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Abstract

The process of laminar mixing in a T-shaped micro-device is studied by
direct numerical simulation for a model binary mixture, composed of two fluids
having the same density and the same viscosity, yet presenting a strong fluidity
of mixing effect, i.e. the viscosity of the mixture is a function of its composition.
In all cases, the inlet streams remain separated up to a critical Reynolds number,
corresponding to the transition from a vortex flow regime, with a double mirror
symmetry, to an engulfment flow regime, with a point central symmetry. In
the case of a positive fluidity of mixing, the onset of the engulfment regime is
accompanied by a sharp increase of the degree of mixing, with the critical Re
decreasing as the fluidity of mixing increases. On the contrary, when the fluid
mixture has a larger viscosity than that of its pure components, a viscous layer
forms at the confluence of the inlet flows, which tends to keep the two streams
separated. Therefore, in this case, no sudden increase of the degree of mixing is
observed at the onset of the engulfment regime.
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1. Introduction

In a recent work, Orsi et al. (2013a) simulated the mixing process that fol-
lows the confluence of two fluids onto a T-junction, comparing the case where
the two inlet fluids are both water with the case where one inlet fluid is wa-
ter and the other is ethanol. In particular, it was shown that the degree of
mixing increases sharply when the flow field turns from vortex to engulfment
flow regimes, that is from a mirror symmetric morphology that keeps the two
streams separated, to a point symmetric pattern, where fluid elements reach

1Author to whom correspondence should be addressed. Electronic mail:
chiara.galletti@unipi.it.

Preprint submitted to Chemical Engineering Science November 18, 2014



the opposite side of the mixing channels. Orsi et al. (2013a) observed that
the symmetry breaking process, corresponding to the onset of the engulfment
regime, occurs at Re ≈ 140 in the water-water case, in agreement with several
works in literature (see Engler et al., 2004; Bothe et al., 2006; Hoffmann et al.
2006; Galletti et al., 2012), whereas larger Re numbers (i.e., Re = 230) were
needed to enhance mixing in the water-ethanol case. The reason of this mixing
hindrance was ascribed to the fact that a water-ethanol mixture has a viscosity
that is almost three times larger than that of water, so that at the confluence of
the T-mixer, the two streams are separated by a viscous interfacial layer that
hampers vortex formation and retards mixing.

Viscosity change due to mixing, however, is not the only possible cause of
the above mentioned mixing hindrance. First of all, we should consider that the
two pure fluids have different viscosities, i.e., ethanol is about 20% more viscous
than water. This, however, by increasing the ethanol residence time, should
enhance mixing. Then, there is the effect of density differences, which usually
enhance fluid separation. In fact, the density of a water-ethanol mixture is a
strong function of its composition: water is about 20% heavier than ethanol and,
in addition, the volume of a water-ethanol mixture may be up to 5% smaller
than the sum of the volumes that are initially occupied by its components.
This latter, so-called volume of mixing, effect was studied in a separate work
by Orsi & Mauri (2013), showing that a volume sink at the confluence of the
two fluid streams induces a velocity field heading towards the interface, but this
effect is small and cannot be the cause of the above-mentioned suppression of
mixing efficiency. As for the different densities of water and ethanol, Orsi et al.
(2013a) concluded that this effect is important only at low Reynolds numbers,
when the two fluids segregate vertically, but does not affect the strong variation
of the degree of mixing that was observed. This point, however, deserves further
investigations.

In this work, we want to corroborate the statement that the main cause of
mixing reduction is the increase of the mixture viscosity upon mixing. To do
that, we focus on the effect of the concentration-dependent viscosity, by totally
eliminating any density changes and viscosity offset. Therefore, we consider a
model binary mixture which, on one hand, has a constant density, while, on the
other hand, has a viscosity that strongly depends on composition, although the
two pure fluids have the same viscosity.

Our model of a composition-dependent mixture viscosity mirrors the ther-
modynamic description of a composition-dependent mixture volume. In fact,
from multicomponent thermodynamics, we know that the density ρ (i.e., the
inverse of the specific volume) of a binary mixture is related to the densities ρA
and ρB of pure fluids A and B, respectively, through the following relation:

1

ρ
=

φ

ρA
+

1− φ
ρB

+ ∆vmix, (1)

where φ is the mass fraction of component A. Here, we see that the difference
between the specific volume of the mixture and the sum of the volumes of the
pure components at constant temperature and pressure is the volume of mixing,
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∆vmix, whose value is a function of the mixture composition. In particular,
so-called regular mixtures are characterized by ∆vmix = 0, so that their volume
is conserved. In this work, as mentioned above, we assume that ρA = ρB = ρ0
and ∆vmix = 0, so that ρ = ρ0.

Many different mixing rules can be found in the literature to evaluate the
viscosity of a mixture starting from that of its pure components (see Laliberté,
2007). Considering that viscosity represents the resistance of a fluid against the
diffusive transport of momentum, and that in fluid mixtures these resistances
are in parallel (Ottino & Chella, 1983), the viscosity µ of a binary mixture can
be related to the viscosities of pure fluids A and B, µA and µB , respectively,
through the following relation, which is similar to the density one:

1

µ
=

φ

µA
+

1− φ
µB

+ ∆fmix, (2)

where ∆fmix is the fluidity of mixing, that accounts for the non-ideality of the
mixture. This term is particularly important; for example, a mixture of ethanol
and water at 20oC with 0.3 < φ < 0.6 has a viscosity which is almost three
times that of pure water (Simmonds, 1919). Similar behavior is observed for
many aqueous mixtures of organic solvents, such as acetone, methanol, propanol
and acetic acid (see Dizechi & Marschall, 1982; Wang et al., 2004; Laliberté,
2007). On the other hand, the fluidity of mixing can also be positive, as for
example in the cases of 1,2-dichloroethane/carbon-tetrachloride (Zhang & Han,
1997; Mahajan & Mirgane, 2013; Gonzalez et al., 2007).

Here, since our objective is to investigate the effect of the fluidity of mixing
∆fmix alone, we eliminate any viscosity offset by assuming that the two pure
fluids have the same viscosity, i.e. µA = µB = µ0. In addition, we assume for
the viscosity of the mixture the following simple, quadratic expression:

µ (φ) = µ0 [1 + 4(α− 1)φ (1− φ)] , (3)

where α expresses the ratio between the viscosity of a 50%− 50% mixture and
that of a pure fluid species. Three cases will be considered, namely α = 3,
α = 1

3 and α = 1. The former, α = 3 case, presents a negative fluidity of mixing
and corresponds, indicatively, to a water-ethanol mixture, where the effects due
to density changes, together with those due to the different viscosities of the
two pure species, have been eliminated. The second case, with α = 1

3 , presents
a positive fluidity of mixing and corresponds approximately to octan-2-ol/n-
tetradecane(Mahajan & Mirgane, 2013); finally, the α = 1 case, corresponds to
two identical fluids.

In the present work, we will determine both velocity and concentration fields
resulting from the confluence of the model fluid mixtures at a T-junction.

2. Problem description

2.1. The governing equations

Consider two fluids at the same temperature and density, converging onto a
T junction. Assuming that the heat of mixing and the volume of mixing are neg-
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ligible, so that the process can be modeled to be isothermal and isovolumetric,
at steady state the governing equations are:

ρ0v · ∇v +∇P = ∇ ·
[
µ (φ)

(
∇v + (∇v)T

)]
, (4)

∇ · v = 0, (5)

v · ∇φ = D∇2φ, (6)

where v is the solenoidal velocity field, P is the dynamic pressure, φ the mass
(and volume) fraction of, say, component A of the binary mixture, and D is
the molecular diffusivity, while the T superscript indicates the transpose of a
tensor. If the two fluids are identical, we can imagine adding a very small
amount of contaminant, i.e. a dye, to one of the fluids (which therefore continue
to have the same physical properties) and therefore, in this case, φ indicates
the (normalized) dye mass fraction. As mentioned in the Introduction, the
characteristics of the velocity and concentration fields can be described through
the Reynolds and Peclet numbers,

Re =
ρ0Ud

µ0
; Pe =

Ud

D
= ReSc; Sc =

µ0

ρ0D
, (7)

where Sc is the Schmidt number, U is the mean velocity, while the characteristic
fluid length d is assumed to be the hydraulic diameter, i.e.,

d =
2WH

W +H
, (8)

where W and H are the mixing channel width and height, respectively (see
Figure 1).

Finally, as mentioned above, we assume that the process is isothermal, there-
fore neglecting the temperature change due to the heat of mixing. As shown
in Orsi et al. (2013a) in the water-ethanol case, this hypothesis is verified, as
the effect of the heat of mixing consists of a small temperature decrease along
the mixing channel, which amounts to a negligible change in the properties (i.e.
density and viscosity) of the mixture.

2.2. Geometry and numerical model

The geometric setting of our simulation consists of the T-shaped micro device
shown in Figure ??. The mixing channel has a rectangular cross section with a
2:1 aspect ratio (i.e. width W = 2H and depth H), with length L = 15d, while
the inlet channels are identical, with square cross section (i.e. width Wi = H
and depth H) and length Li = L = 2.25d. Such length Li was chosen to include
the whole confluence region, while the length of the mixing channel, L, was long
enough to completely describe the complex vortical structures and avoid any
channel-length effect on the predictions. In particular, using H = 100µm, we
obtain the geometric setup used by many investigators (see, for example, the
numerical work by Bothe et al., 2006, and the experimental work by Hoffmann
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Figure 1: Sketch of the T mixer. o− 01 section corresponds to y = 1.5 d

et al., 2006). The reference system, whose origin is placed at the entrance of
the mixing channel, is shown in Figure 1. In particular, y denotes the distance
from the confluence of the inlet streams. —

Simulations were performed using the commercial software Ansys 14.5, with
the FLUENT fluid dynamics package, that we used as a Navier-Stokes solver,
where dimensions and velocities were scaled in terms of the hydraulic diameter
d and the mean velocity U , i.e. y∗ = y/d and u∗ = u/U . The grid was obtained
from a grid independency study and consists of cubic elements with H/20 edge,
leading to 20× 40 elements in each cross section of the mixing channel, thus in
agreement with the recommendation by Hussong et al. (2009), regarding how to
accurately describe the velocity fields. A second order discretization scheme was
used to solve all the governing equations. Simulations were typically considered
converging when the normalized residuals for velocities were stationary with
iterations and fell below 1×10−12. Such small residuals were specifically required
to ensure converged solutions near the engulfment, as shown by Galletti et al.
(2012). The steadiness of the solution with iterations was also assessed by
checking the velocity and concentration field in the outlet section of the mixing
channels at different iterations.

As mentioned above, here we discretize the concentration field using the
same mesh size as for the velocity field. Clearly, since in our case Sc � 1, so
that Pe � Re, a rigorous simulation of mass diffusion would require a grid
resolution that is much finer than that of the velocity field (see the extensive
discussion in Ottino, 1994, about this issue). This, however, would lead to
unacceptably long computation times, which can be resolved only by using
clever numerical schemes, such as the one suggested by Bothe et al., 2011).
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Adopting, as we do here, the same mesh size, effectively amounts to studying
mass diffusion on a coarse-grained length-scale. Clearly, this approximation is
unacceptable when mixing is a diffusion-driven process, as it happens when, in
the α = 1 case at Re � 1, the two inlet steams flow side by side, so that a
concentration boundary layer of thickness δ ∼ dPe−1/2 forms at the interface.
However, in our case, as Re > 100, convection at the confluence occurs also
along a transverse direction, i.e., perpendicularly to the mean flow, as each inlet
flow penetrates into the other by a typical distance, R (as we saw, R ∼= d in
the engulfment regime). This is particularly true when viscosity depends on
composition, since a transverse flow is induced by the term (dµ/dφ)∇φ · ∇u
appearing in Eq. (4). Accordingly, defining a transverse Peclet number, Pet =
UR/D, we see that in all cases Pet � 1, indicating that purely diffusive fluxes
can be neglected compared to the convective fluxes induced by transverse fluid
motion, so that an approximately correct concentration field can be determined
by assuming that the fluid particles are passive tracers and that we can follow
their motion in the coarse-grained scale of the velocity field. In the appendix of
Orsi et al. (2013a) this statement is supported by the results of a perturbation
analysis, showing that when Sc � 1, at leading order the diffusive term of
the convective-diffusive Eq. (6) can be neglected. Here, this conclusion will be
further reinforced showing that the concentration field and the degree of mixing
do not depend on the Sc number.
The boundary conditions consisted of no-slip velocity and no-mass-flux at the
channel walls, a constant ambient pressure at the exit, while at the two entrances
a given flow profile was imposed, assuming fully developed flow conditions. In
this way, we avoid the undesired complications connected to the inlet fluid
conditions, that we have analyzed in a separate work (Galletti et al., 2012).
The equation for the fully developed profile in a rectangular conduit can be
found in Happer & Brenner (1965) and Chatwin & Sullivan (1982) as explained
in Galletti et al. (2012). The flow rates of the two fluids were equal for all the
cases studied.

2.3. Degree of Mixing

The definition of mixing efficiency is based on mass fluxes, and it is similar
to that reported in Orsi et al. (2013a). Accordingly, as density here is uniform,
we can define the degree of mixing in a cross section of the outlet channel as:

δm(y) = 1− σb(y)

σmax
; σmax =

√
φb
(
1− φb

)
. (9)

where σb is the standard deviation of the volumetric flow, with

σ2
b (y) =

∫
S

(
φ (x, y, z)− φb

)2
u (x, y, z) dxdz∫

S
u (x, y, z) dxdz

=
1

Nu

∑
i

(
φi − φb

)2
ui, (10)

In equations 9 and 10, σmax denotes the maximum value of the standard de-
viation σb, that is achieved when the two streams remain completely segregated,
while φb is the ”bulk” mass fraction:
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φb =
V̇A

V̇
=

∫
S
φ (x, y, z)u (x, y, z) dxdz∫

S
u (x, y, z) dxdz

=

∑
i φiui
Nu

, (11)

where ui is the axial velocity of the mixture at point i within the cross section
of the mixing channel, while u is its mean value, with:

V̇ = uS; u =
1

S

∫
S

u (x, y, z) dxdz. (12)

3. Results

3.1. Model validation: α = 1

First of all, we considered the α = 1 case, corresponding to a mixture of
two liquids having the same viscosity (and density). As mentioned above, that
represents the case of two identical liquids, where a very dilute solute has been
dissolved into one of the inlet streams, so that φ represents the normalized mass
fraction of the solute. In Figure 2 the projections of the velocity vectors on
the cross section in the mixing channel at a distance y = 1.5 d from the con-
fluence are represented for different Re. We see that when Re < 138 the flow
morphology is characterized by two pairs of counter-rotating vortical structures,
originating at the confluence of the two inlet streams. This flow field, charac-
terised by a double mirror symmetry, has been observed both experimentally
and numerically (see Engler et al., 2004; Hoffmann et al., 2006; Bothe et al.,
2006) and is denoted as vortex flow regime.

Figure 3a shows the distribution of normal vorticity for Re = 125 at differ-
ent cross sections of the mixing channel, namely at distances y = 0.1 d, 0.8 d
and 1.5 d from the confluence of the inlet streams. The gray region represents
the vortical structures as identified through the λ2 criterion (Jeong & Hussain,
1995). Such criterion is based on the concept that a vortex is associated to a
local pressure minimum. Accordingly, a vortex is defined as a connected fluid
region where the second eigenvalue of the symmetric tensor S2 + Ω2 is nega-
tive, i.e. λ2 < 0, with S and Ω indicating the strain rate and vorticity tensors,
respectively, i.e. ∇v = S + Ω.

It is well evident the double mirror symmetry of the flow field with a double
pair of counter-rotating vortical structures, whose legs are of the same length
and parallel to the mixing channel. For that reason the vortex flow is also
denoted as steady symmetric regime in Fani et al. (2013).

Then, at Re = 138, a symmetry breaking is observed, with a transition
from vortex to engulfment flow regime, that is from double mirror to central
point symmetry structures, where the latter are invariant under point reflection
through the center of the cross section. This is well evident from Figure 2d which
represents the in-plane vectors at the mixing channel cross section located at
y = 1.5 d, for Re = 150. The vortical structures of Figure 3c clearly indicate
the presence of two stronger legs, extending into the mixing channel, together
with other two weaker legs. Such flow structures are very similar to the ones
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(a) Re = 112 (b) Re = 125

(c) Re = 137 (d) Re = 150

(e) Re = 160 (f) Re = 175

Figure 2: Vector plots in the mixing channel cross section at y = 1.5 d for α = 1 at different
Re numbers
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(a) Re = 125 (b) Re = 137

(c) Re = 150 (d) Re = 160

Figure 3: Identified vortices according to the λ2 criterion and distribution of normal vorticity
for α = 1 and different Re numbers at planes: y = 0.1 d, 0.8 d and 1.5 d.

observed by Fani et al. (2013), who used a T-mixer with a different aspect ratio.
The engulfment flow regime is also denoted as steady asymmetric regime.

The transition between the two flow regimes is particularly evident in Figure
4, where the concentration field at the outlet of the mixing channel (i.e. at
y = 15 d) is represented for different Re. We see that in the vortex regime,
when Re < 138, the two inlet streams basically remain segregated from each
other, while they mix very effectively in the engulfment regime.

3.2. Role of molecular diffusivity

In most liquid-liquid mixing processes, molecular diffusivity is much smaller
than kinematic viscosity, and, in fact, in our simulation we assumed that the
Schmidt number is Sc = 104. As we mentioned in the Introduction, though,
when, as in our case, Pe � Re, a rigorous simulation of mass diffusion would
require a grid resolution that is much finer than that of the velocity field. Here,
on the contrary, we discretize the concentration field using the same mesh size
as the velocity field, which effectively amounts to studying mass diffusion on
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a coarse-grained length-scale. In this respect, the degree of mixing that we
obtain at low Re is overestimated; however, since its value is very small, we
may conclude that this effect is negligible. The same conclusion was reached by
repeating the simulations for Re = 100 and Re = 150 (i.e. both for vortex and
engulfment regimes), assuming decreasing values of Sc. In fact, representing
the degree of mixing, δm, as a function of the inverse Schmidt number, Sc−1,
in Figure 5 we see that, when Sc > 103, δm tends to a constant value, which
essentially corresponds to the passive tracer limit. The same result was reached
by Orsi et al. (2013a), who applied the homogenization (i.e., an asymptotic
expansion) technique to show that at leading order the diffusion term in the
convection-diffusion equation can be neglected, provided that the unperturbed
velocity field is not perpendicular to the mass diffusive flux.

As we have previously mentioned, the results of the α = 1 case are in perfect
agreement with previous investigations, thus validating our numerical scheme.
Therefore, the mixing process when α = 1 will be considered as a base case,
against which the other two cases (namely, α = 3 and α = 1

3 ) will be compared.

3.3. Negative fluidity of mixing: α = 3

In Figure 6 we present the in-plane velocity vectors at y = 1.5 d and for
different Re of a fluid mixture with α = 3, i.e., whose viscosity is larger than
that of its pure components. At lower Re, we observe a double mirror symmetric
vortex regime (see Figure 6a at Re = 112), with similar vortical structures as for
the α = 1 case. With increasing Re, the double mirror symmetry disappears,
but that happens gradually, as can be seen from Figure 6. This is confirmed
by the vortical structures shown in Figure 7, that exhibit legs of almost the
same length, although the double-mirror symmetry transforms gradually into a
central point symmetry. We can say that there is no more a sudden transition
from the vortex to the engulfment regime.

The concentration distribution at the outlet of the mixing channel is shown
in Figure 8 for different Re numbers. Here, we see two additional features
that characterize the mixing process of a mixture with a negative fluidity of
mixing. First, the two inlet streams start to mix even at values of the Reynolds
number as low as Re = 125, due to the transversal convection induced by the
viscosity gradient, while in the base case, such transversal flow field being absent,
the two streams remain sharply separated. This result is in agreement with
the observation by Govindarajan & Sahu (2014) that the convection induced
by viscosity gradients strongly regularizes the flow field, thus hampering any
instability. The other important feature is that a viscous layer, separating the
two streams, is present even in the engulfment regime, so that the degree of
mixing for α = 3 remains lower than that for α = 1. Such viscous layer can
be identified as the green region in the figures, corresponding to a 50% − 50%
mixture. For that reason, even though the engulfment regime (defined here as
the loss of the double mirror symmetry of the flow field) starts at lower Re
numbers, the contours of Figure 8 indicate that larger Re numbers are needed
to significantly improve mixing. This is in agreement with the results by Orsi et
al. (2013a, 2013b), who observed a significant decrease of the degree of mixing
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for a water-ethanol mixture occurring at a larger Reynolds number, compared
with the water-water case.

3.4. Positive fluidity of mixing: α = 1
3

The behaviour of fluid mixtures with α = 1
3 , i.e., whose viscosity is smaller

than that of its pure components, is quite different from the previous two cases,
as it is evident from the velocity vectors at y = 1.5 d shown in Figure 9. Here,
the loss of symmetry can be observed for Re as low as Re = 118 and it is rather
sudden, as can be seen from the two strong vortices depicted in Figure 9c at
Re = 125.

The complex vortical structures are shown in Figure 10, where we see that
at Re = 118 the double mirror symmetry has disappeared. With increasing
Re, we observe the growth of two weaker vortices near the axis of the mixing
channel, that are coupled to stronger, swirling vortical structures located exter-
nally. Moreover, we observe an additional pair of vortical structures originating
from the T-mixer corners, which merge with the main vortices in the mixing
channel, thus further increasing their vorticity (see Figures 10c and 10d). Then,
at Re = 175, the simulations with the steady solver did not converge and tran-
sient simulations should be adopted instead, indicating that for such Re the flow
becomes unsteady. Hence, the onset of the unsteady regime is largely antici-
pated with respect to the constant viscosity base case where, for this T-mixer
geometry, the transition occurs at Re ≈ 240 (Bothe et al., 2006; Dreher et al.,
2009). The behaviour of the vortical structures in the unsteady regime has been
discussed by Fani et al. (2014), using a T-mixer with a different aspect ratio.

The concentration distribution at the mixing channel outlet is shown in
Figure 11, revealing that the mixing process is much more effective than in the
α = 3 case. In addition, we see that the two inlet streams start to mix even
at very low values of the Reynolds number, due to the transversal convection
induced by the viscosity gradient. Since the same anticipated mixing occurs for
α = 3 as well, we conclude that this behavior characterizes all mixtures with
a composition-dependent viscosity, i.e. either presenting a non-zero fluidity of
mixing (positive or negative), or being composed of two fluids with different
viscosities.

3.5. Comparison between different cases

The degree of mixing evaluated at the channel outlet is compared for all
cases in Figure 12 as a function of Re. The single fluid case (α = 1) indicates
the well known sudden increase of the degree of mixing occurring at Re ≈ 138
due to the onset of the engulfment regime. In fact, from Re = 138 to Re = 175,
δm increases from 0 to 52%.

Mixtures with a positive fluidity of mixing (α = 1
3 ) exhibit also a sudden

increase of mixing, coinciding with the onset of the engulfment regime, occuring
at Re ≈ 118. Here, from Re = 118 to Re = 160, δm increases from 0 to 77%.

Mixtures with a negative fluidity of mixing (α = 3), unlike the other cases,
show a gradual increase of the degree of mixing, reaching δm = 34% when
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Re = 175. We observe that at Re = 125, the degree of mixing is larger than
that of the α = 1 base case, because of the positive effect on mixing of the
viscosity gradients mentioned above. As Re increases, though, the degree of
mixing is lower than that of the α = 1 base case, because of the presence of a
separating viscous layers, that hampers the development of a strong engulfment
flow.

It is also worth noting that in the vortex flow regime (see Re = 112) the
degree of mixing is very small for α = 1, while it is different from zero, albeit
still small, in the presence of a positive or negative fluidity of mixing, due to
the transversal convective flow induced by viscosity gradients.

Finally, the degree of mixing along the mixing channel for all cases and
different Reynolds numbers is reported in Figure 13. Here, we observe that at
Re = 125 and Re = 137, the degree of mixing of both non regular mixtures is
larger than that of the α = 1 base case, whereas for larger Re numbers, the
mixture with a negative fluidity (α = 3) provides the smallest mixing efficiency.
Moreover, the degree of mixing along the channel reaches almost the outlet value
at y ≈ 7.5 d for α = 1 and α = 3, whereas it continues to increase for α = 1

3 .

4. Conclusions and discussion

Laminar mixing of non-regular binary mixtures is studied numerically, con-
sidering the effect on the velocity field of the viscosity change of the two fluids as
they are brought in contact with one another. A model mixture is considered,
consisting of two fluids having the same density, ρ0, and the same viscosity,
µ0, yet presenting a strong fluidity of mixing effect, i.e., the viscosity of the
mixture is a quadratic function of its composition, reaching a maximum value,
µmax, at a 50%− 50% fluid composition. In particular, we consider three cases,
where either α = µmax/µ0 = 3 (negative fluidity of mixing), α = 1 (zero flu-
idity of mixing) or α = 1/3 (positive fluidity of mixing). These cases refer to
mixtures whose viscosity increases, remains constant or decreases upon mixing,
respectively.

First, the numerical approach was validated showing that, in the constant-
viscosity case, well known results are obtained. In addition, we show that,
although here the Schmidt number Sc � 1, i.e. molecular diffusivity is much
smaller than kinematic viscosity, we may adopt the same mesh size to study the
fluid velocity and concentration fields, provided that the transversal Peclet, Pet,
number is large. In fact, when Pet � 1, purely diffusive fluxes can be neglected
compared to the convective fluxes induced by transverse fluid motion, so that
an approximately correct concentration field can be determined by assuming
that the fluid particles are passive tracers and that we can follow their motion
in the coarse-grained scale of the velocity field. In fact, representing the degree
of mixing, δm, as a function of Sc, we show that, when Sc � 1, , δm tends
to a constant value, which essentially corresponds to the passive tracer limit.
The same result was reached by Orsi et al. (2013a), who applied an asymptotic
expansion technique to show that at leading order the diffusion term in the
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convection-diffusion equation can be neglected, provided that the unperturbed
velocity field is not perpendicular to the mass diffusive flux.

In the α = 1 base case we observe that the inlet streams remain separated
up to a critical Reynolds number, Re ≈ 138, corresponding to a transition
from the vortex flow regime, with a double mirror symmetry, to the engulfment
flow regime, with a point central symmetry. The critical Reynolds number
corresponds also to a sharp increase of the degree of mixing.

Such a critical Re number is found to decrease for positive fluidity of mix-
ing, i.e., Rec ≈ 118 when α = 1

3 . In this case, the vortical structures in the
engulfment regime are complex, exhibiting swirling legs of the main vortices in
the mixing channel. As a consequence, the onset of the unsteady regime was
found to be largely anticipated as well at Re = 175, compared to Re ≈ 240 in
the α = 1 base case (Dreher, 2009).

In the case of a negative fluidity of mixing (α = 3), a completely different
behaviour is observed, with a smooth transition from the vortex to the engulf-
ment regime. On one hand, as in the positive fluidity of mixing case, the perfect
double mirror symmetry is lost at lower Re compared to the α = 1 base case,
thanks to the forces induced by viscosity gradients. However, here as the inlet
fluids are put in contact with one another, they form a separating viscous layer
that hampers mixing and that continues to be observed even in the engulfment
flow regime. This viscous layer retards the diffusion of one fluid into the other,
thereby limiting the degree of mixing, which at Re = 175 is approximately 30%
lower than that of the α = 1 base case.
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Hoffmann, M., Schlüter, M., Räbiger, N., 2006. Experimental investiga-
tion of liquid-liquid mixing in T-shaped micro-mixers using µ-LIF and
µ-PIV. Chem. Eng. Sci. 61, 2968-2976.

14



Hussong, J., Lindken, R., Pourquie, M., Westerweel, J., 2009. Numerical
study on the flow physics of a T-shaped micro-mixer, IUTAM bookseries
15, 191-205.

Jain, P., Singh, M., 2004. Density, viscosity, and excess properties of
binary liquid mixtures of propylene carbonate with polar and nonpolar
solvents, J. Chem. and Eng. Data 49, 1214-1217.

Jeong , J., Hussain F., 1995. On the identification of a vortex. J. Fluid
Mech. 285, 69-94.

Laliberté, M., 2007. Model for calculating the viscosity of aqueous solu-
tions, J. Chem. and Eng. Data 52, 321-335.

Mahajan, A.R., Mirgane, S.R., 2013. Excess molar volumes and viscosi-
ties for the binary mixtures of n-octane, n-decane, n-dodecane, and n-
tetradecane with octan-2-ol at 298.15K, J. Thermodyn. 2013, 571918.

Orsi, G., Roudgar, M., Brunazzi, E., Galletti, C., Mauri, R., 2013a.
Water-ethanol mixing in T-shaped microdevices, Chem. Eng. Sci. 95,
174-183.

Orsi, G., Galletti, C., Brunazzi, E., Mauri, R., 2013b. Mixing of two
miscible liquids in T-shaped microdevices, Chem. Eng. Trans. 32, 1471-
1476.

Orsi, G., Mauri, R., 2013. Volume of mixing effect on fluid counter-
diffusion, Phys. Fluids 25, 082101.

Ottino, J.M., 1994. Mixing and chemical reactions a tutorial, Chem. Eng.
Sci. 49, 4005 - 4027.

Ottino, J.M., Chella, R., 1983. Laminar mixing of polymeric liquids; a
brief review and recent theoretical developments, Polym. Eng. & Science
23, 357-379.

Simmonds, C., 1919. Alcohol, Its Production, Properties, Chemistry, and
Industrial Applications, Macmillan, NewYork

Wang, P., Anderko, A., Young, R.D., 2004. Modeling viscosity of con-
centrated and mixed-solvent electrolyte systems, Fluid Phase Equil. 226,
71-82.

Zhang, H.-L., Ha, S.-J., 1997. Viscometric and volumetric studies on
binary mixtures of 1,2-dichloroethane and chlorinated methanes or their
binary equimolar mixtures at 303.15 K, Fluid Phase Equil. 140, 233-244.

15



(a) Re = 112 (b) Re = 125

(c) Re = 137 (d) Re = 150

(e) Re = 160 (f) Re = 175

Figure 4: Concentration distribution in the mixing channel outlet section, i.e. y = 1.5 d, for
α = 1
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Figure 5: Degree of mixing as a function of the inverse of the Schmidt number for Re = 100
and 150.

(a) Re = 112 (b) Re = 125

(c) Re = 137 (d) Re = 150

(e) Re = 160 (f) Re = 175

Figure 6: Vector plots in the mixing channel cross section at y = 1.5 d for α = 3 at different
Re numbers.

17



(a) Re = 125 (b) Re = 137

(c) Re = 150 (d) Re = 160

Figure 7: Identified vortices according to the λ2 criterion and distribution of normal vorticity
for α = 3 and different Re numbers at planes: y = 0.1 d, 0.8 d and 1.5 d.
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(a) Re = 112 (b) Re = 125

(c) Re = 137 (d) Re = 150

(e) Re = 160 (f) Re = 175

Figure 8: Concentration distribution in the mixing channel outlet section, i.e. y = 1.5 d, for
α = 3
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(a) Re = 112 (b) Re = 118

(c) Re = 125 (d) Re = 137

(e) Re = 150 (f) Re = 160

Figure 9: Vector plots in the mixing channel cross section at y = 1.5 d for α = 1/3 at different
Re numbers
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(a) Re = 118 (b) Re = 125

(c) Re = 137 (d) Re = 160

Figure 10: Identified vortices according to the λ2 criterion and distribution of normal vorticity
for α = 1/3 and different Re numbers at planes: y = 0.1 d, 0.8 d and 1.5 d.
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(a) Re = 112 (b) Re = 118

(c) Re = 125 (d) Re = 137

(e) Re = 150 (f) Re = 160

Figure 11: Concentration distribution in the mixing channel outlet section, i.e. y = 1.5 d, for
α = 1/3
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Figure 12: Degree of mixing for the three α cases as a function of the Re number
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Figure 13: Degree of mixing along the channel for the three α cases at: (a) Re = 125; (b)
Re = 137; (c) Re = 150;(d) Re = 160.
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