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Abstract 

Speech emotion recognition (SER) is a hot topic in speech signal processing. When the training data and the test data 
come from different corpus, their feature distributions are different, which leads to the degradation of the recogni‑
tion performance. Therefore, in order to solve this problem, a cross-corpus speech emotion recognition method is 
proposed based on subspace learning and domain adaptation in this paper. Specifically, training set data and the test 
set data are used to form the source domain and target domain, respectively. Then, the Hessian matrix is introduced 
to obtain the subspace for the extracted features in both source and target domains. In addition, an information 
entropy-based domain adaption method is introduced to construct the common space. In the common space, the 
difference between the feature distributions in the source domain and target domain is reduced as much as possible. 
To evaluate the performance of the proposed method, extensive experiments are conducted on cross-corpus speech 
emotion recognition. Experimental results show that the proposed method achieves better performance compared 
with some existing subspace learning and domain adaptation methods.
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1  Introduction
There are many ways for people to express emotions, 
such as through speech, actions, and facial expressions. 
Speech is an important way to express emotions among 
these ways, because it contains riches emotions, such as 
happy, angry, and sad. Speakers can deliver their inten-
tions through different tones, volumes, or content. How 
to judge a speaker’s emotion through speech becomes 
crucial. Therefore, speech emotion recognition (SER) is 
an important branch of many modal affective comput-
ing, and it is also an important part of speech recogni-
tion. With the development of SER, it has been applied 
in the fields of psychotherapy, human-computer interac-
tion, etc. According to the results of SER, the machine 
can generate appropriate responses for the user in an 
interactive environment. Therefore, SER is one of the 

most important technologies for human-computer 
interaction [1–4].

The semantic-based methods are an important class 
of SER methods, because emotions can be expressed 
effectively by semantics. If the speakers use emo-
tive words to communicate with others, then we can 
directly judge the emotion from the semantics of the 
words. Therefore, semantic-based research gradually 
began to develop. A multi-classifier emotion recogni-
tion model based on prosodic information and seman-
tic labels is introduced in [5]. Similarly, the semantic 
labels and the non-verbal audio in speech, such as 
onomatopoeia such as crying, laughter, or sighing, are 
used in SER [6]. Subsequently, temporal and semantic 
coherence is introduced for SER [7]. In addition, the 
model of bimodal SER from acoustic and linguistic 
information fusion is proposed [8].

Although semantics understanding is simply for 
humans, it is a complex process for machines. There-
fore, more research is currently aimed at speech 
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features that are easily understood by machines, which 
is also important for SER. Compared with semantic 
information, speech features are more abstract. But 
they are very important for expressing the speaker’s 
emotions. The main features used in SER are divided 
into acoustic features and spectral features. The acous-
tic features include intensity, pitch, and timbre. Fea-
tures like energy, Mel-frequency cepstral coefficients 
(MFCC), linear prediction coefficients (LPC), and fun-
damental frequency are called spectral features. The 
features such as pitch, MFCC, formant, intensity, and 
chroma are adopted for SER [9, 10]. Also, the pitch, 
spectrum, and formant are combined with seman-
tic information for recognizing emotions in [5]. To 
improve the robustness of SER, some methods have 
been used to process the features. Specifically, PCA is 
adopted to reduce the dimensionality of the features 
[11], and a statistical method is utilized to find robust 
spectral features [12].

In practical scenarios, the speaker’s emotion is very 
complex. The speaker may have multiple emotions at the 
same time, rather than a single emotion, or the emotion 
expressed by the speaker is inconsistent with the actual 
emotion. It makes SER difficult. There is also research 
proposed for complex emotions. A circular continu-
ous dimensional model to describe an emotion, called 
valence-arousal model (VA) was proposed in [13, 14]. 
The model no longer regards emotions as discrete but 
uses two-dimensional coordinates to describe the con-
tinuous distribution of emotions. The PAD emotional 
model was shown in [15, 16], which has P (pleasure), A 
(arousal), and D (dominance) values to represent all emo-
tional states. In addition, based on the emotional prob-
ability distribution, an ambiguous label is proposed to 
solve the inconsistency problem in ambiguous emotional 
cognition [17].

Another problem in SER is how to recognize emo-
tions. To this end, some machine learning methods 
were adopted to recognize emotions, such as support 
vector machine (SVM) [18], hidden Markov model 
(HMM) [19], and Gaussian mixed model (GMM) [20]. 
In recent years, with the rapid development of deep 
learning, various neural network structures have been 
introduced in SER. From convolutional neural net-
works (CNN) [21], recurrent neural networks (RNN) 
[22], back propagation neural network (BPNN) [23], 
and deep neural network (DNN) [24] to sequential 
capsule networks [25] and adversarial data augmenta-
tion network [26], they are both used for SER. A seg-
ment-based iterative self-learning enhanced speech 
emotion recognition model is proposed in [27]. The 
above algorithms perform well in traditional SER, and 

the recognition accuracy of some algorithms can even 
reach more than 80% in some corpora settings. In the 
actual scene, the speech signals do not belong to a spe-
cific corpus, which are recorded in different scenes. The 
speech data is also affected by language, gender, speak-
ing styles, and other factors. So, when the training set 
and the test set came from different corpus, the train-
ing and testing data often follow different feature distri-
butions. The recognition performance will be reduced 
at this time.

Therefore, transfer learning is adopted to solve the 
problem of data cross-corpus [28]. The known cor-
pus data is considered as the source domain, and the 
unknown data to be learned constitutes the target 
domain. Transfer learning is to transfer the knowl-
edge of the source domain to the target domain to 
reduce the data distribution difference between the two 
domains, and in SER, the features of the source and tar-
get domains are distributed in different spaces. So, the 
transfer from the source domain to the target domain 
is a feature-based transfer, that is, a mapping relation-
ship between two domains is established to reduce the 
differences in feature distributions. With the develop-
ment of transfer learning, more transfer learning algo-
rithms are applied to SER. Among them, in order to 
solve the cross-corpus SER problem, many researches 
focus on transfer subspace learning and domain adap-
tation, such as unsupervised transfer subspace learning 
[28], transfer subspace learning based on feature selec-
tion [29], transfer subspace learning based on non-neg-
ative matrix factorization [30], transfer linear subspace 
learning [31], and Universum autoencoder-based 
domain adaptation [32]. In addition, a cross-corpus 
speech emotion recognition based on domain adap-
tive least squares regression is proposed in [33], and in 
[34, 35], ADDoG-based and DANN-based methods are 
proposed according to the idea of domain adversarial. 
Most of the above methods involve transfer subspace 
learning and domain adaptation, which are important 
issues in transfer learning and the focus of this paper. 
The two parts are considered jointly in this paper. 
Therefore, inspired by the frame in [36], a cross-corpus 
speech emotion recognition method is proposed.

The contributions of the proposed method are summa-
rized as follows:

•	 The proposed method combines subspace learning 
and mapping to realize speech emotion recognition 
across the corpus. The feasibility of the proposed 
method is proved by experimental results.

•	 In this paper, a subspace learning model is con-
structed based on the Hessian matrix, so that the 
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extracted features both in the source domain and the 
target domain have good robustness in their inde-
pendent subspace, which can be adopted to improve 
the subsequent cross-corpus transfer ability.

•	 Information entropy is used to establish a domain 
adaption model in the proposed method. The 
numerical descent is used to minimize information 
entropy, so that a common space of source and tar-
get domains is learned, thereby the difference in 
features distribution between the two domains is 
reduced.

The rest of the paper is organized as follows. In Sec-
tion  2, the specific process of the proposed method is 
introduced, along with some optimizations. In Section 3, 
the emotion recognition performance of the proposed 
method is analyzed on three public datasets, and the 

effects of different parameters on the performance are 
analyzed through experiments. Finally, the conclusion is 
drawn in Section 4.

2 � The proposed method
A cross-corpus speech emotion recognition method is 
proposed by combing subspace learning and domain 
adaption. The block diagram of the proposed method is 
shown in Fig. 1.

Firstly, features of speech in the source corpus and 
target corpus are extracted to form the source domain 
and the target domain. Then, the Hessian-based sub-
space learning is performed on the feature in the 
source domain and the target domain to obtain low-
dimensional features for forming their own independ-
ent subspace. The flowchart of the Hessian-based 
subspace learning part is shown in Fig. 2. Furthermore, 

Fig. 1  The block diagram of the proposed method

Fig. 2  Flowchart of Hessian-based subspace learning. In the flowchart, shapes with different colors represent different characteristics. The circles 
represent the original features in the source and target domain. Triangles represent the subspace of the source and target domain. Features in 
different domains are distinguished by diagonal shading



Page 4 of 20Cao et al. EURASIP Journal on Audio, Speech, and Music Processing         (2022) 2022:32 

the mapping relationship between the source domain 
subspace and the target domain subspace is estab-
lished by using information entropy, which is used 
for reducing the difference of feature distribution 
between different domains. This mapping relation-
ship is revealed by the common space. Therefore, it is 
important to find the common space corresponding to 
the two domains in this method. The flowchart of the 
domain adaption part is shown in Fig. 3. Finally, emo-
tions are predicted.

In the part of Hessian-based subspace learning, the 
neighboring frames of the current frame are found based 
on neighborhood calculation. Then, the Hessian matrix 
[37] is constructed for low-dimensional embedding to 
obtain the subspace of the source and target domain, 
respectively.

After obtaining the subspace of the source and target 
domain, the transformation matrix is obtained through 
correlation coefficients of the subspace. Then, the dis-
tance between the feature data of each frame in the 
source domain subspace with that of each frame in the 
target domain subspace is calculated. And the prob-
ability that a frame in the subspace of the target domain 
is neighborhood to each frame in the source domain 
is obtained according to the distance. In this way, the 
posterior probability that the features of each frame in 
the target domain subspace are estimated to be a cer-
tain class can be obtained according to the known class 
labels of the features of each frame in the source domain 
subspace. Then, the entropy between the target domain 
features and emotion labels and the entropy between 
the features and domain labels of the two domains 
are calculated. Finally, the two information entropies 
are jointly optimized by numerical descent. The map-
ping relationship between the source domain subspace 

and the target domain subspace is acquired, which is 
described by a common space.

Then, Hessian-based subspace learning [38] and the 
domain adaption based on information entropy are intro-
duced in detail. Finally, a specific optimization method 
for finding the common space is given.

2.1 � Hessian‑based subspace learning
An input feature matrix X=(xmn)M × N is given, which is 
composed of the features of the speech. m and n are the 
feature index and the frame index, respectively. M and 
N are the total number of the feature dimension and the 
number of frames, respectively. First, the feature energy 
of each frame is as follows:

where xen represents the feature energy of the nth frame, 
and xmn represents the feature of the mth dimension in 
the nth frame.

Thus, an energy matrix can be formed as Xe= 
[ xe1, x

e
2, . . . , x

e
N  ]. Then, two new feature energy matrices 

A and B, which are used for calculating the distance 
of the feature between different frames, are defined as 
follows:

where aij = xej  , bij = xei  , 1 ≤ i, j ≤ N, and i and j rep-
resent the index of the row and column, respectively. 
In order to find the nearest K frames of each frame, the 
distance De = (dij)N × N of the feature between different 
frames is calculated as follows:

(1)xen = M
m=1 x

2
mn,

(2)
{
A =

(
aij

)
N×N

B =
(
bij

)
N×N

Fig. 3  Flowchart of information entropy-based domain adaption. In this flowchart, triangles represent the subspace of the source and target 
domain. In the common space, the squares represent the features in the source and target domain. Feature distribution differences are reduced in 
the common space
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where dij represents the distance between the feature 
energy of the ith frame and the jth frame. The smaller the 
distance dij is, the closer the feature energies of the ith 
frame and the jth frame are. In fact, the definition of dis-
tance De is derived from Euclidean distance. A and B are 
formed by the square of the elements in the input matrix 
X. According to Eqs. (1), (2), and (3), the distance defined 
in this paper meets the requirements of non-negativity, 
directness, and identity. A and B are constructed in a way 
that also satisfies the symmetry of the distance.

The jth column from the matrix De (i.e., 
de
j =

[
de1j , d

e
2j , . . . , d

e
Nj

]T
 ) denotes the distance vector of 

feature energy between the jth frame and each frame. The 
sorted distance matrix in ascending order is 
deSj =

[
deSj(1)j , d

e
Sj(2)j

, . . . , deSj(N )j

]T
 ; Sj(i) denotes the index 

of the frame sorted by the distance from the jth frame, 
where Sj(1) represents the index with the minimum dis-
tance in deij ; and Sj(N) is the index of the maximum dis-
tance. It is worth mentioning that for each frame, dejj is the 
minimum element in de

j  , i.e., Sj(1) = j. The 2nd to the 
(K+1)-th minimum distance from deSj  are selected to form 
the adjacent index matrix ij = [Sj(2), Sj(3), …, Sj(K + 1)]Tof 
the jth frame. K denotes the number of the largest neighbor 
frames. Thereby, the K×N adjacent index matrix 
I = [i1, i2, …, iN] of N frames is obtained. Then, the elements 
in the input matrix X correspond to the indices in I and are 
selected to form a neighborhood matrix Zn, which is 
defined as follows:

where znmk = xmSn(k+1) , 1 ≤ k ≤ K, 1 ≤ m ≤ M, 1 ≤ n 
≤ N. k, m, and n are the neighbor index, the feature index, 
and the frame index, respectively. Zn represents the neigh-
borhood matrix corresponding to the nth frame.

En is a centralized matrix of Zn, which is defined as 
follows:

where enmk = 1
K

∑K
k=1 z

n
mk  

The purpose of the proposed Hessian-based subspace 
learning is to obtain the local coordinates of the neigh-
borhood, which are transitioned by tangent coordi-
nates. The tangent space consists of tangent 
coordinates, which is regarded as a subspace of the 
Euclidean space. A standard orthogonal coordinate 

(3)De = A + B− 2XTX

(4)Zn =
(
znmk

)
M×K

(5)En =
(
enmk

)
M×K

system is associated with the inner product inheritance 
of the Euclidean space, which can be obtained by using 
singular value decomposition. Therefore, Zn − En is sub-
jected to singular value decomposition. The standard 
orthonormal basis Vn =

(
vnij

)

K×K
 can be obtained by 

singular value decomposition as follows:

where (·)T denotes transposition. Un is the left singu-
lar vector of Zn − En. Σn is a diagonal matrix of singular 
values.

First d columns of Vn are extracted to constitute the 
tangent coordinates Vd

n =
(
vnij

)

K×d
 with dimension 

K × d.
Next, an association Hessian matrix Qn is given by 

using Vd
n , which is defined as follows:

where qnkj = vnkj1v
n
kj2

 , n is the frame index, 1≤ n ≤N. j1 
and j2 are the dimension indexes. The corresponding 
relationship among j, j1, and j2 is given as follows:

where 1 ≤ j1 ≤ d, 1 ≤ j2 ≤ d, j = 1, 2, . . . , d(d+1)
2 .

Furthermore, an estimation matrix Ln =

(

ln
ij

)

K×

(

1+d+
d(d+1)

2

)

 

is constructed as follows:

where 1 ≤ i ≤ K, 1 ≤ n ≤ N.
Gn =

(
gnij

)

K×
(
1+d+ d(d+1)

2

) can be obtained by Schmitt 

orthogonalization of estimated matrix Ln [39]. The last 
d(d+1)

2  columns of Gn are taken to obtain the matrix 
Gb
n =

(
gbnij

)

K× d(d+1)
2

 . Then, Hessian quadratic matrix H 

can be constructed by using the matrix Gb
n , which is 

formed as follows:

where Cn =
(
cij
)
d(d+1)

2 ×N
 is a matrix composed of Gb

n
T , 

and it is defined as follows:

(6)Zn − En = Un�nV
T
n

(7)Qn =
(
qnkj

)

K× d(d+1)
2

(8)j = j2 +
∑ji−1

l−1

∑d
i=j1

1

(9)lnij =






1

vnij
qnij

j = 1
2 ≤ j ≤ d

d + 1 ≤ j ≤ d(d+1)
2

(10)H =
∑N

n=1C
T
n Cn



Page 6 of 20Cao et al. EURASIP Journal on Audio, Speech, and Music Processing         (2022) 2022:32 

where 1 ≤ i ≤ d(d+1)
2  , and Sn(j) denotes the index of 

the frame sorted by the distance from the nth frame, 
1≤n ≤ N.

Next, the d-dimensional subspace corresponding to the 
d smallest eigenvalues can be obtained by using H, which 
is a null space and denotes as U = (uij)N × d. If a manifold is 
locally equidistant to an open subset in Euclidean space, 
then the mapping function from this manifold to the open 
subset is a linear function. The quadratic mixed deriva-
tive of the linear function is 0, so the local quadratic form 
formed by the Hessian coefficients is also 0. Hence, the 
global Hessian matrix has a (d+1)-dimensional null space. 
The first-dimension subspace of the Hessian matrix is 
composed of a constant function, and other d-dimensional 
subspaces form equidistant coordinates. Then, the embed-
ding matrix R = (rij)d × d can be calculated as follows:

where J represents the set of the index of the neighbor-
hood frames, 1 ≤ i ≤ d, 1 ≤ j ≤ d.

Finally, the subspace Y is obtained according to the 
low-dimensional embedding:

where μ is a regularization parameter, and (·)T denotes 
transposition.

There may be a small number of outliers in the sub-
space Y after the low-dimensional embedding. In order 
to solve this problem, the outliers in the subspace Y are 
corrected in this paper. These outliers are character-
ized by a small number, with values that deviate from 
the distribution of most data. So, the detection thresh-
olds are set to recognize the outliers. Then, the outliers 
are replaced with 2Tr(UTEU )[40], where Tr(·) means the 
trace of the matrix in parentheses. E = (eij)N × N is a diago-
nal matrix, where eij is defined as [41]:

Following the above steps, the source domain subspace 
Ys and the target domain subspace Yt can be obtained.

2.2 � Information entropy‑based domain adaption
A domain adaption method was proposed to build 
the relationship between the source domain subspace 

(11)ciSn(j) =

{
gbnij , 1 ≤ j ≤ K

0, K < j ≤ N

(12)rij =
∑

l∈Juliulj

(13)Y = RµUT

(14)eij =

{
1

2�ui�2
i = j

0 i �= j

and the target domain subspace. In detail, a common 
space with similar feature distributions in the source 
and target domains is constructed. Both the informa-
tion entropy between the data and emotion labels and 
the entropy between data and domain labels are used 
to optimize the mapping [42]. Thereby, the differ-
ence in feature distribution in different corpora can be 
reduced.

After obtaining the source domain subspace Y
s
=

(

ys
ij

)

d×N

 

and target domain subspace Yt =
(
ytij

)

d×N
 , a principal 

component coefficient of the source domain W
s
=

(

ws
ij

)

d×d

 

and the target domain Wt =
(
wt
ij

)

d×d
 is calculated. In 

some cases, the dimension of the source domain and the 
target domain is different, which leads to different dimen-
sions of the principal component coefficients. The 
dimension of the principal component coefficient of the 
target domain and the source domain with the smallest 
dimension should be taken as dw. The dimensions of the 
source domain and the target domain are the same in this 
paper, so dw is set as d. Since the transfer is carried out 
from the source domain to the target domain, the target 
domain is used as the basis for the transformation space. 
The transformation matrix W for both source domain 
and target domain is set as W = Wt. Features in the 
source domain and target domain can be mapped into a 
common space by W.

First, the distance matrix D = (dij)N × N formed by 
the features between different frames from the source 
domain subspace and the target domain subspace is 
given as follows:

where X
s
=
(

xs
mn

)

d×N
= W

T
Y
s
 denotes the source domain 

subspace features in transform space, X
t
=
(

xt
mn

)

d×N
= W

T
Y
t
 

denotes the target domain subspace features in transform 
space,  A′

= (aij)N×N
, aij =

∑d

m=1

�

xs
mj

�2, �′

= (bij)N×N
, bij =

∑d

m=1

�

xt
mi

�2.
The neighbor frames are detected according to the 

distance between the feature of each frame. Therefore, a 
conditional probability model is defined as follows:

where 1≤ i ≤ N, 1≤ j ≤ N, and pij is the conditional 
probability density that the jth frame in the target domain 
is adjacent to the ith frame in the source domain. It can 
describe the probability of the nearest neighbor between 
each frame feature in the source domain and the frame 
feature in the target domain.

(15)D = A′ + B′ − 2Xs
TXt

(16)pij =
e−dij

∑N
i=1 e

−dij
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The emotion label corresponding to the ith frame in 
the source domain is Labeli, Labeli∈Label = {1, 2, ... , L}, 
i.e., there are a total of L types of emotion. According to 
formula (16), an emotion label probability estimate p̂lj of 
the jth frame in the target domain is given as follows:

where 1≤l ≤ L, 1 ≤ j ≤ N, 1 ≤ i ≤ N, and p̂lj express the 
probability that the jth frame in the target domain is dis-
criminated as the lth type of emotion when the emotion 
of the source domain is known.

Since p̂lj is a preliminary probability estimate of the 
emotion label of each frame feature in the target domain, 
the relationship between target domain features and 
emotion labels cannot be directly revealed by p̂lj [43–45]. 
Therefore, the entropy I(Xt; Label) between the target 
domain features and emotion labels is calculated by using 
p̂lj in this paper, which is defined as follows:

Equation (18) is composed of two parts. In the first 
part, the entropy of the average probability that the fea-
ture of all frames in the target domain belongs to each 
emotion label is calculated. The average of the entropy 
of the feature in the target domain belonging to each 
emotion label is computed in the second part. In order 
to reduce the influence of incorrect labels on the feature 
discrimination results of each frame in the target domain, 
Eq. (18) needs to be optimized later. It should be noted 
that if only the second part is minimized, a degenerate 
solution will be obtained. That is, all frames in the target 
domain may be classified into the same type of emotion. 
So, the first part in Eq. (18) is necessary.

Then, the entropy Ist(X) between the features and 
domain labels of the two domains are introduced to max-
imize the similarity between the two domains, which is 
defined as:

where 1 ≤ j ≤ N + M.
To calculate the entropy Ist(X), firstly, the distance d′ij 

between the ith frame feature in the source domain and 
the jth frame feature in the target domains is calculated 
according to Eq. (3), where X = (xij)d × (N + M) denotes 
the feature for all frames in the source and target 

(17)p̂lj =
∑

Labeli=l
pij

(18)
I(Xt;Label) = −

∑L

l=1

(
log

(∑N

j=1

p̂lj

N

)∑N

j=1

p̂lj

N

))
−

(
−
∑N

j=1

∑L
l=1

(
p̂lj log

(
p̂lj

)))

N

(19)
I st(X) = −

∑2

t=1

(∑N+M

j=1

ptj

N +M
log

(∑N+M

j=1

ptj

N +M

))
−

(
−
∑N+M

j=1

∑2
t=1

(
ptj log

(
ptj

)))

N +M

domains, A = (aij)(N + M) × (N + M), aij =
∑d

m=1

(
xmj

)2 , 
B = (bij)(N + M) × (N + M), and bij =

∑d
m=1 (xmi)

2 . N and M 
denote the number of frames in the source domain and 
target domain, respectively. In this paper, the number 
of frames in the source domain is the same as that in 
the target domains, i.e., N = M. Then, the probabil-
ity p′ij of the ith frame feature and the jth frame being 
adjacent to each other in the source domain and the 
target domain is calculated according to Eq. (16) using 
d′ij . Next, the probability ptj that the jth frame in the 
source domain and the target domain is judged as 
the target domain or the source domain is calculated 
according to Eq. (17).

2.3 � Optimization
In this subsection, an iterative optimization algorithm 
based on numerical descent [46] is introduced using Eqs. 
(18) and (19). The objective function is:

where λ is the regularization parameter.
In the optimization process, the transfer coefficient 

matrix g is given for numerical descent in this paper, 
which is defined as follows:

where λ is the regularization parameter.
The calculation process of g(Xt; Label) is as follows. First, 

an information matrix IC =

(

ic
lj

)

L×N

 is defined using p̂lj as:

where iclj represents the difference between the prob-
ability that the feature of the jth frame in the target 
domain belongs to the emotion of the lth category and 
the average probability that the features of all frames 
in the target domain belong to the emotion of the 
category.

(20)f = min
{
�I st(X)− I

(
Xt;Label

)}

(21)g = �g st(X)− g(Xt;Label)

(22)iclj =
log

(
p̂lj

)
− log

(∑N
j=1

p̂lj
N

)

N
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Algorithm 1. Optimization method based on numerical and information entropy and calculation method of mapping space

Next, a coefficient matrix Γ = (γij)N × N is calculated 
from pij and iclj as follow:

where oij = iclj , Labeli = l. g(Xt; Label) is obtained as 
follows:

where Ω is a diagonal matrix, and the main diagonal 
element is 

∑N
j=1 γij . W is the transfer matrix.

(23)γij =

(∑N

i=1
oijpij − oij

)
pij

(24)
g
(

Xt;Label
)

= 2
[

Ys�Ys

T + Yt�Yt

T − Ys�Yt

T − Yt�Ys

T
]

W

Since the calculation process of g(Xt; Label) and gst(X) 
is the same, the calculation process of g(Xt; Label) is 
introduced in detail in this paper. The variables for the 
calculation process of gst(X) refer to the calculation pro-
cess of Ist(X).

Finally, the common space L is obtained. So, the feature 
data in the source domain after mapping is Fs = Ys

TL, and 
the feature data from the target domain is Ft = Yt

TL.

3 � Experiments and results analysis
To evaluate the effectiveness of the proposed cross-cor-
pus speech emotion recognition method, a number of 
experiments are conducted with some baseline methods 
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on three commonly standard datasets, namely Berlin 
[47], NNIME [48], IEMOCAP [49], MSP-Improv [50], 
and MSP-PODCAST [51]. The specific statistics of each 
dataset are shown in Table 1.

3.1 � Data preparation
Berlin dataset is a German emotional speech corpus 
recorded by the Technical University of Berlin. In this 
dataset, ten actors performed 7 emotions, including neu-
tral, angry, fearful, happy, sad, disgusted, and bored. The 
sampling rate is 16 kHz. The dataset contains 233 male 
emotional sentences and 302 female emotional sentences 
saved in WAV format.

The NTHU-NTUA Chinese Interactive Multimodal 
Emotional Corpus (i.e., NNIME) is a multimodal dataset. 
In this dataset, audio, video, ECG, etc. were recorded for 
44 actors during oral interactions. There are 6 emotions 
including anger, happy, sad, neutral, frustration, and sur-
prise in this dataset. The audio sampling rate is 16 kHz. 
The dataset also contains annotation results from 49 
annotators in different perspectives.

IEMOCAP, known as the Interactive Emotional Binary 
Motion Capture Database, is recorded by the Speech 
Analysis and Interpretation Laboratory at the University of 
Southern California. Ten emotions are shown by recording 
the expressions, movements, and audio of 10 actors in this 
dataset. Twelve hours of data are contained in this dataset. 
The audio sampling rate is 16 kHz. Considering the rele-
vance and ambiguity of different types of emotions, 4 typi-
cal emotions (angry, neutral, happy, and sad) audio data 
were selected from the above three datasets in this paper.

MSP-Improv is an improvised multimodal emotional 
corpus. There are 6 sessions each session is a dyadic inter-
action between two speakers. Twenty target sentences are 
consisted in each session. In this corpus, 12 actors (six male 
and six female) performed 4 emotions, including neutral, 
angry, happy, and sad. Two actors improvise these emotion-
specific situations, leading them to utter contextualized, 
non-read renditions of sentences that have fixed lexical 
content and convey different emotions. The sampling rate 
is 44.1 kHz. MSP-Improv is more natural than other cor-
pora. Hereinafter referred to as MSP-Improv is MSP.

MSP-PODCAST, a large and natural emotional corpus. 
It relies on existing spontaneous recordings obtained from 
audio-sharing websites. The criterion to select the pod-
casts is to include only episodes that can be shared to the 
broader community. In this corpus, the types of emotions 
and themes are diverse, and the audio quality is very good 
in this corpus, because segments recorded with poor qual-
ity are removed. Segments with SNR values less than 20 
dB are discarded. Phone-quality speech are also removed. 
Therefore, this step also removes segments that do not have 
significant energy above 4 kHz. Podcasts in the corpus con-
tain 9 emotions, including angry, sad, happy, neutral, fear, 
surprise, disgust, others, and contempt. However, angry, 
happy, neutral, and sad are selected in this paper. There are 
also many real-world corpora like LSSED [52], and so on.

3.2 � Experimental settings
In this experiment, 5 artificial audio features are used, 
including static MFCC and their first- and second-order 
dynamic differences, LPC, log amplitude-frequency 
characteristics, Philips Fingerprints [53], and spectral 
entropy. The selected audio features are listed in Table 2.

In the following, the amplitude characteristic of the 
frequency coefficient is described by log amplitude-fre-
quency characteristics (LAFC).

Considering that different features contribute differ-
ently to speech emotion recognition, each feature in the 
source domain and the target domain is weighted before 
training. The weights are set by the dimensions of the 
features in this paper. For MFCC, LPC, LAFC, Philips 
Fingerprint, and Spectral Entropy, the corresponding 
weights are β1, β2, β3, β4, and β5, respectively.

After subspace learning and domain adaption, the 
weighted features in the source domain are trained. That 
is, the features are used to build a training set. Similarly, 
the weighted features in the target domain are used to 
build a test set.

In the training process, a constant recognition accuracy 
threshold α is set in advance. Next, the test set is divided 
into two parts of equal amount of data, i.e., test set 1 and 

Table 1  Database statistics

Database Language Number of 
samples

Emotional 
kinds

Berlin German 535 7

NNIME Chinese 4773 6

IEMOCAP English 10,039 10

MSP-Improv English 8438 4

MSP-PODCAST English 104,267 9

Table 2  The features used in this paper

Feature Feature 
dimensions

Static MFCC 12

First-order dynamic difference of MFCC 12

Second-order dynamic difference of MFCC 12

LPC 12

LAFC 129

Philips fingerprint 1

Spectral entropy 1
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test set 2. Test set 1 is used for assist training, and test 
set 2 is used to optimize the performance of the proposed 
method. If the recognition accuracy of a certain type of 
emotion is less than α in the first training, the features 
corresponding to the emotion need to be re-trained in 
the next training. The operations repeated until one of 
the following conditions is met: (1) the recognition accu-
racy of all emotions is greater than α, and (2) the num-
ber of the emotion with recognition accuracy less than α 
remains unchanged in the two adjacent training.

To evaluate the performance of the proposed method 
in the cross-corpus condition, the Berlin, NNIME, and 
IEMOCAP are combined in pairs in this paper. Then, any 
two datasets are taken as the source domain and the tar-
get domain. Therefore, a total of 6 combination cases are 
designed as follows:

•	 N-B: NNIME is the source domain dataset, and Ber-
lin is the target domain dataset.

•	 B-N: Berlin is the source domain dataset, and 
NNIME is the target domain dataset.

•	 N-I: NNIME is the source domain dataset, and 
IEMOCAP is the target domain dataset.

•	 I-N: IEMOCAP is the source domain dataset, and 
NNIME is the target domain dataset.

•	 B-I: Berlin is the source domain dataset, and 
IEMOCAP is the target domain dataset.

•	 I-B: IEMOCAP is the source domain dataset, and 
Berlin is the target domain dataset.

3.2.1 � Parameter details
Linear SVM is chosen for training and testing. The grid 
search method is used to optimize the kernel function 
coefficients of the SVM and the independent terms of the 
sum function. There are four hyperparameters and five 
feature weight coefficients in this experiment. The recog-
nition accuracy threshold α is set to 0.45. It is determined 
by an informal experiment. According to the dimension 
of the feature, the weight coefficient β1, β2, β3, β4, and β5 
are set as 0.3, 0.3, 0.3, 0.05, and 0.05, respectively. The 
complexity of the algorithm is affected by K. The larger 
the value of K is, the higher the algorithm complexity 
is, and the more features are extracted. So, the range of 
the neighboring value K is set as [3, 9]. For the two regu-
larization parameters μ and λ, the range is set to {− 1/4, 
− 1/3, − 1/2, 1, 1/2, 1/3, 1/4} and {0.001, 0.01, 0.1, 1, 10, 
100, 1000}, respectively. Considering that embedding reg-
ularization parameter μ is an exponent, if μ is a positive 
integer, the value will affect the value of the element in Y. 
Nevertheless, if μ is a positive or negative fraction, it may 
affect the value range of the element in R. Hence, both 
integer and fraction can be chosen for μ. For regulariza-
tion parameter λ, it affects the importance of both parts 

of two information entropy. For the proposed method, the 
dimension of the simplified subspace feature is set to 169.

3.2.2 � Traditional linear baseline
In order to evaluate the performance of the proposed 
method for cross-corpus speech emotion recognition, on 
the basis of the above 6 sets of experiments, the proposed 
method is compared with some related most commonly 
used and advanced transfer learning methods. The fol-
lowing is an introduction to these baseline methods:

•	 Principal components analysis (PCA) [54]: A dimen-
sionality reduction method that maps data into a low-
dimensional subspace through linear transformation 
to prevent information loss as much as possible.

•	 Linear discriminant analysis (LDA) [55]: In this method, 
the projection direction that maximizes the ratio of 
the inter-class distance and minimizes the intra-class 
distance ratio is found. The subsequent classification 
results are affected while reducing the dimension.

•	 Kernel spectral regression (KSR) [56–58]: In repro-
ducing kernel Hilbert spaces (RKHS), the problem of 
learning embedding functions is transformed by SR 
into a regression problem.

•	 Geodesic flow kernel (GFK) [59]: The movement of 
the domain is simulated by integrating an infinite 
number of subspaces. The changes in geometric and 
statistical properties from the source domain to the 
target domain are described by these subspaces.

•	 Subspace alignment (SA) [60]: SA is a transfer learn-
ing algorithm for two subspaces by matching the fea-
ture. The core of this method is to seek linear trans-
formation to transform and align for different data.

•	 Manifold embedded distribution alignment (MEDA) 
[61]: Taking into account the importance of both 
conditional and marginal distributions, a domain-
invariant classifier is learned via a Grassmann mani-
fold with structural risk minimization.

•	 Joint distribution adaptation (JDA) [62]: The mar-
ginal probability distribution and conditional prob-
ability distribution of the source and target domains 
are adapted to reduce the distribution difference 
between different domains.

•	 Transfer component analysis (TCA) [63]: The data 
in both domains are mapped together into a high-
dimensional regenerated kernel Hilbert space. In this 
space, the distance of data in the source domain and 
target domain is minimized.

•	 Balanced distribution adaptation (BDA) [64]: The 
weights of marginal and conditional distributions are 
adaptively utilized on the basis of JDA.

•	 Transfer joint matching (TJM) [65]: The domain 
variance is reduced by jointly matching features and 



Page 11 of 20Cao et al. EURASIP Journal on Audio, Speech, and Music Processing         (2022) 2022:32 	

reweighting instances across domains in a dimen-
sionality reduction process. The new feature repre-
sentations invariant to both distributional variance 
and uncorrelated instances are built.

3.3 � Results analysis
3.3.1 � Comparison with the traditional linear baseline method
In this section, the recognition accuracy of the proposed 
method is compared with that of some traditional linear 
baseline methods. The result is shown in Tables 3 and 4.

From Table 3, it is clear that the performance of the pro-
posed method outperforms that of other methods in most 
cases. Only in the case of I-B, the performance of the 
proposed method is slightly lower than that of BDA and 
TJM. For the proposed method, the average recognition 
accuracy reached 58.20% in the six cases. In the case of 
I-B, the recognition accuracy is the lowest among the six 
cases, which is 46.88%. In contrast, in the case of I-N, the 
recognition accuracy reached 67.75%, which is the highest 
among the six cases. Compared with TJM which has the 
highest recognition accuracy among the baseline meth-
ods, the average recognition accuracy of the proposed 
method is significantly improved by 13.3%.

Although weighted accuracy is an important indicator 
to evaluate the overall classification performance of the 
model, weighted accuracy is affected by the unbalanced 
distribution of sample classes. Therefore, unweighted 

accuracy is very important for evaluating the overall clas-
sification performance of the model when the distribu-
tion of sample classes is unbalanced. It can be seen from 
Table 4 that the unweighted accuracy of almost all meth-
ods is lower than the weighted accuracy. For the pro-
posed method, unweighted accuracy is 3.27% lower than 
weighted accuracy. Compared with the baseline method, it 
still has advantages.

Furthermore, we can find that the average recognition 
accuracy of the proposed method, distribution adap-
tation method, and feature selection method is higher 
than that of most subspace learning. The reason is that 
the distribution of data in different domains is different. 
Therefore, the recognition performance of traditional 
subspace learning algorithms is poor in cross-corpus 
speech emotion recognition. Transfer learning can be 
used to improve recognition performance.

In addition, the confusion matrix of the proposed 
method in six cases is shown in Fig. 4. It can be seen that 
there are two types of emotion with more than 50% recog-
nition accuracy in most cases. In the case of N-B and N-I, 
the highest recognition accuracy can be achieved for neu-
tral. From Fig. 4b and f, it is clear that the proposed method 
has a good recognition ability for happy, and the highest 
recognition accuracy can be achieved for angry in the case 
of I-N and B-I. Moreover, it can be also found that sad is 
easier to be recognized than other emotions in most cases.

Table 3  Weighted accuracy (%) of different methods in different cases

Case Subspace learning Distribution adaptation Feature selection The 
proposed 
methodGFK PCA LDA KSR SA MEDA JDA TCA​ BDA TJM

N-B 35.63% 32.08% 30.63% 37.29% 36.46% 35.00% 36.88% 31.04% 37.29% 37.50% 50.42%

B-N 32.71% 37.29% 34.79% 40.42% 42.92% 38.75% 49.58% 43.04% 51.04% 45.63% 67.08%

N-I 43.13% 40.83% 47.08% 47.92% 37.29% 42.29% 43.54% 57.50% 44.17% 46.04% 61.25%

I-N 33.33% 38.33% 32.29% 37.71% 41.88% 41.86% 44.79% 41.04% 44.58% 45.00% 67.75%

B-I 41.46% 39.58% 46.67% 50.21% 37.71% 47.71% 33.96% 43.33% 38.54% 46.04% 55.83%

I-B 31.88% 38.75% 42.08% 39.58% 41.04% 41.25% 38.96% 36.67% 47.29% 49.17% 46.88%

Average 36.35% 37.81% 38.92% 42.18% 39.55% 41.14% 41.29% 42.10% 43.82% 44.90% 58.20%

Table 4  Unweighted accuracy (%) of different methods in different cases

Case Subspace learning Distribution adaptation Feature selection The 
proposed 
methodGFK PCA LDA KSR SA MEDA JDA TCA​ BDA TJM

N-B 39.1% 33.75% 31.67% 36.67% 37.71% 30.42% 33.33% 32.71% 36.86% 38.75% 48.54%

B-N 35.28% 38.75% 31.46% 40% 44.58% 31.25% 44.79% 43.75% 42.08% 45% 65.28%

N-I 43.75% 41.86% 32.71% 27.92% 37.5% 38.96% 45.42% 50.42% 31.67% 30.63% 53.33%

I-N 31.04% 30.63% 34.38% 36.67% 42.29% 31.25% 38.33% 35% 39.58% 43.88% 64.04%

B-I 42.79% 38.54% 45% 48.96% 38.33% 39.17% 34.42% 45.42% 37.92% 42.92% 52.28%

I-B 32.91% 36.08% 40.86% 34.79% 34.58% 39.58% 36.67% 34.79% 46.25% 45.83% 46.08%

Average 37.47% 36.6% 36.01% 37.5% 39.17% 35.11% 39.33% 40.35% 39.06% 41.17% 54.93%
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Fig. 4  Confusion matrices for cross-corpus speech emotion recognition of the proposed method in various situations. a Confusion matrix in the 
N-B case. b Confusion matrix in the B-N case. c Confusion matrix in the N-I case. d Confusion matrix in the I-N case. e Confusion matrix in the B-I 
case. f Confusion matrix in the I-B case
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3.3.2 � Ablation experiment
In this section, a set of ablation experiments is estab-
lished to verify the impact of the two parts of the pro-
posed method on the recognition performance. The 
specific results are shown in Fig. 5. The specific settings 
are as follows:

•	 Subspace learning: Only Hessian-based Subspace 
Learning is performed.

•	 Domain adaption: Only information entropy-based 
domain adaption is performed.

•	 Subspace learning and domain adaption: Hessian-
based subspace learning and domain adaption are 
combined.

The average recognition accuracy of the ablation 
experiments is shown in Fig.  5. It can be found that 
the recognition performance of the combined method 
(i.e., the proposed method) is better than that of the 
method only with Hessian-based subspace learning 
or domain adaption. Through ablation experiments, 
it is clear that both Hessian-based subspace learning 
and domain adaption have played a positive role in 
cross-corpus speech emotion recognition. In the cases 
of N-B, B-N, and N-I, the recognition accuracy of the 
domain adaption method is slightly higher than that of 
the Hessian-based subspace learning method. On the 
contrary, in the cases of I-N, B-I, and I-B, the recogni-
tion accuracy of the Hessian-based subspace learning 
method is slightly higher than that of the domain adap-
tion method.

3.3.3 � Comparison with deep learning‑based method
In this section, IEMOCAP and MSP-Improv are used 
for cross-corpus speech emotion recognition. ADDoG-
based method and CNN-based method [34] are cho-
sen as reference methods. The recognition accuracy of 
the proposed method is compared with these reference 
methods. The result is shown in Fig. 6:

It can be seen from Fig.  6 that when MSP-Improv is 
the source domain and IEMOCAP is the target domain, 
the unweight accuracy of the proposed method is better 
than that of the CNN-based method but slightly lower 
than that of the ADDoG-based method. However, in the 
corpus reverse experiment, the unweight accuracy of the 
proposed method is slightly higher than that of the CNN-
based method and ADDoG-based method. It can be 
clearly seen that the performance of the ADDoG-based 
method is the most stable among the three methods. In 
general, the proposed method can achieve well perfor-
mance compared with traditional linear methods and 
deep learning methods.

3.3.4 � Experiment of real‑world corpus
In order to verify that the method proposed in this paper 
is also effective in the real world, in this section, a real-
world corpus MSP-PODCAST and several corpora 
in controlled experimental environments are used for 
cross-corpus speech emotion recognition. The experi-
mental setup of this paper is to set MSP-PODCAST as 
the source corpus and target corpus respectively for 
experiments with other corpora. The recognition accu-
racy of the proposed method using MSP-PODCAST as 

Fig. 5  Ablation experiment results
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the target corpus is shown in Fig. 7, and Fig. 8 shows the 
recognition accuracy of the accuracy of MSP-PODCAST 
as the source corpus:

It can be seen from Figs.  7 and 8 that the recogni-
tion performance of the proposed method using MSP-
PODCAST as the target corpus is better than that using 

MSP-PODCAST as the source corpus. When MSP-POD-
CAST is used as a source corpus, the transferable knowl-
edge is limited due to the influence of complex acoustic 
conditions. It can be seen that the performance of speech 
emotion recognition is indeed affected by the corpus 
environment. In addition, it is clear that the recognition 

Fig. 6  Results of the unweight accuracy with IEMOCAP and MSP-Improv

Fig. 7  Recognition accuracy of MSP-PODCAST as target corpus
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performance of the proposed method using IEMOCAP 
and MSP-Improv is better than that of other corpora.

3.3.5 � Parameters analysis
The influence of different parameters on the recognition 
performance of the proposed method is analyzed in this 
section. The analyzed parameters include the number of 
the nearest neighbors K, the embedding regularization 
parameter μ, and the information entropy regulariza-
tion parameter λ. Different recognition accuracy can be 
obtained by selecting different values of parameters.

First of all, the nearest neighbor number K is ana-
lyzed, which is used to identify the number of neigh-
boring frames of the current frame. The complexity of 
the algorithm is affected by K. The smaller K is, the 
fewer neighboring frames are identified, and the less 
feature is provided. While the larger K is, the more 
neighboring frames are identified, the more feature 
is provided. However, if K is set large, some frames 
which are not useful for recognition may be identi-
fied as neighboring frames, which may lead to high 
algorithmic complexity. So, the range of K is set from 
3 to 9 in this paper. In different cases, the recogni-
tion accuracy of different K is shown in Fig.  9. From 
Fig. 9, we can find that the proposed method achieves 
a good recognition accuracy when K = 6. However, it 
is not enough to only use the recognition accuracy to 
measure the recognition performance under different 
corpus settings. Therefore, variances of recognition 

accuracy are introduced in parameter analysis to 
measure the recognition performance under different 
corpus settings at the same time in this paper. For K, 
variances under different corpus settings are shown in 
Fig. 10. It can be seen from Fig. 10 that, although the 
variances of recognition accuracy achieve the maxi-
mum when K = 6, there is a small difference when 
K takes different values. Therefore, considering the 
algorithmic complexity and recognition performance, 
K is selected as 6 in this paper.

Then, the embedding regularization parameter μ is ana-
lyzed, which is used to control the value of the embedded 
coordinates. The range of μ is set as {− 1/2, − 1/3, − 1/4, 
1/4, 1/3, 1/2, 1} in this paper. In different cases, the recog-
nition accuracy of the proposed method with different μ 
is shown in Fig. 11. From Fig. 11, it is clear that the pro-
posed method can achieve a good recognition accuracy 
when μ = 1/4. The variance of recognition accuracy with 
different μ under different corpus settings is shown in 
Fig. 12. Although the variance of recognition accuracy is 
very small when μ = 1, the recognition accuracy is signif-
icantly lower than that under other conditions. Therefore, 
in consideration of recognition accuracy and variance of 
recognition accuracy, μ = 1/4 is chosen in this paper.

Finally, the information entropy regularization 
parameter λ is analyzed, which controls the weight 
of the information entropy. The range of λ is set as 
{0.001, 0.01, 0.1, 1, 10, 100, 1000} in this paper. In dif-
ferent cases, the recognition accuracy of the proposed 

Fig. 8  Recognition accuracy of MSP-PODCAST as source corpus
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method with different λ is shown in Fig. 13. As shown 
in Fig. 13, when λ = 100 and λ = 1000, the changes in 
the recognition accuracy are great. Although when λ 
= 100, the recognition accuracy in both N-I and B-I 
cases exceeds 70%. However, it is not stable in these 
two cases as shown in Fig.  14. Therefore, consider-
ing recognition accuracy and variance of recognition 

accuracy in a compromise, λ = 10 is chosen in this 
paper.

3.4 � Complexity analysis
For the performance evaluation of a method, both recogni-
tion accuracy and model complexity should be considered. 

Fig. 9  Recognition accuracy with different K 

Fig. 10  Variance of recognition accuracy with different K 
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For the deep learning-based method, the complexity of 
the model is determined by the network structure and 
the number of parameters. Therefore, some complexity 
analysis of the proposed method and reference methods 
are given in this subsection. For the CNN-based method, 
the feature encoder consists of two convolution layers and 
a max pooling layer, and the emotion classifier consists 

of fully connected layers and softmax. On this basis, the 
ADDoG model adds a critic composed of full connection 
layers. With the increase of the input MFBs, the calcula-
tion amount and trainable parameter amount of each layer 
will increase more. In addition, during training, when 
the number of samples in the source domain and target 
domain increases, the computational complexity of the 

Fig. 11  Recognition accuracy with different μ 

Fig. 12  Variance of recognition accuracy with different μ 
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loss function and iteration times increase. Although there 
is a user-defined maximum number of iterations for the 
proposed method, convergence can be achieved by an 
average of 50 or fewer iterations under each experimen-
tal setting. In summary, the proposed method requires 
relatively few adaptation steps compared to the needing of 
fine-tuning whole deep neural network.

4 � Conclusion
In this paper, a cross-corpus speech emotion recogni-
tion method is proposed using subspace learning and 
domain adaptation. In the subspace learning part, the 
Hessian matrix is introduced to locally embed the fea-
tures in both source and target domains to form the 
feature subspace. In the domain adaption part, the 

Fig. 13  Recognition accuracy with different λ 

Fig. 14  Variance of recognition accuracy with different λ 
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mapping relationship is constructed based on infor-
mation entropy. Then, the common space of both the 
source and target domains is obtained, which reduces 
the discrepancy in feature distribution between the 
source and target domains. Extensive experiments on 
datasets in three different languages are conducted to 
verify the performance of the proposed method.
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