and a capacity
Cwk

for wheelchair passengers. Each vehicle also has a travel
time τijk and cost cijk between unique nodes i, j ∈ Vk. We
make the assumption that vehicle k leaves its origin depot
without any passengers at time ao(k) = bo(k), each vehicle
must have an admissible route which a corresponding feasi-
ble path from o(k) to d(k) within the network Gk, no node
in Gk can be visited more than once, and a vehicle must visit
a chosen node, i ∈ N , within the time window [ai, bi] when
the service si must begin.

3.1 Solution Space
We extend a standard vehicle routing problem with pickup
and delivery and time windows [Toth and Vigo, 2002] with
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additional capacity constraints. Our decision variables are as
follows: binary flow variables xijk ∈ {0, 1} that indicate if
arc (i, j) ∈ Ak is used by vehicle k, time variables tik ∈
R≥0 that indicate when vehicle k starts the service at node
i ∈ Vk, and two load variables yaik

∈ R≥0, for ambulatory
passengers and ywik

∈ R≥0 for wheelchair passengers. Both
give the load of vehicle k once the service at node i ∈ Vk has
been completed. We minimize the total travel cost under the
following linear objective function:

min
∑
k∈K

∑
(i,j)∈Ak

cijkxijk (1)

subject to the following sets of constraints M :∑
k∈K

∑
j∈Nk∪{d(k)}

xijk = 1, ∀i ∈ P (2a)

∑
j∈Nk

xijk −
∑
j∈Nk

xj,n+i,k = 0, ∀k ∈ K, i ∈ Pk (2b)

∑
j∈Pk∪{d(k)}

xo(k),j,k = 1, ∀k ∈ K (2c)

∑
i∈Nk∪{o(k)}

xijk−

∑
i∈Nk∪{d(k)}

xjik = 0, ∀k ∈ K, j ∈ Nk (2d)

∑
i∈Dk∪{o(k)}

xi,d(k),k = 1, ∀k ∈ K (2e)

xijk(tik + si + τijk − tjk) ≤ 0, ∀k ∈ K, (i, j) ∈ Ak

(2f)
ai ≤ tik ≤ bi, ∀k ∈ K, i ∈ Vk (2g)
tik + τi,n+i,k ≤ tn+i,k, ∀k ∈ K, i ∈ Pk (2h)
xijk(yaik

+ ℓaj
− yajk

) = 0, ∀k ∈ K, (i, j) ∈ Ak

(2i)
ℓai ≤ yaik

≤ Cak
, ∀k ∈ K, i ∈ Pk (2j)

0 ≤ yan+i,k
≤ Cak

− ℓai
, ∀k ∈ K,n+ i ∈ Dk

(2k)
xijk(ywik

+ ℓwj
− ywjk

) = 0, ∀k ∈ K, (i, j) ∈ Ak

(2l)
ℓwi ≤ ywik

≤ Cwk
, ∀k ∈ K, i ∈ Pk (2m)

0 ≤ ywn+i,k
≤ Cwk

− ℓwi
, ∀k ∈ K,n+ i ∈ Dk

(2n)
yao(k),k

= 0, ∀k ∈ K (2o)

ywo(k),k
= 0, ∀k ∈ K (2p)

xijk ∈ {0, 1}, ∀k ∈ K, (i, j) ∈ Ak

tik ∈ R≥0, ∀k ∈ K, i ∈ Vk

yaik
∈ R≥0, ∀k ∈ K, i ∈ Vk

ywik
∈ R≥0, ∀k ∈ K, i ∈ Vk

where constraints (2a) enforce that each request is served
exactly once, and Constraints (2b) require that each request
is served by the same vehicle. Constraints (2c–2e) ensure

Symbol Description

n number of transportation requests;
N the set of nodes;
P the set of pick-up nodes;
D the set of drop-off nodes;
ℓai

number of ambulatory passengers at node i;
ℓwi number of wheelchair passengers at node i;
Cak

ambulatory capacity of a vehicle;
Cwk

wheelchair capacity of a vehicle;
K the set of available vehicles;
τijk travel time between distinct nodes;
cijk cost between distinct nodes;
si service time at node i;

Table 1: Notation Table

that vehicle k starts from its origin depot o(k) and ends its
route at its destination depot d(k), forming a multicommod-
ity flow structure. Constraints (2f) handle the compatibil-
ity requirements between routes and schedules, while con-
straints (2g) implement the time windows for each vehicle
and their nodes/stops. Constraints (2h) ensure that each re-
quest is picked up before it is dropped off. Constraints (2i–
2l) handle the compatibility requirements between routes and
vehicle loads. Next, constraints (2j–2k, 2m–2n) enforce ca-
pacity intervals at pickup and delivery stops/nodes, for each
vehicle. Lastly, Constraints (2o–2p) ensure that the starting
load of each vehicle is 0. Note that under this implementa-
tion, a route’s duration can only be at most bd(k) − ao(k). A
vehicle is also allowed to wait before it visits a node under
Constraints (2f–2g). Finally, the arrival time at an arbitrary
node j can be calculated as:

xijk = 1 ⇒ tjk = max (aj , tik + si + τijk) (i, j) ∈ Ak

For the online VRPPDTW, the same set of constraints ap-
ply. However, the requests arrive one at a time and must be
accommodated into existing schedules. A summary of the
notation can be found in Table 1 below.

3.2 Solution Approaches
To solve the offline VRP, we can directly use an off-the-shelf
VRP solver. Specifically, we use the guided local search from
Google OR-Tools VRPTW solver. For the online problem,
we use an insertion heuristic [Wilbur et al., 2022] that seeks
to insert a request into an existing schedule without violat-
ing any constraints. While an insertion heuristic is not opti-
mal (as it does not alter the order of existing requests that a
vehicle has committed to), it often works fairly well in prac-
tice. To quantify the insertion quality, we choose the inser-
tion position that minimizes the VMT/PMT ratio for the re-
sulting vehicle schedule, where VMT and PMT refer to ve-
hicle and passenger miles traveled, respectively. Specifically,
VMT represents the total vehicle miles traveled by a vehi-
cle over a day, including the miles when the passenger(s) are
on board and when a vehicle travels without any passengers
on board; PMT, on the other hand, is the summation of the
shortest path between origin and destination for each OD pair
in the dataset for a specific day. Therefore, PMT represents
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VIEW SCHEDULE Validate ScheduleEDIT SCHEDULE (Human supervision)

schedule list With
actions, addresses & times

Drag and drop
cards

Figure 3: Supervisors can edit the schedule and override the
machine-generated schedule.

the vehicle miles required if each passenger drove directly
between their corresponding origin and destination. Using
VMT/PMT as the criteria for insertion penalizes longer ve-
hicle miles traveled compared to the shortest route for each
passenger.

Human in the Loop Solution
While algorithmic solutions can maximize desired objectives,
e.g., service rate, such approaches often do not consider the
domain knowledge known by the public transit operators.
During our discussions with CARTA, we found that consid-
ering such domain knowledge is imperative for the smooth
operation of real-world transit fleets. For example, a transit
supervisor might know that a physically disabled passenger
trusts a specific driver over many years and feels comfortable
boarding a vehicle with a wheelchair with help from the said
driver. Such tacit knowledge is often critical in practice, and
we hypothesize that algorithmic solutions deployed for real-
world transit fleets (and particularly paratransit services) must
enable human supervisors to modify solutions generated by
the algorithm. To enable such modification, we provide ways
for CARTA to edit the generated solutions while also sug-
gesting to them the feasibility of potential for constraint vio-
lations. We also allow them to override a solution if they so
choose. Figure 3 shows the online screens of the deployment
system that show the routed trips and the ability to switch the
trips between a route and another bucket, which can be an-
other route or the unrouted category. In our developed soft-
ware system, edits require a simple drag and drop validated
through a constraint checker that facilitates easy and seamless
operation for the end user. For example, the online interface
does not allow a client’s drop-off card to be moved before the
pick-up card. Also, the schedule validation generates warn-
ings based on potential travel time violations or if the pick-up
and drop-off times are outside the windows. Once saved, the
schedule is communicated to the corresponding driver in real-
time (if it is a same-day change).

4 Experiments
4.1 Dataset and Experimental Setup
We conduct our validation in two phases. First, we validate
the algorithmic approaches using real-world paratransit data
collected by CARTA. Then, we validate the proposed ap-

proach through a deployment exercise. The code and a sam-
ple of simulated data is publicly available2.

Real-World Paratransit Data
We run experiments for all solvers with real-world paratran-
sit data from CARTA from August 13th, 2023. The para-
transit fleet consisted of 15 vehicles available with schedules
staggered between morning and afternoon shifts according to
CARTA’s driver and vehicle availability and a total of 125
passengers. Each request in the dataset consisted of a geo-
coordinate (longitude, latitude) for the pick-up location and
drop-off location, as well as the requested pickup time. It also
contained the capacity type for each request, with the option
of ambulatory or wheelchair.

In addition to the set of requests, we also use CARTA’s
scheduled manifest and driver schedules for August 13th,
2023, where a manifest refers to an ordered list of loca-
tions that a vehicle will visit. Each entry in the manifest is
marked with an action, pick-up or drop-off, and estimated ar-
rival time. The manifest and driver schedules allow us to cal-
culate CARTA’s metrics for comparison against our solvers.
CARTA uses a black-box software product to generate the
manifests. We instantiate constraints for the VRP by using
the same real-world constraint that CARTA follows: 1) the
time window, i.e., the amount of time before he requested
pickup time that a request can be picked up, is set to 15 min-
utes; 2) The vehicle capacity is set to maximum 8 ambulatory
passengers and 2 wheelchair passengers (based on CARTA
paratransit vans); 3) the dwell time, i.e., the estimated dura-
tion that a vehicle will stay at a location to pick-up/drop-off a
passenger is set to 5 minutes; and 4) any trip request that can
not be serviced within the time windows is dropped, i.e., not
considered.

Road Network and Travel Time Matrix
We use OpenStreetMap (OSM) [OpenStreetMap contrib-
utors, 2017] for the road network construction and
OSMNX [Boeing, 2017] to generate a routing graph of the
road network with travel time for edge weights. The travel
time matrix is computed offline by calculating the shortest
paths between all pairs in the network, with free flow speed
as the edge weight.

4.2 Offline Solver
Given a set of requests for August 13, 2023, we generate a
manifest using our offline VRP solver. The objective of the
solver is to minimize vehicle miles traveled (VMT) with an
additional large penalty term for dropping a trip request. Ta-
ble 2 shows the manifest metrics for multiple solvers. We ob-
serve CARTA operations average a VMT/PMT ratio of 1.31;
the offline solver reduces VMT/PMT by 21.3% while ser-
vicing the same number of requests with the same vehi-
cle configurations. It is also important to note that the of-
fline solver is more efficient with a higher shared rate than
CARTA, meaning 85% of vehicle trips have more than one
passenger on board for a given time. CARTA’s manifest also

2https://github.com/smarttransit-ai/ijcai-deploying-mobility-on-
demand
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Solver VMT VDM VMT/PMT Shared
Rate

Passengers
Served Violations

Offline Solver 990 252 1.03 85% 125 0
PTA - Offline 1278 538 1.31 53% 125 12

Online Solver, 90%/10% split 1145 301 1.19 83% 125 0
Online Solver, 80%/20% split 1157 370 1.21 79% 125 0
Online Solver, 70%/30% split 1220 454 1.27 65% 125 0
Online Solver, 60%/40% split 1172 384 1.35 76% 115 0
Online Solver, 50%/50% split 1142 437 1.39 59% 110 0

Table 2: Solver metrics recorded for paratransit data on compared with PTA’s real schedule. VMT: Vehicle Miles Travelled, VDM: Vehicle
Detour Miles, VMT/PMT: Vehicle Miles Travelled to Passenger Miles Travelled, Shared Rate: percentage of trip requests that shared their
trip with another passenger, Violations: number of time window constraint violations. We observe that the proposed offline solver serves
all passengers without any violations, with significantly fewer detour miles and a significantly higher shared rate, thereby reducing
the total number of miles the vehicles have to drive.

contained 12-time window violations, meaning passenger re-
quests were scheduled to be served outside of the 15-minute
time window constraint, while the proposed offline solver did
not violate any time constraints.

4.3 Online Solver
To evaluate the online solver, we simulate real-time requests
from the real-world data collected from CARTA. We ran-
domly split the set of requests into two parts and treat one
part as the set of day-ahead requests and another as the set of
real-time requests. Our experiment design mimics CARTA’s
operational constraints, where a set of requests are available
a day in advance, and at times, real-time requests must be
accommodated while serving the day-ahead requests. For ex-
ample, a 70-30 split denotes that 70% of requests are available
a day in advance (to be solved by the offline solver), and 30%
of requests arrive in real-time as same-day requests. In this
case, our online solver is called for each real-time request as
they arrive. The request arrival time, defined as the time be-
fore the requested pickup time that the request is available to
the system, is set to 30 minutes.

We present the results of the online solver in Table 2. We
observe that even when 70% of the requests are known in
advance, the proposed approach outperforms CARTA’s ap-
proach even if it knows all requests in advance. The per-
formance gain is captured in lower VMT/PMT ratios, lower
VMT, lower VDM, and a higher shared rate. We also observe
that if a significant proportion of the trip requests are made in
real-time (e.g., more than 40% of requests), then the proposed
online solver fails to accommodate all requests while main-
taining all paratransit constraints; e.g., in such a situation, 115
out of 125 passengers are served. In practice, the current op-
erating conditions of CARTA resemble a 90-10 split, which
the online solver can easily accommodate.

5 Paratransit Pilot
Having validated the proposed approach in simulation by us-
ing real-world data from CARTA, we conducted a pilot ex-
ercise. Before describing the results, we highlight that con-
ducting a pilot exercise that deploys an algorithmic approach
is extremely difficult for public transit agencies, particularly

Figure 4: CARTA driver using the proposed algorithm to follow the
manifest during a real-world deployment.

in the context of paratransit service, as regulations mandate
performance and service standards. We ran a pilot in Au-
gust 2023 with CARTA’s paratransit team with the offline ap-
proach. The goal of our pilot was the following: first, we
aimed to evaluate the integration of our offline VRP optimizer
with the paratransit service of CARTA. Second, we wanted to
evaluate the algorithm during real-time operations. This goal
involved equipping drivers with a tablet mounted in the ve-
hicle that contained their schedule and monitoring operations
through a real-time web interface with members of CARTA’s
operations team (Fig. 4). Third, we wanted to gain feedback
from schedulers and drivers on system usability and identify
possible improvements going forward.

5.1 Pilot Design and Setup
We selected August 3, 2023, and August 10, 2023, for the
pilot. We generated new manifests based on the proposed ap-
proach, which were actually deployed by CARTA. To com-
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Pilot Solver VMT VDM VMT/PMT Shared
Rate

Passengers
Served

Pilot 1 PTA 1531 601 1.41 61% 159
Offline Optimizer 1175 300 1.07 86% 159

Pilot 2 PTA 1269 517 1.27 68% 129
Offline Optimizer 1061 281 1.06 84% 129

Table 3: Pilot Metrics recorded for system testing for both deployments. VMT: Vehicle Miles Travelled, VDM: Vehicle Detour Miles,
VMT/PMT: Vehicle Miles Travelled to Passenger Miles Travelled, Shared Rate: percentage of trip requests that shared their trip with another
passenger. We observe that the proposed offline solver serves all passengers without any violations, with significantly fewer detour
miles and a significantly higher shared rate, thereby reducing the total number of miles the vehicles have to drive.

pare the efficacy of the proposed approach, CARTA also gen-
erated manifests using their existing black-box approach. We
exported the trip requests, driver schedules, vehicles, and
scheduled manifests from CARTA’s existing system. On both
days, there were 15 vehicles available, with schedules stag-
gered between morning and afternoon shifts according to
CARTA’s driver and vehicle availability. There were a to-
tal of 159 passengers and 129 passengers on August 3rd and
10th, respectively.

For the deployment, CARTA followed strict time window
constraints for two types of passenger requests. CARTA
mandated that pickup-constrained requests must be picked
up within a 15-minute window before or after the requested
pickup time, and the passenger must be dropped off within
an hour of the requested pickup time at their destination.
Dropoff-constrained requests represent situations where a
passenger must be dropped off before the requested dropoff
time and must be picked up no earlier than one hour before
the appointment (e.g., these constraints often represent medi-
cal appointments in CARTA’s data). Additionally, each vehi-
cle had two capacity constraints—no more than 8 ambulatory
passengers and 2 wheelchair passengers could be on a vehicle
at a given time.

5.2 Evaluation of Offline VRP Solver
We present the key metrics related to the performance of
CARTA’s original schedule compared to the schedule gen-
erated by the offline VRP solver in Table 3. As shown, the
proposed approach reduced VMT by 356 miles on August
3, 2023, and by 236 miles on August 10, 2023. There was a
24% and 17% improvement in VMT/PMT over CARTA’s
initial paratransit schedule for August 3, 2023, and August
10, 2023, respectively. The efficiency gain correlates with the
finding that our implementation had a much higher shared
Rate, which is the percentage of passengers who shared their
trip with at least one other passenger compared to CARTA’s
schedule.

5.3 Post-Deployment Feedback
After the pilot, we conducted a qualitative survey of drivers
to evaluate their experience with the proposed system. Recur-
ring themes from the feedback were, User-Friendly, Efficient,
and Easy to use with one driver noting that “It was great to
have something like that to rely on when you need it [the ap-
plication] instead of calling it [a problem] in to dispatch.”

We also conducted interviews with paratransit operators
at CARTA. When interviewing the operators, they explained
that without the proposed offline optimizer, it would take
approximately six hours in a ten-hour day to generate a
schedule for a day, compared to the proposed offline opti-
mized generating manifests ‘within minutes’. When asked
about positive attributes of the application, one operator said
when it comes to tweaking schedules after generation, to ac-
count for domain knowledge and expertise, it took “...about
50% less than what we would have to do, which is very good
to me.”

6 Conclusion
In collaboration with CARTA, we present data-driven opti-
mization modules for paratransit services. We evaluate the
offline and online algorithms on real-world paratransit data.
The successful validation of the proposed approaches resulted
in a pilot deployment, which showed that our approach com-
prehensively outperforms existing approaches followed by
CARTA. Our software module and the model can be con-
figured easily with agency-specific constraints and allow for
transit operator intervention with violation checking. Cru-
cially, our technological intervention for CARTA only am-
plifies the existing paratransit initiative rather than creating a
new one, thereby resulting in a framework that is more likely
to reach and maintain deployment [Toyama, 2015].
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