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Abstract

Estimating the direction-of-arrival (DOA) of multiple acoustic sources is one of the key technologies for humanoid
robots and drones. However, it is a most challenging problem due to a number of factors, including the platform size
which puts a constraint on the array aperture. To overcome this problem, a high-resolution DOA estimation algorithm
based on sparse Bayesian learning is proposed in this paper. A group sparse prior based hierarchical Bayesian model is
introduced to encourage spatial sparsity of acoustic sources. To obtain approximate posteriors of the hidden
variables, a variational Bayesian approach is proposed. Moreover, to reduce the computational complexity, the space
alternating approach is applied to push the variational Bayesian inference to the scalar level. Furthermore, an acoustic
DOA estimator is proposed to jointly utilize the estimated source signals from all frequency bins. Compared to
state-of-the-art approaches, the high-resolution performance of the proposed approach is demonstrated in
experiments with both synthetic and real data. The experiments show that the proposed approach achieves lower
root mean square error (RMSE), false alert (FA), and miss-detection (MD) than other methods. Therefore, the proposed
approach can be applied to some applications such as humanoid robots and drones to improve the resolution
performance for acoustic DOA estimation especially when the size of the array aperture is constrained by the
platform, preventing the use of traditional methods to resolve multiple sources.
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1In this paper, the CBF is referred to as delay and sum beamforming.

1 Introduction
Acoustic direction-of-arrival (DOA) estimation is a key
technology in audio signal processing where it enables
source localization for humanoid robots [1, 2], drones
[3, 4], teleconferencing [5, 6], and hearing aids [7]. The
goal of acoustic DOA estimation is to obtain the bear-
ing angle of acoustic waves generated by sound sources
using a microphone array. According to the Rayleigh cri-
terion [8], the resolution of traditional DOA estimation
approaches (e.g., the classical beamforming (CBF)1 based
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approach and the steered-response power phase trans-
form (SRP-PHAT) method [9]) is limited by the array
aperture. Therefore, for some applications like humanoid
robots and drones with a small platform size, the tra-
ditional approaches suffer in scenarios with multiple
sources simultaneously present. Although methods such
as the minimum variance distortionless response (MVDR)
[8, 10], multiple signal classification (MUSIC) [11], and
estimation of signal parameters via the rotational invari-
ance technique (ESPRIT) [12] can offer a high-resolution
performance, they are sensitive to calibration errors
and errors in the assumed or estimated signal statistics
[13, 14]. The robustness of the MVDR and MUSIC meth-
ods have been studied in the presence of array errors
[15–17]. However, these studies rely on asymptotic prop-
erties, i.e., high signal-to-noise ratio (SNR) scenarios and
large numbers of snapshots. Thus, these studies do not
apply when only a small number of snapshots is available.
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Sparse signal recovery-based DOA estimation methods
have enjoyed much success in recent decades by exploit-
ing the sparsity of sources in the spatial domain [18, 19].
These approaches are attractive because (1) they offer
robustness against noise and limitations in data qual-
ity [18], (2) they have a good performance with a small
number of snapshots [20], (3) they offer a higher res-
olution performance than MVDR and MUSIC methods
[21, 22], and (4) they have the capability to resolve coher-
ent sources [23]. In [18], the source localization problem
was first formulated as an over-complete basis represen-
tation problem. To estimate the source amplitudes, an l1-
norm based singular value decomposition (SVD) method
was proposed. In [24], a complex least absolute shrinkage
and selection operator (cLASSO) method was proposed
for DOA estimation. In [25], a re-weighted regularized
sparse recovery method was proposed for DOA estima-
tion with unknown mutual coupling. All these methods
are based on convex optimization theory, that is, the sig-
nals are recovered by solving a regularized optimization
problem. They have a good performance with a properly
chosen regularization factor, but the regularization factor
needs to be determined empirically [26].

Because of its self-regularization nature and its ability to
quantify uncertainty, the sparse Bayesian learning (SBL)-
based methods have attracted a lot of attention in sparse
signal recovery and compressed sensing. The SBL prin-
ciple was originally proposed in [27] for obtaining sparse
solutions to regression and classification tasks. The SBL
algorithm was applied to the compressed sensing in [28],
and an SBL-based Bayesian compressed sensing method
using Laplace priors was proposed in [29]. More recently,
a scalable mean-field SBL was proposed in [30]. In [31], an
SBL-based DOA estimation method with predefined grids
was proposed. In that paper, the DOA estimation is for-
mulated as a sparse signal recovery and compressed sens-
ing problem. To obtain refined estimates of the DOA, an
off-grid DOA estimation method was proposed in [32]. In
[21], a multi-snapshot SBL (MSBL) method was proposed
for the multi-snapshot DOA estimation problem. The
method was further applied to sound source localization
and speech enhancement in [22]. To reduce the computa-
tional complexity of the wide-band approach, a computa-
tionally efficient DOA estimation method was proposed
in [33] based on a sparse Bayesian framework. Addition-
ally, some of our previous works are related to this paper.
In [34], we proposed an SBL method with compressed
data for sound source localization. The results show that
the SBL method offers an excellent estimation accuracy
for sound source localization even with low data qual-
ity. In [35], we proposed an SBL-based acoustic reflector
localization method, which models the acoustic reflector
localization problem as a sparse signal recovery problem.
It shows that the SBL-based method offers a more robust

performance for basis mismatch compared to the state-of-
the-art methods. However, a common drawback of these
approaches is that the traditional SBL-based approaches
are computationally complex due to the matrix inversion
operation required for updating the covariance matrix of
the source signals.

Computationally efficient SBL algorithms have also
been proposed in various applications. For example,
in [36], a basis adding/deleting scheme based on the
marginal distribution was proposed. In [37], an inverse
free SBL method was proposed by relaxing the evidence
lower bound. In [38], a space alternating variational esti-
mation (SAVE) algorithm was proposed to push the varia-
tional Bayesian inference (VBI) based SBL to a scalar level.
The experimental results show that the SAVE approach
has a faster convergence and a lower minimum mean
square error (MMSE) performance than other fast SBL
algorithms.

Based on this, we propose a space alternating SBL-based
acoustic DOA estimation method for high-resolution esti-
mation in this paper. A hierarchical Bayesian framework
with group sparse priors is built to model multiple mea-
surement vector (multi-snapshot) signals. As direct cal-
culation of the posterior distribution is not possible,
variational Bayesian inference is applied to infer all hidden
variables in the proposed model. Furthermore, we extend
the SAVE method [38] to the multiple measurement vec-
tor (MMV) case to reduce the computational complexity
of the algorithm. The proposed algorithm can be applied
to each frequency bin independently. To jointly utilize
the recovered signals from all frequency bins, a complex
Gaussian mixture model (CGMM) based expectation–
maximization (EM) algorithm is proposed. We refer to the
proposed method as the SAVE-MSBL-EM method.

The rest of this paper is organized as follows: In
Section 2, we pose the narrow-band acoustic DOA esti-
mation problem as a sparse signal recovery problem
with an over-complete dictionary. Moreover, under the
assumption that the DOAs of all sources do not change
in a frame, a hierarchical Bayesian framework is built by
exploiting the group sparsity of the MMV source signals.
In Section 3, the SAVE-MSBL algorithm is proposed to
infer all the hidden variables in the hierarchical Bayesian
model for one frequency bin. Then, the CGMM-based EM
algorithm is formulated to deal with the wide-band acous-
tic DOA estimation. In Section 4, we evaluate the per-
formance of the proposed algorithm using both synthetic
data and real data. Finally, we provide our conclusions in
Section 5.

Note that vectors and matrices are represented using
bold lowercase and uppercase letters, respectively. The
superscripts (·)T and (·)H denote the transpose and con-
jugate transpose operator, respectively. Moreover, L ×
L identity matrix is denoted as IL. The lp norm and
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Fig. 1 The candidate DOAs in the target space. The red circles denote the microphones. The blue circles denote the positions of the sound sources

Frobenius norm are represented using ‖ · ‖p and ‖ · ‖F ,
respectively.

2 Signal model
2.1 Problem formulation
The problem considered in this paper can be stated as fol-
lows. We consider the scenario that P sound sources exist
in the far-field of an arbitrary microphone array with M
microphones which are used to record the signals. The
center point of the microphone array is denoted as O. All
the microphones are assumed to be omnidirectional and
synchronized. As it is shown in [18, 22, 33], the DOA
estimation problem can be formulated as a sparse signal
recovery problem using an over-complete dictionary with
basis vectors containing the DOA information. Let θ =
[ θ1, θ2, · · · , θK ]T denote a set of candidate DOAs, where K
denotes the total number of candidate DOAs. The signal
model for the f th (1 ≤ f ≤ F) frequency bin of one frame
can be expressed as

X f = Af Sf + N f , (1)

where

X f = [xf ,1, xf ,2, · · · , xf ,L
]

,

xf ,l = [xf ,l,1, xf ,l,2, · · · , xf ,l,M
]T ,

Af = [af ,1, af ,2, · · · , af ,K
]

,

af ,k = [1, e−jωf τk2 , · · · , e−jωf τkM
]T ,

Sf = [sf ,1, sf ,2, · · · , sf ,K
]T ,

sf ,k = [sf ,k,1, sf ,k,2, · · · , sf ,k,L
]T ,

F is the total number of frequency bins, X f ∈ C
M×L is

a collection of signal snapshots in the frequency-domain
with xf ,l,m being the signal at the f th frequency bin, lth
snapshot, and mth microphone. We refer to the matrix
X f as one frame and xf ,l∈ C

M as one snapshot, l ∈

[ 1, 2, · · · , L] is the index of the snapshots2. The matrix
Af ∈ C

M×N is the dictionary for the f th frequency bin with
the basis vector af ,k∈ C

M representing the array response
for the direction θk , ωf is the f th angular frequency, and
τkm is the relative time delay of source k between micro-
phone m and the array center point O. Moreover, Sf ∈
C

K×L is a collection of the source signals with sf ,k being
the kth row. The noise matrix N f ∈ C

M×L is defined simi-
larly to Sf . Assuming that several sound sources are active
in one frame, let θ s (θ s ⊂ θ ) denote the true DOA set and
ks (ks ⊂ [1, 2, · · · , K]) denote the true index set. Based
on the above definition and the signal model in (1), Sf
is an all-zero matrix except for the elements of the rows
within the ground truth index set ks. An example is given
in Fig. 1, which uses a uniform linear array (ULA). In
this example, the target space is sampled uniformly with
an interval of 10◦. Two sources are located at −30◦ and
40◦, respectively. Thus, when the two sources are active
simultaneously, only the elements in the two rows of Sf
corresponding to the bearing angles −30◦ and 40◦ are
non-zero.

Based on (1), to obtain the DOA estimator, we can first
recover the source signal, Sf , given the MMV, X f , and
the predefined dictionary, Af , using MMV sparse signal
recovery methods, and then find the row index set of the
non-zero elements, which indicates the acoustic DOAs.
We assume that the sound sources are static or move
slowly such that the direction of the sound sources do
not change within the snapshots in a frame. We further
assume that the number of active sound sources P is very
small compared to the number of candidate DOAs K, i.e.,
P � K . As a result, the sound source signal, Sf , is a signal
matrix with group sparsity and the algorithms for sparse
signal recovery can be applied [18, 19]. In this paper, we
propose a space alternating MSBL method to improve the

2Here, a snapshot refers to the array data in one observation window.
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estimation performance by exploiting the group sparsity
of Sf .

2.2 Probabilistic models
The SBL method is a widely used sparse signal reconstruc-
tion method. It is a probabilistic parameter estimation
approach based on a hierarchical Bayesian framework. It
learns the sparse signal from the over-complete obser-
vation model, resulting in a robust maximum likelihood
estimation method [27, 39]. Like other Bayesian algo-
rithms, SBL estimates model parameters by maximizing
the posterior with a sparse prior. However, instead of
adding a specialized model prior, SBL encourages spar-
sity by using a hierarchical framework that controls the
scaling of Gaussian priors through updating individual
parameters of each model [27, 40].

2.2.1 Sparse signal model
Following the SBL method proposed in [27], a hierarchi-
cal Bayesian framework is used to model the signal matrix,
Sf . For the sake of brevity, we omit the dependency of ran-
dom variables on the subscript, f, where appropriate. First,
we assume that the candidate sources are independent to
each other. Then, a multivariate complex Gaussian distri-
bution is used to describe the kth candidate source signal
sk with zero mean and a covariance matrix λ−1

k IL, i.e.,

p(S|λ) =
K∏

k=1
CN

(
sk|0, λ−1

k IL
)

, (2)

where λ = [λ1, λ2, · · · , λK ]T is the hyper-parameter vec-
tor, λk is the hyper-parameter related to the amplitude of
the kth candidate source signal sk , e.g., the amplitude of
sk is 0 when λk → ∞. Moreover, IL is the L × L identity
matrix, CN (·) denotes the complex Gaussian distribution
and λk is the precision of sk . Note that, for each candi-
date DOA (e.g., the kth DOA), an individual precision λk
is used, but the precision λk is set to the same for the
signal in different snapshots, thereby encouraging group
sparsity [41].

The motivation is that the DOAs of the sound sources,
as well as the set of active sources, are assumed to not
change within a frame. For different candidate DOAs, dif-
ferent precisions are used to encourage the sparsity (see
[18, 19] for further details).

In the second layer of the hierarchy, we assume that
the precision variables are independent and follow gamma
distributions, i.e.,

p(λ|γ ) =
K∏

k=1
G (λk|1, γk) , (3)

where G(a, b) denotes the gamma distribution with the
shape parameter a and the rate parameter b. There are
two reasons for this particular choice of prior distribution:
(1) the gamma distribution is a conjugate prior for the
variable λk in the complex Gaussian distribution, leading
to a tractable posterior, and (2) the marginal distribution∫

p(S|λ)p(λ|γ )dλ is a Student’s t distribution encouraging
sparsity [27].

To facilitate the inference of γ , we further assume that
the variables in γ = [γ1, · · · , γk , · · · , γK ]T follow i.i.d.
gamma distributions, i.e.,

p(γ ) =
K∏

k=1
G(γk|a, b), (4)

where a and b are model parameters that will be treated
as hyper-parameters.

2.2.2 Likelihood function and noise model
Under the assumption of circular symmetric complex
Gaussian noises, the likelihood function can be written as

p(X|S, ρ) =
L∏

l=1
CN

(
xl|Asl, ρ−1IM

)
, (5)

where ρ denotes the noise precision.
For tractability, we assume that ρ follows a gamma

distribution as follows

p(ρ) = G(ρ|c, d), (6)

Fig. 2 Probabilistic graphical model
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Fig. 3 The resolution performance for different methods

where c and d are modeling parameters.
The hierarchical Bayesian model is built using (2), (3),

(4), (5) and (6), and the graphical model is shown in
Fig. 2.

3 Bayesian inference using space alternating
variational estimation

3.1 Variational Bayesian inference
Let � = {S, λ, γ , ρ} denote the set of hidden variables.
Based on the graphical model shown in Fig. 2, the joint pdf
can be written as

p(X, �) =p(X|S, ρ)p(S|λ)p(λ|γ )p(γ )p(ρ). (7)

A closed-form expression of the full posterior p(�|X)

requires computation of the marginal pdf (X), which
is intractable. In this paper, VBI is therefore applied to
obtain an approximation of true posterior using a factor-
ized distribution [42, 43]

q(�) = q(ρ)

( K∏

k=1
q(sk)q(λk)q(γk)

)

, (8)

Fig. 4 Recovery accuracy with different numbers of snapshots
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Table 1 Parameter setup

Parameter

Room dimensions in meter 10 × 9 × 8

Reverberation time in seconds 0.25

Reflection order 2

RIR length in samples 1024

Refresh rate of the AIR 128

Sound velocity in meters/second 340

Sampling frequency in kHz 16

where q(�) is an approximation of the full posterior
p(�|X). For notational simplicity, the dependency of the
approximated posterior on the observed signal X is omit-
ted. Note that, instead of pursuing the full posterior q(S)

of the source signals, a factorial form of the posterior∏K
k=1 q(sk) is used to reduce the computational complex-

ity. This is an extension to the SAVE proposed in the
single measurement vector (SMV) scenario [38]. When
L = 1, the proposed approximation model (8) reduces
to the model in SAVE. We also assume that the approx-
imate posteriors have the same functional forms as the
priors for all the hidden variables. For example, both the
prior p(sk|λk) and posterior q(sk) are complex Gaussian.
The VBI approach minimizes the Kullback–Leibler (KL)
divergence between p(�|X) and q(�) by maximizing the
following variational objective:

L = Eq(�)

[
ln p(X, �)

]− Eq(�)

[
ln q(�)

]
,

where Eq[ ·] denotes the expectation operator over the
distribution q, i.e., Eq(x)[ p(x)] = ∫ q(x)p(x)dx.

Since the prior and likelihood of all nodes of the model
shown in Fig. 2 fall within the conjugate exponential
family, the VBI can be written as [42, 43]

ln q(�i) = Eq(�ī)
[
ln p(S, �)

]+ C, (9)

where C is a constant and �i denotes one of the variables
in the factorized distribution (8), such as sk . The notation
�ī denotes the hidden variable set � excluding �i.

3.2 The logarithm of the joint distribution
As shown in (9), the logarithmic form of the joint distribu-
tion is required for VBI. Substituting (2), (3), (4), (5), and
(6) into (7), we have

ln p(X, �) = ML ln ρ − ρ‖X − AS‖2
F+

L
K∑

k=1
ln λk −

K∑

k=1
λksksH

k +
K∑

k=1
ln γk−

K∑

k=1
γkλk + (a − 1)

K∑

k=1
ln γk−

b
K∑

k=1
γk + (c − 1) ln ρ − dρ + C, (10)

where ‖·‖F denotes the Frobenius norm. Next, we present
the approximate posterior by substituting (10) into (9).

Fig. 5 The spectrograms of the two sources. a The spectrogram of source 1. b The spectrogram of source 2
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Fig. 6 Illustration of the first virtual room setup with two moving sources for the simulation 1

3.2.1 Update of sk

The approximate posterior of sk can be written as 3

ln q(sk) = − tr
[
sH

k
(〈ρ〉 aH

k ak + 〈λk〉
)

sk−
〈ρ〉 s∗

kaH
k
(
X − Ak̄

〈
Sk̄
〉)−

〈ρ〉 (X − Ak̄
〈
Sk̄
〉)H aksT

k

]
+ C, (11)

where
〈
Sk̄
〉 =Eq(Sk̄)

[
Sk̄
]

= [μ1, · · · , μk−1, μk+1 · · · , μK
]T ,

〈ρ〉 =Eq(ρ)[ ρ] , 〈λk〉 = Eq(λk)[ λk] ,

and 〈·〉 is the shorthand of the expectation operator Eq[ ·].
Moreover, tr[ ·] denotes the trace operator, ak denotes the
kth column of A, Ak̄ is the matrix A with the kth column
ak being removed, and Sk̄ is the matrix S with the kth row
sT

k being removed. From (11), it can be shown that q(sk) =
CN

(
sk|μk , σ 2

k I
)
, where

σ 2
k = (M 〈ρ〉 + 〈λk〉)−1 , (12)

μk =σ 2
k 〈ρ〉 (X − Ak̄

〈
Sk̄
〉)T a∗

k , (13)

where the property aH
k ak = M is used. Note that the mean

{μk} is updated based on the space alternating approach
[38, 44], where the newest estimates are always used.

3.2.2 Update of λ, γ and ρ

The approximate posteriors for λ, γ and ρ can be derived
in a similar way as sk , and we only give the results here.

3See Appendix A: Derivation of (11) for more derivation details.

Update q(λk): q(λk) = G(αλk , βλk ), where

αλk = 1 + L, βλk = μH
k μk + Lσ 2

k + 〈γk〉 ,

〈λk〉 = αλk

βλk
. (14)

Update q(γk): q(λk) = G
(
αγk , βγk

)
, where

αγk = 1 + a, βγk = 〈λk〉 + b, 〈γk〉 = αγk

βγk
. (15)

Update q(ρ): q(ρ) = G(αρ , βρ), where

αρ = ML + c,
βρ = ‖X − A 〈S〉 ‖2

F + Ltr
[
�AHA

]+ d,

= ‖X − A 〈S〉 ‖2
F + ML

K∑

k=1
σ 2

k + d,

〈ρ〉 = αρ

βρ

, (16)

where � = diag[ σ 2
1 , · · · , σ 2

2 , · · · , σ 2
K ] and diag[ ·] denotes

a diagonal matrix.
We refer to the proposed algorithm as SAVE-MSBL.

By using the space alternating approach, the computa-
tionally complex matrix inversion operation of the tradi-
tional MSBL [19] can be avoided. Moreover, instead of
using the above formulas directly, we can further reduce
the computational complexity by introducing a tempo-
rary matrix X̂, which can be seen as an approximation
of X. By removing or adding the terms akμ

T
k , the two

terms Ak̄
〈
Sk̄
〉

and A 〈S〉 in (13) and (16) can be updated
using akμ

T
k , resulting in a computationally efficient imple-

mentation. The pseudocode for the proposed method
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Fig. 7 Estimation results for the first virtual room setup. For the CBF, MVDR ,and SRP-PHAT methods, the estimation results are shown using the
spatial spectrum of all frames. For the proposed SAVE-MSBL-EM method, the estimation results are shown using the weights w of all frames. a The
trajectories of two source. b Estimation result of CBF method in free field. c Estimation result of CBF method in low reverberation. d Estimation result
of SRP-PHAT method in free field. e Estimation result of SRP-PHAT method in low reverberation. f Estimation result of MVDR method in free field. g
Estimation result of MVDR method in low reverberation. h Estimation result of the proposed SAVE-MSBL-EM method in free field. i Estimation result
of the proposed SAVE-MSBL-EM method in low reverberation

is shown Algorithm 1. Note that the proposed SAVE-
MSBL algorithm can be applied to each frequency bin
independently.

3.3 CGMM-based acoustic DOA estimator
Up to this point, the posteriors of the source signals
(i.e.,

{
q
(
sf ,k
)}

) from all the frequency bins are obtained
independently. The source signals sf ,k can be estimated
using the MMSE estimator, i.e.,

ŝf ,k = μf ,k , (17)

where ŝf ,k denotes the estimate of the source signal. In this
section, we propose an acoustic DOA estimator, jointly
utilizing the estimated source signals from all the fre-
quency bins, based on the CGMM model. By fitting the
observations and estimates of the source signals to the
CGMM model, the weighting parameters can be obtained
using the EM algorithm. The weighting parameter of each

mixture component in the CGMM can be seen as the
probability that there is an active acoustic source at the
corresponding candidate location. With a known number
of sources, the DOA estimates for all the sources can be
obtained using peak-picking on the weighting parameters.

Table 2 Performance of all the methods for simulation 1

CBF SRP-PHAT MVDR SAVE-MSBL-EM

FF RMSE[°] 4.8 2.9 2.1 1.7

FA[%] 0 0 0 0

MD[%] 0 0 0 0

RB RMSE[°] 5.4 3.0 3.9 1.8

FA[%] 0 0 10.2 0

MD[%] 0 0 14 0
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Fig. 8 Illustration of the second virtual room setup with two moving sources for the simulation 2

Algorithm 1 The proposed SAVE-MSBL algorithm
Initialize the modeling parameters a, b, c and d.
Initialize the threshold of stopping the iteration errmax
and the maximum iteration number Imax.
Initialize

{〈
μk
〉}

, {〈λk〉}, {〈γk〉}, 〈ρ〉 and
{
σ 2

k
}

.
Set the error err = 0 and the iteration counter I = 0.
Initialize the temporary matrix X̂ = A 〈S〉.
while err > errmax and I < Imax do

for k = 1, 2, · · · , K do
λold = λ.
Update X̂ with X̂ ← X̂ − akμ

T
k .

Update σ 2
k using (12).

Update μk using μk = σ 2
k 〈ρ〉 (X − X̂

)T a∗
k

Update X̂ with X̂ ← X̂ + akμ
T
k .

Update 〈λk〉 using (14).
Update 〈γk〉 using (15).

end for
Update 〈ρ〉 using 〈ρ〉 = ML+c

‖X−X̂‖2
F+ML

∑K
k=1 σ 2

k +d
.

Update the iteration number I = I + 1.
Update the error err = ‖λ−λold‖2

‖λold‖2
.

end while

Inspired by the Gaussian mixture model [45, 46] and
the probabilistic steered-response power (SRP) model
[47, 48], we assume that xf ,l follows a CGMM distribution

with estimated source signals sf ,k , i.e.,

p(xf ,l; w) =
K∑

k=1
wkCN

(
xf ,l|af ,kμf ,k,l, η

)
,

where η is an empirically chosen small value, and wk ≥ 0
is the weighting parameter for the kth complex Gaussian
component with the constraint

∑K
k=1 wk = 1. Then, the

distribution of the observation set for all frequency bins
can be expressed as

p(Y ; w) =
F∏

f =1

K∑

k=1
wk

[ L∏

l=1
CN

(
xf ,l|ak,f μf ,k,l, η

)
]

, (18)

where Y = {X f }F
f =1 is the observation set for all frequency

bins. Once (18) is maximized, each weight wk represents
the probability of an acoustic source being active in the
direction θk . However, it is intractable to maximize the
function in (18) due to its high dimensionality. Therefore,
an EM procedure is applied to deal with this maximiza-
tion problem. Following [42], we introduce a set of hidden
variables z = {rf }F

f =1. The rf contains binary random vari-
ables with only one particular element rf ,k being 1 while
the others are all zeros. The variable rf ,k can be seen as
an indicator associated with the acoustic source from the
direction θk at the f th frequency bin. Assuming p(rf ,k =
1) = wk , we can write the joint distribution as follows:

p(z; w) =
F∏

f =1

K∏

k=1
wrf ,k

k . (19)
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The conditional distribution of the observation set Y
given z is

p(Y |z) =
F∏

f =1

K∏

k=1

[ L∏

l=1
CN (xf ,l|ak,f μf ,k,l, η)

]rf ,k

. (20)

Then, the joint distribution can be derived from (19) and
(20) using Bayes’ rule, i.e.,

p(Y , z; w) = p(Y |z)p(z; w)

=
F∏

f =1

K∏

k=1

[

wk

L∏

l=1
CN (xf ,l|ak,f μf ,k,l, η)

]rf ,k

. (21)

3.3.1 E-step
In the E-step, we use the current parameter ŵold to update
the posterior mean of the hidden variable denoted as
E[ rf ,k|Y ; ŵold]. From (21), the E-step can be written as

Q(w; ŵold
) = E[ rf ,k|Y ; ŵold]

=
F∑

f =1

K∑

k=1
E
[
rf ,k|Y ; ŵold

] [
ln ŵold

k + φf ,k,l
]

, (22)

where

φf ,k,l =
L∑

l=1

[
ln CN (xf ,l|ak,f μf ,k,l, η)

]

=
L∑

l=1

{
−M ln η − 1

η

[‖xf ,l − ak,f μf ,k,l‖2} ,

where μf ,k,l is obtained using Algorithm 1.
Therefore, the expected value E[ rf ,k|Y ; ŵold] is given by

[42, 49]

E
[
rf ,k|Y ; ŵold

]
= ŵold

k exp
(
φf ,k,l

)

∑K
k̃=1 ŵold

k̃=1
exp

(
φf ,k̃,l

) = 〈rf ,k
〉
.

(23)

3.3.2 M-step
In the M-step, the required parameter w is updated
through a constrained maximization of (22), i.e.,

ŵnew = arg max
w

Q
(

w; wold
)

s.t.
K∑

k=1
wk = 1; 0 < wk < 1. (24)

Therefore, the M-step can be stated as

ŵnew
k =

∑F
f =1
〈
rf ,k
〉

∑F
f =1
∑K

k̃=1

〈
rf ,k̃

〉 = 1
F

F∑

f =1

〈
rf ,k
〉
. (25)

Given an initial value for the parameter w, the EM
algorithm iterates between the E-step in (23) and the

M-step in (25) until convergence. The EM algorithm is
summarized in Algorithm 2.

Algorithm 2 The EM algorithm
Initialize the threshold of error err0 and the parameter
η.
while Convergence criterion not meet do

for k = 1, · · · , K do
Update E[ rf ,k|Y ; ŵold] using (23).
Update the weight ŵk using (25).

end for
end while

4 Results and discussion
In this section, we first investigate the computational com-
plexity of the proposed SAVE-MSBL-EM method. Then,
we test the performance of our proposed SAVE-MSBL-
EM algorithm using both synthetic data and real data from
the LOCATA dataset4. The performance of the different
methods are tested in three different scenarios. In the first
scenario, we test the recovery accuracy and the resolu-
tion performance using narrow-band sources and a ULA.
In the second part, we consider a complicated scenario
with closely spaced sources in a virtual room. Last, the
proposed method is tested using real data.

4.1 Computational complexity analysis
We first analyze the computational complexity of the pro-
posed SAVE-MSBL algorithm by counting the number of
mathematical multiplication/division operations in each
iteration. As can be seen from Algorithm 1, in each “for"
loop, the complexity of the proposed algorithm mainly
depends on the update of the temporary matrix X̄ and
μk , which is O(ML). The computational complexity of
updating 〈ρ〉 is O(ML). Therefore, the computational
complexity of the proposed algorithm for each iteration is
O(KML). If we consider the variational Bayesian inference
without the space alternating approach, the computa-
tional complexity is O(M3L3). Thus, the space alternating
approach leads to a significant reduction on the computa-
tional complexity. Moreover, the computational complex-
ity of MSBL proposed in [19] is O(KM2). Therefore, the
proposed method is faster than the MSBL method when
L < M. Since the SVD approach can be utilized for data
reduction [18], the condition L < M is met in most cases.
For the EM algorithm, the computational complexity is
O(KML) for one frequency bin. Thus, the computational
complexity of the proposed SAVE-MSBL-EM method is
O(KML) for each frequency bin.

4The LOCATA dataset is publicly available at https://www.locata.lms.tf.fau.de/

https://www.locata.lms.tf.fau.de/
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Fig. 9 Estimation results for the second virtual room setup. For the CBF, MVDR and SRP-PHAT methods, the estimation results are shown using the
spatial spectrum of all frames. For the proposed SAVE-MSBL-EM method, the estimation results are shown using the weights w of all frames. a The
trajectories of two source. b Estimation result of CBF method in free field. c Estimation result of CBF method in low reverberation. d Estimation result
of SRP-PHAT method in free field. e Estimation result of SRP-PHAT method in low reverberation. f Estimation result of MVDR method in free field. g
Estimation result of MVDR method in low reverberation. h Estimation result of the proposed method in free field. i Estimation result of the proposed
method in low reverberation

We further measure the computational complexity
using the “cputime” function provided by MATLAB. The
computer is equipped with an i7-8700 processor. The
clock rate is 3.19 GHz. The operation system is Win-
dows 10. The software is MATLAB 2019a. We test the

Table 3 Performance of all the methods for simulation 2

CBF SRP-PHAT MVDR SAVE-MSBL-EM

FF RMSE[°] 4.1 2.7 3.6 2.3

FA[%] 42.7 1.8 4.2 0

MD[%] 43.9 3.0 5.4 1.2

RB RMSE[°] 6.3 2.9 5.9 2.5

FA[%] 25.9 3.0 10.2 0

MD[%] 31.9 4.2 11.4 1.2

computational complexity for one frequency bin. The
number of iterations is fixed to 100, the number of can-
didate DOAs is set to 41, the number of microphones is
set to 15, the number of snapshots is set to 10, and the
number of Monte-Carlo experiments is set to 1000. For
a single frequency bin, the time consumption of the pro-
posed SAVE-MSBL-EM method and the MSBL proposed
in [19] are 0.08 and 0.25 s, respectively, i.e., the proposed
method is faster than the MSBL method by a factor of
∼ 3. Note that, in practice, the time consumption for the
acoustic DOA estimation algorithm is proportional to the
number of frequency bins.

4.2 Experimental results
The methods used for comparison in this section are sum-
marized as following: CBF refers to classical beamforming
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Fig. 10 Simulation results. a False alarm rate in low-reverberation environment. b Miss-detected rate in low-reverberation environment

based method which is widely used in practice;
SRP-PHAT is another widely used method for
sound source localization especially in reverberant
environments [9]; and MVDR is a method offer-
ing high-resolution performance [10]. Note that the
implementation of the MVDR method is based on
the observed signal statistics. Moreover, MSBL refers
to the multiple snapshots SBL method for narrow-

band signals proposed in [19]. MSBL-EM is an
acoustic DOA estimator which combines the MSBL
algorithm and proposed EM algorithm. Furthermore,
SAVE-MSBL is the proposed method for narrow-band
signals and SAVE-MSBL-EM is the proposed method
for acoustic DOA estimation. For the MSBL method,
the threshold for stopping the iteration errmax is set to
1e − 10. For the proposed SAVE-MSBL-EM method,

Fig. 11 The performance of the proposed method versus different number of snapshots L in a frame. a L = 1. b L = 5. c L = 10. d L = 15
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Table 4 Performance of the proposed method versus L

1 5 10 15

RMSE[°] 3.3 2.5 2.5 2.5

FA[%] 1.8 0.2 0 0

MD[%] 2.4 1.3 1.2 1.2

the modeling parameters a, b, c, and d are all set to
1e − 3, the parameter η is set to 0.1, the threshold for
the SAVE-MSBL algorithm errmax is set to 1e − 10,
and the threshold for the EM algorithm err0 is set to
1e − 3.

4.2.1 Recovery performance analysis using a ULA
In this section, we test the recovery performance of
the proposed SAVE-MSBL algorithm using four acoustic
sources comprising pure sinusoidal signals. Two assump-
tions are made in this simulation: (1) all the acoustic
sources are located in the far-field of the microphone array
and (2) the power of all the acoustic sources are equal. The
frequencies of all the sources are set to 1 kHz. For each
source, the initial phase is generated randomly. Assume
that a ULA with 15 omni-directional microphones is
used to receive the signals. The distance between adja-
cent microphones is set to 0.05 m in this simulation. The
microphone array data are generated by assigning differ-
ent time delays according to the true bearing angles of the
sources. White Gaussian noise is added to the clean array
data and the SNR is set to 10 dB. The sampling frequency
is set to 16 kHz. The time-domain data are converted to
the frequency-domain using the short-time Fourier trans-
form (STFT). The temporal length of the snapshot is set
to 1024. The length of the increment for the snapshots is
set to 256, i.e., the overlap is 75%. The length of the FFT is
set to 2048. The number of snapshots is set to 10. As the
frequencies of all sources are 1 kHz, only the frequency
bin whose center frequency is 1kHz is used for the esti-
mation. We define the fan-shaped horizontal plane in the
range from −60◦ to 60◦ as the target space (see Fig. 1).
The target space is uniformly separated with a grid inter-
val of 3◦, i.e., the number of grid points is 41 and the array
response matrix (dictionary) is pre-computed according
to these grid points. Moreover, the bearing angles of four
pure sinusoidal sources are −33◦, −27◦, −12◦, and −3◦,
respectively. Figure 3 shows the estimation results of the
CBF, MVDR, SRP-PHAT, and SAVE-MSBL methods.

It can be seen that the CBF and SRP-PHAT methods fail
to separate the two sources located at −33◦ and −27◦, but
the MVDR and proposed SAVE-MSBL methods still work
in this case.

We now proceed to test the performance of the pro-
posed method with respect to the number of snap-
shots. The number of Monte-Carlo runs is 1000. The

recovery accuracy is measured by the root-mean-square-
error (RMSE), defined as

erec =
⎛

⎝

√√
√
√ 1

NMCL

NMC∑

i=1

‖Ŝ − S‖2
F

‖S‖2
F

⎞

⎠ , (26)

where Ŝ is the recovered signal, S is the true signal, ‖ · ‖F
denotes the Frobenius norm, L is the number of snapshots,
and NMC is the number of Monte-Carlo experiments. We
compare the proposed method with the CBF method in
[6] and one of the widely used MSBL algorithms proposed
in [19]. The results of the RMSEs of the recovered signals
are illustrated in Fig. 4. It can be seen that the recov-
ery performance of all the methods improve dramatically
as the number of snapshots increases in the range from
1 to 3. Moreover, the simulation result shows that the
proposed SAVE-MSBL method achieves better recovery
accuracy compared with the CBF and MSBL methods.

4.2.2 Simulation with virtual room
In this part, we test the resolution performance of the pro-
posed method with respect to different intervals of bear-
ing angles between two sources. The synthetic array data
are generated using the “signal-generator”5 with a virtual
room. Note that the “signal-generator” is designed for the
moving source scenario. The room setup is summarized
in Table 1.

In this virtual room, a uniform circular array (UCA)
with 32 omni-directional microphones is used to record
the signals. The center position of the UCA is (5, 3.5, 3)

m. The radius of the UCA is set to 0.25 m. Two acous-
tic sources are used. Both of them play uninterrupted
harmonic signals. The fundamental frequencies of the
two sources are 300 Hz and 350 Hz, respectively. The
spectrograms of the two sound sources are shown in Fig. 5.

We assume the sound sources are moving on a hori-
zontal plane where the microphone array is located in.
The horizontal plane is separated into 73 grid points from
0◦ to 360◦ with an angle interval 5◦, where 0◦ is in the
positive direction of the x-axis and 90◦ is in the positive
direction of the y-axis. For simulation 1, the trajectories of
the two sources are illustrated in Fig. 6. The first source
moves along the negative direction of y-axis while the
second source moves along the negative direction of x-
axis. The original positions of the first and second sound
sources are (3.5, 5, 3) m and (6, 5.5, 3) m. The end posi-
tions are (3.5, 3, 3) m and (4, 5.5, 3) m, respectively. The
true DOA trajectories of the two sources with respect to
the microphone array are shown in Fig. 7(a).

According to the simulation setup, the time-domain
array signals can be generated using the “signal-generator.”
Then, the received array signals are first segmented
5The “signal-generator” for synthetic array data generation is online available:
https://www.audiolabs-erlangen.de/fau/professor/habets/software.

https://www.audiolabs-erlangen.de/fau/professor/habets/software
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Fig. 12 The spectrograms of the two sources. a The spectrogram of source 1. b The spectrogram of source 2

into a batch of snapshots with 87.5% overlap. By apply-
ing the fast Fourier transform (FFT) on each snap-
shot, the time-domain array signals are converted to
the frequency-domain array data. Then, the frequency-
domain array data is segmented into several frames with
L consecutive snapshots grouped as one frame. In the
first and second simulations, L is set to 15. The effect
of L is discussed in the last part of this subsection.
Note that the SVD approach is used for data reduction
in this paper. After applying acoustic DOA estimation
methods for each frame, we find the peaks for each
frame and label these peaks according to the ground
truth DOAs of the two sources. The error range is set
to 15◦, i.e., if the minimum error between the esti-
mated angle and all ground truth angles is larger than
15◦, we label the peak as a false estimate. In this paper,
we use the black and red circles to denote estimates
of the first source and the second source, respectively.
Moreover, we use magenta triangles to denote false
estimates.

To quantitatively show the difference of the resolu-
tion performance between the proposed SAVE-MSBL-
EM method and other methods, the RMSE, the false
alarm (FA) rate, and the miss-detected (MD) rate are
used to measure the recovery performance. The RMSE is
defined as

e =
√√
√
√ 1

Nc

Nc∑

i=1

∣
∣
∣θ̃i − θi

∣
∣
∣
2
, (27)

where Nc is the total number of correct estimates, θ̃i is the
ith correct estimate, and θi is the ith true bearing angle.
Following [50], the FA rate is defined as the percent of

sources that are falsely estimated out of the total number
of sources and the MD rate is defined as the percent of
sources that are miss-detected out of the total number of
sources, i.e.,

FA = NF
NT

× 100%, MD = NM1 + NM2
2NT

× 100%,

where NF is the number of sources with false estimation,
NT is the total number of sources for all frames, and NM1
and NM2 are the miss-detected number of the first source
and the second source, respectively. Note that two contin-
uous harmonic sound signals are used in this simulation.
Thus, two active sources exist in each frame.

We consider two reverberation conditions for all the
methods: the free-field (no reverberation) and low-
reverberation conditions (RT60 = 0.25 s). For the CBF,
MVDR, and SRP-PHAT methods, the estimation results
are shown using the spatial spectrums of all frames. For
the proposed SAVE-MSBL-EM method, the estimation
results are shown using the weight, w, of all frames. For
comparison, all the data are normalized frame by frame
and displayed using color maps.

In simulation 1, the estimation results of the CBF
method in free-field and low-reverberation environments
are shown in Figs. 7b and c, respectively. The estima-
tion results of the different methods in both the free
field and low reverberation conditions are shown in
Fig. 7b–i. The RMSE, FA, and MD are shown in Table 2.
Note that “FF” refers to the free-field condition and “RB”
refers to the reverberation environment. It can be seen
that all the methods perform well under the free-field con-
dition. In the presence of reverberation, the good accuracy
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Fig. 13 Estimation results for the real data. For the CBF, MVDR and SRP-PHAT methods, the estimation results are shown using the spatial spectrum
of all frames. For the MSBL-EM and proposed SAVE-MSBL-EM method, the estimation results are shown using the weights w of all frames. All the
data are normalized frame by frame. a The truth trajectory of two source. b The results of CBF based method. c The results of MVDR based method.
d The results of SRP-PHAT method. e The results of MSBL-based method. f The results of the proposed method

performance of the CBF, SRP-PHAT, and proposed SAVE-
MSBL-EM method are retained but the MVDR method
degrades considerably.

To further verify the performance of the proposed
SAVE-MSBL-EM method in terms of resolution, another
scenario is considered. In this case, all of the setup remains
the same except the trajectories of the two sources. We
refer to this simulation as simulation 2. The original posi-
tion of the first source is (2.5, 5.5, 3) m while the second
is (7.5, 5.5, 3) m. The end positions are (4, 7, 3) m and
(6, 7, 3) m, respectively. Figure 8 shows the trajectories of
the two sources in the virtual room.

The true bearing angles of the two sources with respect
to the microphone array are illustrated in Fig. 9a. The
estimation results of the CBF, SRP-PHAT, MVDR, and
SAVE-MSBL-EM methods in the free-field environment
are shown in Figs. 9b, d, f, and h, respectively, while the
results for the low reverberation condition are shown in
Figs. 9c, e, g, and i, respectively. The RMSE, FA, and MD
are summarized in Table 3.

From Figs. 9b, c, d, e, f, and g, it can be seen that the
performance of the CBF, SRP-PHAT and MVDR methods
degrade dramatically as two sound sources move closer.
However, the proposed SAVE-MSBL-EM method retains
an accurate estimation performance for the acoustic DOA

estimation. In this case, the proposed SAVE-MSBL-EM
method offers higher resolution performance than other
methods.

We then test the performance of the proposed method
and MVDR method using static sources and the results
are shown in Fig. 10.

The microphone array signals are generated using the
“rir-generator”6. The distance between the sound sources
and the microphone array center is set to 3 m. We tested
the FA rate with different bearing intervals between the
two sound sources in the low reverberation condition
(RT60 = 0.25 s). Figure 10(a) depicts the FA rates of the
MVDR method and the proposed algorithm.

It can be seen that the proposed SAVE-MSBL-EM algo-
rithm has a lower FA rate in the interval range from
15◦ to 40◦. Figure 10(b) shows he MD rates of two algo-
rithms. Compared with the MVDR method, the proposed
method has a lower MD rate in the range from 15◦ to
40◦. From Figs. 7, 9 and 10, we can thus conclude that
the proposed SAVE-MSBL-EM method provides a bet-
ter resolution performance than the CBF, SRP-PHAT, and
MVDR methods in both free-field and low-reverberation
conditions.
6The RIR generator is publicly available at: https://www.audiolabs-erlangen.
de/fau/professor/habets/software/signal-generator.

https://www.audiolabs-erlangen.de/fau/professor/habets/software/signal-generator
https://www.audiolabs-erlangen.de/fau/professor/habets/software/signal-generator
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To test the effect of the frame (window) length L on
the localization performance, we conduct a simulation for
different number of snapshots L. The simulation setup is
the same as that of simulation 2, that is, the trajectories
of the two sources and the true bearing angles of the two
sources with respect to the microphone array are shown in
Figs. 8 and 9a, respectively. The simulation is conducted
in the reverberation environment (RT60 = 0.25 s). The
results are illustrated in Fig. 11. The RMSE, FA, and MD
are shown in Table 4.

It can be seen that the proposed method works for
all snapshot numbers. However, the localization perfor-
mance degrades if the number of snapshots is small, e.g.,
the FA and MD in Figs. 11a and b are higher than the FA
and MD in Figs. 11c and d.

4.2.3 Real data experiments
The LOCATA dataset provides a series of microphone
array data recorded in the Computing Laboratory of the
Department of Computer Science of Humboldt Univer-
sity Berlin [51]. The room size is 7.1 × 9.8 × 3 m, with
the reverberation time RT60 = 0.55 s. In this paper, we use
the “benchmark2” microphone array data in task #6 to test
the high-resolution performance of the proposed method.
The number of microphones of the ‘’benchmark2” array
is 12. Two speakers are moving and continuously speak-
ing with short pauses. The spectrograms of the two
sources recorded with one microphone are illustrated in
Fig. 12.

In this experiment, we just consider the azimuth angle
estimation with the elevation angle fixed at 90◦. The

target plane is uniformly separated into 73 grid points
from −180◦ to 180◦ with a uniform interval of 5◦. The
true positions and sound source signals of two sources
are provided by the LOCATA dataset. We applied a voice
activity detector [52] to these source signals to obtain
ground-truth voice activity information of the two sound
sources. Figure 13a shows the true trajectories of the two
sources. We also applied the voice activity detector to the
microphone array signals to obtain the voice activity infor-
mation of each frame. Similar to the simulation part, we
find two peaks for each voice active frame and label these
peaks according to the true source position. Note that a
threshold δ is set to judge the existence of peaks, i.e, if
the amplitude of peaks is less than δ, this estimated peak
is considered as an invalid estimate. The black circles and
red circles denote the true DOAs of the first and second
sources, respectively. The magenta triangles denote the
false estimates.

The estimation results of the CBF, MVDR, SRP-PHAT,
and MSBL-EM methods are shown in Figs. 13b, c, d, and
e, respectively. Moreover, the estimation results of the
proposed SAVE-MSBL-EM method is shown in Fig. 13f.
From Figs. 13b–d, it can be seen that the two sources can
hardly be separated in the time range from 6 to 10 s using
the CBF, SRP-PHAT, and MVDR methods. However,
the proposed SAVE-MSBL-EM method can separate two
sources successfully, indicating a higher resolution than
the CBF, SRP-PHAT, and MVDR methods (see Fig. 13f ).
Comparing Fig. 13e and f, it can be seen that the pro-
posed SAVE-MSBL-EM method achieves better recovery
performance than MSBL-EM method in the time range

Fig. 14 The MD rate versus FA rate by varying the peak selection threshold
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Table 5 Results for the real data

FA [%] MD [%] RMSE [°]

CBF 12.7 32.5 3.4

SRP-PHAT 10.1 20.3 3.2

MVDR 51.4. 27.2 3.7

MSBL 1.7 30.1 3.1

SAVE-MSBL-EM 0.4 29.6 2.9

from 8 to 10 s. To evaluate the performance of all the
methods, the MD rate versus FA rate is computed by vary-
ing the peak selection threshold (see Fig. 14). For all the
curves in Fig. 14, the closer to the left-bottom the bet-
ter. It can be seen that the proposed SAVE-MSBL-EM
method achieves better performance than state-of-the-art
methods.

We further report the estimation result for a fixed peak
selection threshold δ = −40 dB (see Table 5). It can
be seen that the proposed SAVE-MSBL-EM method out-
performs other methods especially for the FA rate and
RMSE. The reason is that the proposed method success-
fully resolves the two sources while the others are failing
in the range from 6 to 10 s. The results indicate that the
proposed SAVE-MSBL-EM method provides a higher res-
olution performance than state-of-the-art methods also
in real conditions where all assumptions of the proposed
method might not hold.

5 Conclusion
In this paper, we propose a space alternating MSBL
method for acoustic DOA estimation that offers a
high-resolution performance. First, we build a group
sparse prior based hierarchical Bayesian framework for
the MMV signal model by exploiting the group spar-
sity of candidate source amplitude matrix. Then, the
computational efficient SAVE-MSBL algorithm is pro-
posed to infer all hidden variables in the Bayesian
model. Moreover, an EM algorithm is proposed to deal
with the acoustic DOA estimation problem. In the
experimental parts, the performance of the proposed
method is investigated using both synthetic and real
data. The results show that the proposed method has
lower RMSE and FA rate than state-of-the-art meth-
ods in both free-field and low-reverberation conditions.
As a result, the proposed method can be applied to
some applications (e.g., humanoid robots and drones) to
improve the resolution performance for acoustic DOA
estimation.

Appendix A: Derivation of (11)
According to Eq. 9 and Eq. 10, the signal sk can be updated
using the space alternating approach as follows:

ln q(sk) = Eq(�/sk)

[
p(X, �)

]

= Eq(�/sk)

[

−ρ‖X − AS‖2
F −
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]
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[
tr
[
sH

k
(
ρaH

k ak + λk
)

sk − ρs∗
kaH

k

× (X − Ak̄Sk̄
)− ρ

(
X − Ak̄Sk̄

)H aksT
k

]]
+ C

= −tr
[
sH

k
(〈ρ〉 aH

k ak + 〈λk〉
)

sk + 〈ρ〉 s∗
kaH

k
(
X − Ak̄

〈
Sk̄
〉)

−〈ρ〉 (X − Ak̄ × 〈Sk̄
〉)H aksT

k

]
+ C,

where �/sk denotes the set of variables with sk removed,
C denotes a constant. Note that AS can be rewritten as
Ak̄Sk̄ + aksT

k .
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