
Analyzing Developer Use of ChatGPT Generated Code in Open
Source GitHub Projects

Balreet Grewal, Wentao Lu, Sarah Nadi, and Cor-Paul Bezemer
{balreet,wlu4,nadi,bezemer}@ualberta.ca

University of Alberta
Edmonton, Alberta, Canada

ABSTRACT
The rapid development of large language models such as ChatGPT
have made them particularly useful to developers in generating
code snippets for their projects. To understand how ChatGPT’s
generated code is leveraged by developers, we conducted an em-
pirical study of 3,044 ChatGPT-generated code snippets integrated
within GitHub projects. A median of 54% of the generated lines of
code is found in the project’s code and this code typically remains
unchanged once added. The modifications of the 76 code snippets
that changed in a subsequent commit, consisted of minor function-
ality changes and code reorganizations that were made within a
day. Our findings offer insights that help drive the development
of AI-assisted programming tools. We highlight the importance
of making changes in ChatGPT code before integrating it into a
project.
ACM Reference Format:
Balreet Grewal, Wentao Lu, Sarah Nadi, and Cor-Paul Bezemer. 2024. Ana-
lyzing Developer Use of ChatGPT Generated Code in Open Source GitHub
Projects. In Proceedings of MSR ’24: Proceedings of the 21st International
Conference on Mining Software Repositories (MSR 2024). ACM, New York, NY,
USA, 5 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The rise of Large Language Models (LLMs), especially the Genera-
tive Pre-trained Transformers (GPT) series by OpenAI, has revealed
a new era in the field of Artificial Intelligence (AI) and software
development. ChatGPT [15] is OpenAI’s chatbot that utilizes the
GPT family of models. Users can chat with the model to receive
context-aware, human-like responses. A notable area where Chat-
GPT has shown significant promise is in software development.
Developers have been increasingly relying on the model to gener-
ate code snippets [9, 23, 28, 29]. This trend has sparked interest in
the academic community, leading to numerous studies focusing on
the correctness, and applicability of ChatGPT-generated code in
real-world scenarios [11, 12, 14, 18, 20, 27].

Despite the growing body of research on ChatGPT and other
large language models, there remains a gap in our understanding of
the longevity (how long it takes for code to change in a project) and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MSR 2024, April 15–16, 2024, Lisbon, Portugal
© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

evolution (the nature of the subsequent changes) of AI-generated
code in software development contexts. Our study narrows this gap
by conducting an empirical analysis of how ChatGPT-generated
code is integrated within GitHub projects. By examining the inte-
gration, modification, and deletion of this code, we seek to provide
insights into AI-aided software development. Specifically, we focus
on the following research questions:

RQ1: How much of ChatGPT’s generated code is changed
by developers? We analyzed the integration of ChatGPT’s gen-
erated code into GitHub projects by examining the percentage of
code used and the likelihood of further changes. We found that a
median of 54% of lines of code from a ChatGPT-generated code
snippet is embedded in a GitHub project. Moreover, making a sub-
sequent change to the integrated code within a GitHub project is
uncommon.

RQ2: How long does ChatGPT-generated code stay un-
changed in a project? To understand when a ChatGPT-generated
code snippet might change, we explored for how long the code
snippets have been integrated in GitHub projects, and how long
until a change is made to the code snippet. A ChatGPT-generated
code snippet remains in a project for a median of 89 days, and if
the code snippet is changed, it is typically done so within a day.

RQ3: What types of changes do developers make to Chat-
GPT’s generated code? We manually categorized the types of
modifications made to the generated code snippets after their inte-
gration into a project. We observed that of the 76 code snippets that
changed in a subsequent commit, 14 code snippets were deleted.
The remaining generated code snippets undergo modifications, of-
ten involving minor functionality changes, reorganization of the
code or name refinements.

The main contributions of our paper are as follows:
• The first empirical study on how code generated by ChatGPT
is integrated into software projects on GitHub.

• A categorization of the types of changes made to ChatGPT-
generated code in GitHub repositories.

2 METHODOLOGY
This section outlines our methodology for analyzing code snip-
pets generated by ChatGPT and their integration into open source
projects. Figure 1 gives an overview of our methodology.

2.1 Selecting conversations with code snippets
We utilized the DevGPT dataset [1, 25], which features developer
and ChatGPT conversations as explicitly linked by developers in
GitHub projects. The dataset includes commits, pull-requests, files,
issues, or discussions that connect to a ChatGPT conversation. In
cases where the recorded conversation leads to generated code, the

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

MSR 2024, April 15–16, 2024, Lisbon, Portugal Balreet Grewal, Wentao Lu, Sarah Nadi, and Cor-Paul Bezemer

Selecting conversations with code
snippets

DevGPT Conversations

Remove non-English queries and select
conversations with GPT code

Filtered DevGPT
data

Collecting integrated code snippets

PyDriller: search files in each commit

Extract raw diff for each file

Use Levenshtein distance to compare
added code lines

Dictionary of
integrated code

Collecting subsequent changes of
integrated code

PyDriller: search files in subsequent
commits

Extract raw diff for each file

Use Levenshtein distance to compare
deleted code lines

Dictionary of
subsequent

changes of code

Dictionary of
integrated ChatGPT-
generated code and

its subsequent
changes

Figure 1: Overview diagram of our methodology

resulting code snippets are stored in the dataset. A linked conver-
sation does not always contain a ChatGPT-generated code snippet;
as a result, a single conversation may include anywhere from 0 to
multiple code snippets. We specifically focus on ChatGPT conver-
sations linked in commits within GitHub projects to ensure there
is at least one code snippet.

2.2 Cleaning the data
In this step, we remove all non-English conversations from the
dataset using the langdetect [19] Python library. We also removed
conversations that were linked with four inaccessible repositories.
After cleaning the data, we were left with 9,610 code snippets from
56 GitHub repositories.

2.3 Collecting integrated code snippets
Since the DevGPT [25] data only shows the conversations between
developers and ChatGPT, it is unknown how much and which of
the code generated by ChatGPT during a conversation is integrated
into a project. We utilized Git diff with the tool Pydriller [21] to
identify which lines of a generated code snippet were integrated
into a project’s main branch in GitHub. The Git diff output shows
the different lines between two commits. At this stage, for each
generated code snippet, we only collected the added lines from
the Git diff output (as we focus on code that was added into the
project). Once we identify a code line from ChatGPT that matches
an added line in the Git diff, we consider this as a matched code
pair. However, sometimes, an exact match of two lines is not suffi-
cient to identify matched code pairs. For example, in Listing 1, the
developer [5] obtained a code snippet from ChatGPT to configure
virtual machines. The developer reduced the assigned number of
CPUs from 4 to 2 when integrating the code into the project. We
consider this a match as well because the vast majority of the line
was generated by ChatGPT.

To include such pairs, we calculate the Levenshtein distance
with Python’s Levenshtein library [8] for string comparisons of
each code line. The Levenshtein distance (Lv distance) measures
the difference between two strings. Thus, rather than relying on ex-
act string matching, the Lv distance allows for a degree of flexibility
to account for minor variations in code integration, such as dis-
crepancies in assigned numbers. The matched strings are recorded

1 Vagrant.configure(

VAGRANTFILE_API_VERSION

) do |config|

2 ...

3 v.memory = 1024

4 v.cpus = 4

1 Vagrant.configure(

VAGRANTFILE_API_VERSION

) do |config|

2 ...

3 v.memory = 1024

4 v.cpus = 2

Listing 1: Example of a ChatGPT-generated code snippet (left)
that was integrated in a GitHub project (right). All lines were
matched (including line 4) with the Lv distance set to 2.

in the output dictionary as illustrated in Figure 1. A range of Lv
distance thresholds were empirically tested, and a threshold of 2
was chosen as optimal.

Through thismethod, we identified that 3,044 out of 9,610 ChatGPT-
generated code snippets were at least partially integrated into
GitHub projects. We use the 3,044 code snippets in further analysis.

2.4 Collecting subsequent changes of integrated
code snippets

After the collection of 3,044 code snippets that were integrated into
GitHub projects, we further analyzed the evolution of their code
lines. We used PyDriller to trace commit histories over the main
branch only, focusing on subsequent changes to the same files that
contain those integrated code snippets from ChatGPT. Attention
was given to deleted code lines, since any modifications to a code
line are represented as deletions in Git diff files. For example, the
subsequent commit for the code in Listing 1 shows that it was
removed the next day. We recorded any modified lines into the
output as illustrated in Figure 1. We identified 76 code snippets that
were changed in a subsequent commit.

3 RESULTS
In this section, we answer our three research questions.

3.1 RQ 1: How much of ChatGPT’s generated
code is changed by developers?

Motivation: We analyze how much of ChatGPT’s generated code
is changed before it is integrated into a project. Our insights can

Analyzing Developer Use of ChatGPT Generated Code in Open Source GitHub Projects MSR 2024, April 15–16, 2024, Lisbon, Portugal

0 20 40 60 80 100
Percentage of lines of code

Figure 2: Boxplot of the percentage of ChatGPT’s generated
code in a single code snippet that is found in GitHub projects.

help drive the development of tools for AI-assisted programming
(e.g., such as those that suggest hints on how to change a generated
code snippet).

Approach: We analyzed the number of lines of code (LOC), in-
cluding comments, generated by ChatGPT in a given code snippet,
as well as the number of LOC that match in GitHub projects.

To calculate the percentage of lines in a GitHub project derived
from a single code snippet generated by ChatGPT, we use the fol-
lowing formula:

% Code Snippet Used =
LOC integrated into the project
LOC generated by ChatGPT

Findings: A median of 54% of the generated ChatGPT code
snippet is embedded in a GitHub project. Figure 2 shows a
boxplot of the percentage of ChatGPT-generated lines of code used
in GitHub. Only 319 of the 3,044 studied ChatGPT code snippets
are found entirely in GitHub project files. The median number of
lines of code added to GitHub from a single code snippet is 28,
whereas the median number of lines of code provided by ChatGPT
in a single code snippet is 52. These numbers show that in the vast
majority of cases, developers need to edit ChatGPT code before
including it in their projects.

Once added to a GitHub project, it is uncommon for code
from ChatGPT to be changed again. Only 76 (2.5%) of the 3,044
integrated ChatGPT code snippets were changed in a subsequent
commit (with a median change of 1 line of code). Only 5 of the 76
code snippets integrated ChatGPT’s generated code as-is.

Only 10% of the code snippets are copied from ChatGPT as-is. However,
once a code snippet from ChatGPT is integrated in a GitHub project,
only 2.5% change again with a median change of 1 line.

3.2 RQ 2: How long does ChatGPT-generated
code stay unchanged in a project?

Motivation: By investigating how long until developers require
changes to ChatGPT-generated code, we seek to gain insights into
the longevity of ChatGPT-generated code in software development.

Approach: We analyze the number of days between the integra-
tion of the ChatGPT code and its first change (or our data collection
date if the code did not change).

Findings: ChatGPT code snippets have been integrated in
GitHub projects for a median of 89 days. Figure 3 shows the
number of days since ChatGPT-generated code thatwas not changed
in a subsequent commit has been added to GitHub. This finding

0 20 40 60 80 100 120 140 160
Number of Days

Figure 3: Boxplot of the number of days since the ChatGPT-
generated code snippet (that was not changed in a subsequent
commit) has been in a GitHub project.

indicates the sustained presence of AI-generated code snippets in
software projects.

If ChatGPT code changes in a subsequent commit, it typi-
cally does so in less than a day fromwhen it was first added. If
code is changed within GitHub after being added, it is done within
the same day with the exception of a 4 outliers that take longer
(between 1 and 12 days).

ChatGPT-generated code copied into GitHub projects has been inte-
grated for a median of 89 days. If a change is required to the integrated
code it is usually done within a day.

3.3 RQ 3: What types of changes do developers
make to ChatGPT’s generated code?

Motivation: We categorize the types of changes that developers
made to ChatGPT-generated code to help developers who use AI-
assistance better understand which types of code changes are com-
mon. This better understanding can in turn drive the development
of better tools for supporting AI-assisted programming.

Approach:We perform open card sorting on the 76 code snippets
that were changed after their initial commit on GitHub. Card sort-
ing [22] is a common technique used to organize information and
create mental models. In our case, we make use of open card sorting
to categorize the types of changes made to ChatGPT code when
changed in GitHub. Each of the authors performed card sorting
on the code snippets individually. Then the authors sat down to
discuss any discrepancies and reach a consensus.

Findings: 18% of the code snippets changed in a subsequent
commit are deleted, whereas the other 82% of code snippets
are modified. Table 1 shows that 14 of the 76 (18%) ChatGPT-
generated code snippets that are changed in a subsequent commit
are deleted from the GitHub project; the rest of the code snippets
were modified. The modifications consisted of minor functionality
changes, code reorganization and naming refinements.

Minor functionality changes (36%) consist of changes that
have only a minor impact on the functionality. For example, a dec-
laration such as var picks = this.getPicks(); was changed to
const pick = this.getPicks(); [3] We found 27 code snippets
that required minor functionality changes such as changing the
type of a variable or a small part of a used regular expression. This
shows that ChatGPT-generated code may require small changes to
be properly integrated with the project’s existing code.

MSR 2024, April 15–16, 2024, Lisbon, Portugal Balreet Grewal, Wentao Lu, Sarah Nadi, and Cor-Paul Bezemer

Type of change Description # of changes % of changes

Minor functionality Modifications that have only a minor impact on the functionality 27 36%
Reorganization Relocating code 25 33%
Deletion Complete deletion of the code snippet 14 18%
Naming refinement Changing the name of elements such as functions, variables, and other identifiers 10 13%

Table 1: The types of changes made to ChatGPT-generated code in a subsequent commit

Code reorganization (33%) happens when specific lines of
ChatGPT’s generated code are relocated to a different sectionwithin
the same file or to another file entirely. Notably, 24 out of the 25
occurrences of code reorganizations involved moving the code into
a different function within the same file.

Naming refinement (13%) occurs when a name assigned by
ChatGPT to an element in the code was unclear or too long. For
example, a function initially named replaceSpotifyPlayerWith-
YouTubePlayer() was changed by developers to replaceSpoti-
fyPlayer() [4]. From the ChatGPT generated code snippets we
analyze, 10 of the code snippets required name refinement.

In a subsequent commit, 82% of code snippets undergo modifications
such as minor functionality changes, code reorganization and name
refinements. Only 14 of the 76 analyzed code snippets were deleted.

4 THREATS TO VALIDITY
Internal validity: A potential threat to the validity of our study is
that the data we analyze is recent. As such, some developers have
not yet needed to change ChatGPT’s generated code. From Figure 3
it seems that most of ChatGPT’s generated code has been in its
respective repository for a considerable amount of time, but we
encourage future studies to examine if our findings hold over a
longer period of time.

Further, the Lv distance threshold used in our study is fixed to 2.
Higher or lower thresholds may produce more matched code pairs
depending on dataset and programming language used. For our
study, we found the value 2 optimal to incorporate any changes but
leave out minute details such as brackets.

External validity: In our study we rely on developers to link
ChatGPT conversations to their GitHub commits. Thus, our find-
ings are only based on the commits that explicitly state the use of
ChatGPT code and may not be generalizable to repositories that
use ChatGPT generated code without stating it.

Further, our results are solely based on open-source projects on
GitHub; therefore, our results may not generalize to projects on
other platforms or closed-source projects.

5 RELATEDWORK
The body of research on the code generated by large language
models (LLMs) [9, 23, 28, 29] has grown rapidly since the release of
popular large languagemodels such as GPT-3.5 andGPT-4. Ensuring
correctness of code generation is imperative as the code generated
by large language models has been employed to write code for
various software development tasks such as automatic program
repair [16, 17, 24], and unit tests [20, 27]. Some studies [14, 18]

have analyzed ChatGPT’s ability at solving Leetcode [2] problems,
revealing that ChatGPT out-performs novice programmers and
has a success rate of 72% of generating correct solutions. To aid in
checking the correctness of code generated by LLMs, Liu et al. [11]
built a new evaluation framework for benchmarking code on LLMs
to examine their true correctness.

Further, studies have explored the quality of code generated by
LLMs [6, 7, 13, 26]. For example, Liu et al. [12] studied the code qual-
ity of 4,066 pieces of generated code from ChatGPT, and ChatGPT’s
self-debugging capability. The authors found that code quality is an
issue in code generated by ChatGPT and that debugging is heavily
influenced by feedback given by users.

While existing literature focuses on characteristics (e.g., quality
and correctness) of code generated by LLMs, such as ChatGPT,
our work is the first to analyze how developers make use of code
generated by ChatGPT within their software projects. We aim to
understand how the generated code snippets are used by developers
and if they require changes once integrated.

6 ETHICAL IMPLICATIONS
When conducting research, it is imperative to be conscientious of
various ethical implications. First, privacy concerns can emerge as
we analyze data within GitHub without explicit consent. Further,
proper credits should be given to the authors of their repositories
when discussing them in written work. We ensure that all code
used from GitHub projects is linked within our references. Finally,
to ensure that our report is transparent and reproducible, we made
our replication package available at [10].

7 CONCLUSION
In this paper, we analyze the integration of 3,044 ChatGPT gener-
ated code snippets in GitHub projects. To augment the DevGPT data
(consisting of ChatGPT and developer conversations), we search
through commit histories in GitHub to trace the evolution of Chat-
GPT’s generated code. We find that a median of 54% of ChatGPT’s
generated code is added to GitHub and it is uncommon for this code
to be changed again. Of the 76 code snippets that eventually are
changed a subsequent time in GitHub the change is typically made
within a day and consists of a median of 1 line of code. Typically, the
changes involve modifications such as minor functionality changes,
name refinement, and code reorganization. Our findings offer in-
sights that can inform the advancement of AI-assisted programming
tools.

REFERENCES
[1] 2023. DevGPT: Studying Developer-ChatGPT Conversations. https://github.com/

NAIST-SE/DevGPT/tree/35d906d957026f3db282b19dcc5074e399010725.

https://github.com/NAIST-SE/DevGPT/tree/35d906d957026f3db282b19dcc5074e399010725
https://github.com/NAIST-SE/DevGPT/tree/35d906d957026f3db282b19dcc5074e399010725

Analyzing Developer Use of ChatGPT Generated Code in Open Source GitHub Projects MSR 2024, April 15–16, 2024, Lisbon, Portugal

[2] 2023. LeetCode. https://leetcode.com
[3] 2023. Refactoring for interactivity. (#8). https://github.com/hoshotakamoto/

banzukesurfing/commit/90e1d68ddc8d3a2caa076ee4d423484bf0a742f3. Accessed:
December 1, 2023.

[4] 2023. simpler approach to replace all spotify embedded players.
https://github.com/OKinane/spotify-to-youtube-chrome-extension/commit/
5d8f6f8f5c2457348f5739888b5d5bd4260ac8cb. Accessed: December 1, 2023.

[5] 2023. Update Vagrantfile. https://github.com/fabricesemti80/work.ansible-
prometheus-stack/commit/96c4f63bbdba293001c540f663337a0dec41e71c. Ac-
cessed: December 1, 2023.

[6] Naser Al Madi. 2023. How Readable is Model-Generated Code? Examining
Readability and Visual Inspection of GitHub Copilot. In Proceedings of the 37th
IEEE/ACM International Conference on Automated Software Engineering (Rochester,
MI, USA) (ASE ’22). Association for Computing Machinery, New York, NY, USA,
Article 205, 5 pages. https://doi.org/10.1145/3551349.3560438

[7] Carlos Dantas, Adriano Rocha, and Marcelo Maia. 2023. Assessing the Read-
ability of ChatGPT Code Snippet Recommendations: A Comparative Study. In
Proceedings of the XXXVII Brazilian Symposium on Software Engineering (Campo
Grande, Brazil) (SBES ’23). Association for Computing Machinery, New York, NY,
USA, 283–292. https://doi.org/10.1145/3613372.3613413

[8] Wido de Vries. 2017. python-Levenshtein. https://pypi.org/project/python-
Levenshtein/

[9] Zhiyu Fan, Xiang Gao, Martin Mirchev, Abhik Roychoudhury, and Shin Hwei
Tan. 2023. Automated Repair of Programs from Large Language Models. In
2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE).
1469–1481. https://doi.org/10.1109/ICSE48619.2023.00128

[10] Balreet Grewal, Wentao Lu, Sarah Nadi, and Cor-Paul Bezemer. 2023. Analyz-
ing Developer Use of ChatGPT Generated Code in Open Source GitHub Projects
Replication Package. https://doi.org/10.6084/m9.figshare.24792507

[11] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2023. Is
Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large
Language Models for Code Generation. arXiv:2305.01210 [cs.SE]

[12] Yue Liu, Thanh Le-Cong, Ratnadira Widyasari, Chakkrit Tantithamthavorn, Li
Li, Xuan-Bach D. Le, and David Lo. 2023. Refining ChatGPT-Generated Code:
Characterizing and Mitigating Code Quality Issues. arXiv:2307.12596 [cs.SE]

[13] Zhijie Liu, Yutian Tang, Xiapu Luo, Yuming Zhou, and Liang Feng Zhang. 2023.
No Need to Lift a Finger Anymore? Assessing the Quality of Code Generation
by ChatGPT. arXiv:2308.04838 [cs.SE]

[14] Nascimento Nathalia, Alencar Paulo, and Cowan Donald. 2023. Artificial Intelli-
gence vs. Software Engineers: An Empirical Study on Performance and Efficiency
Using ChatGPT. In Proceedings of the 33rd Annual International Conference on
Computer Science and Software Engineering (Las Vegas, NV, USA) (CASCON ’23).
IBM Corp., USA, 24–33.

[15] OpenAI. 2023. ChatGPT. https://www.openai.com/
[16] Julian Aron Prenner, Hlib Babii, and Romain Robbes. 2022. Can OpenAI’s Codex

Fix Bugs? An Evaluation on QuixBugs. In Proceedings of the Third International
Workshop on Automated Program Repair (Pittsburgh, Pennsylvania) (APR ’22).
Association for Computing Machinery, New York, NY, USA, 69–75. https://doi.
org/10.1145/3524459.3527351

[17] Francisco Ribeiro. 2023. Large Language Models for Automated Program Repair.
In Companion Proceedings of the 2023 ACM SIGPLAN International Conference
on Systems, Programming, Languages, and Applications: Software for Humanity
(Cascais, Portugal) (SPLASH 2023). Association for Computing Machinery, New
York, NY, USA, 7–9. https://doi.org/10.1145/3618305.3623587

[18] Fardin Ahsan Sakib, Saadat Hasan Khan, and A. H. M. Rezaul Karim.
2023. Extending the Frontier of ChatGPT: Code Generation and Debugging.
arXiv:2307.08260 [cs.SE]

[19] Nakatani Shuyo. 2011. langdetect. https://pypi.org/project/langdetect/
[20] Mohammed Latif Siddiq, Joanna C. S. Santos, Ridwanul Hasan Tanvir, Noshin

Ulfat, Fahmid Al Rifat, and Vinicius Carvalho Lopes. 2023. An Empirical Study of
Using Large Language Models for Unit Test Generation. arXiv:2305.00418 [cs.SE]

[21] Davide Spadini, Maurício Aniche, and Alberto Bacchelli. 2018. PyDriller: Python
Framework for Mining Software Repositories. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE
2018). Association for Computing Machinery, New York, NY, USA, 908–911.
https://doi.org/10.1145/3236024.3264598

[22] Donna Spencer and Todd Warfel. 2004. Card sorting: a definitive guide. Boxes
and arrows 2, 2004 (2004), 1–23.

[23] Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation
vs. Experience: Evaluating the Usability of Code Generation Tools Powered by
Large Language Models. In Extended Abstracts of the 2022 CHI Conference on
Human Factors in Computing Systems (New Orleans, LA, USA) (CHI EA ’22).
Association for Computing Machinery, New York, NY, USA, Article 332, 7 pages.
https://doi.org/10.1145/3491101.3519665

[24] Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. 2023. Automated
program repair in the era of large pre-trained language models. In Proceedings of
the 45th International Conference on Software Engineering (ICSE 2023). Association

for Computing Machinery.
[25] Tao Xiao, Christoph Treude, Hideaki Hata, and Kenichi Matsumoto. 2024. De-

vGPT: Studying Developer-ChatGPT Conversations. In Proceedings of the Inter-
national Conference on Mining Software Repositories (MSR 2024).

[26] Burak Yetistiren, Isik Ozsoy, and Eray Tuzun. 2022. Assessing the quality of
GitHub copilot’s code generation. In Proceedings of the 18th International Confer-
ence on Predictive Models and Data Analytics in Software Engineering. 62–71.

[27] Zhiqiang Yuan, Yiling Lou, Mingwei Liu, Shiji Ding, Kaixin Wang, Yixuan Chen,
and Xin Peng. 2023. No More Manual Tests? Evaluating and Improving ChatGPT
for Unit Test Generation. arXiv:2305.04207 [cs.SE]

[28] Quanjun Zhang, Tongke Zhang, Juan Zhai, Chunrong Fang, Bowen Yu, Weisong
Sun, and Zhenyu Chen. 2023. A Critical Review of Large Language Model on
Software Engineering: An Example from ChatGPT and Automated Program
Repair. arXiv:2310.08879 [cs.SE]

[29] Li Zhong and Zilong Wang. 2023. Can ChatGPT replace StackOverflow? A
Study on Robustness and Reliability of Large Language Model Code Generation.
arXiv:2308.10335 [cs.CL]

https://leetcode.com
https://github.com/hoshotakamoto/banzukesurfing/commit/90e1d68ddc8d3a2caa076ee4d423484bf0a742f3
https://github.com/hoshotakamoto/banzukesurfing/commit/90e1d68ddc8d3a2caa076ee4d423484bf0a742f3
https://github.com/OKinane/spotify-to-youtube-chrome-extension/commit/5d8f6f8f5c2457348f5739888b5d5bd4260ac8cb
https://github.com/OKinane/spotify-to-youtube-chrome-extension/commit/5d8f6f8f5c2457348f5739888b5d5bd4260ac8cb
https://github.com/fabricesemti80/work.ansible-prometheus-stack/commit/96c4f63bbdba293001c540f663337a0dec41e71c
https://github.com/fabricesemti80/work.ansible-prometheus-stack/commit/96c4f63bbdba293001c540f663337a0dec41e71c
https://doi.org/10.1145/3551349.3560438
https://doi.org/10.1145/3613372.3613413
https://pypi.org/project/python-Levenshtein/
https://pypi.org/project/python-Levenshtein/
https://doi.org/10.1109/ICSE48619.2023.00128
https://doi.org/10.6084/m9.figshare.24792507
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2307.12596
https://arxiv.org/abs/2308.04838
https://www.openai.com/
https://doi.org/10.1145/3524459.3527351
https://doi.org/10.1145/3524459.3527351
https://doi.org/10.1145/3618305.3623587
https://arxiv.org/abs/2307.08260
https://pypi.org/project/langdetect/
https://arxiv.org/abs/2305.00418
https://doi.org/10.1145/3236024.3264598
https://doi.org/10.1145/3491101.3519665
https://arxiv.org/abs/2305.04207
https://arxiv.org/abs/2310.08879
https://arxiv.org/abs/2308.10335

	Abstract
	1 Introduction
	2 Methodology
	2.1 Selecting conversations with code snippets
	2.2 Cleaning the data
	2.3 Collecting integrated code snippets
	2.4 Collecting subsequent changes of integrated code snippets

	3 Results
	3.1 RQ 1: How much of ChatGPT’s generated code is changed by developers?
	3.2 RQ 2: How long does ChatGPT-generated code stay unchanged in a project?
	3.3 RQ 3: What types of changes do developers make to ChatGPT’s generated code?

	4 Threats to Validity
	5 Related Work
	6 Ethical Implications
	7 Conclusion
	References

