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Abstract 

Non-parallel data voice conversion (VC) has achieved considerable breakthroughs due to self-supervised pre-trained 
representation (SSPR) being used in recent years. Features extracted by the pre-trained model are expected to contain 
more content information. However, in common VC with SSPR, there is no special implementation to remove speaker 
information in the content representation extraction by SSPR, which prevents further purification of the speaker 
information from SSPR representation. Moreover, in conventional VC, Mel-spectrogram is often selected as the recon-
structed acoustic feature, which is not consistent with the input of the content encoder and results in some infor-
mation lost. Motivated by the above, we proposed W2VC to settle the issues. W2VC consists of three parts: (1) We 
reconstruct feature from WavLM representation (WLMR) that is more consistent with the input of content encoder; (2) 
Connectionist temporal classification (CTC) is used to align content representation and text context from phoneme 
level, content encoder plus gradient reversal layer (GRL) based speaker classifier are used to remove speaker informa-
tion in the content representation extraction; (3) WLMR-based HiFi-GAN is trained to convert WLMR to waveform 
speech. VC experimental results show that GRL can purify well the content information of the self-supervised model. 
The GRL purification and CTC supervision on the content encoder are complementary in improving the VC perfor-
mance. Moreover, the synthesized speech using the WLMR retrained vocoder achieves better results in both sub-
jective and objective evaluation. The proposed method is evaluated on the VCTK and CMU databases. It is shown 
the method achieves 8.901 in objective MCD, 4.45 in speech naturalness, and 3.62 in speaker similarity of subjective 
MOS score, which is superior to the baseline.
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1  Introduction
Voice conversion aims to convert the speech of a 
source speaker into a simulation of the speech of a tar-
get speaker, while retaining the linguistic information 
unchanged. VC has been used in many applications, such 
as speaker-identity modification for text-to-speech [1], 
singing voice conversion [2], and generation of various 
kinds of expressive speech [3].

According to the existence of parallel utterance pairs 
from both the source speaker and target speaker in the 
training dataset, VC can be broadly divided into parallel 
VC and non-parallel VC. In recent years, non-parallel VC 
has become the mainstream research topic because no 
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parallel training data is necessary and thus can be easily 
implemented.

In non-parallel VC research, variational autoencoder 
(VAE) [4, 5] has become increasingly popular, which 
commonly employs an encoder-decoder framework to 
learn the disentanglement of the content representa-
tion and speaker representation from source speaker 
and target speaker respectively. It can match the task of 
VC that disentangles the content information of source 
speaker and speaker information of target speaker first, 
then combine them, and finally synthesize the converted 
utterance.

In conventional VAE-based VC, the encoder extracts 
speaker-independent latent variables from the input 
acoustic features, and the decoder reconstructs the 
acoustic features from the latent variables and the given 
speaker representations. However, the modeling of VAE 
is limited to Gaussian distributional assumption [6], and 
the distribution of actual data may be much more compli-
cated. On the basis of VAE, any-to-any (also called one-
shot VC) VC was achieved earlier in vector quantized 
variational autoencoder (VQ-VAE) [7] and AUTOVC [8]. 
They both relied on the disentanglement of content and 
speaker information within an utterance with a content 
encoder and a speaker encoder. VQ-VAE used learn-
ing the prior via an embedding dictionary to represent 
entirely different phonetic contents, while AUTOVC 
used a pre-trained speaker encoder [9] to obtain speaker 
information and used an information bottleneck to limit 
the leakage of the source speaker information. In addi-
tion, phoneme posteriorgram (PPG) is very popular in 
VAE-based VC  [10]. The reason is that PPG is speaker-
independent content representation in theory. In recent 
VAE-based VC studies, self-supervised pre-trained rep-
resentation have been used to extract content or speaker 
information because SSPR is often trained from a large-
scale unlabeled data and hence SSPR contains abundant 
and compact speech information [11]. SSPR have been 
used to provide content information for VC tasks [12]. 
Several SSPRs have been used as the inputs of content 
encoders in [12]. For example, FragmentVC applies the 
wav2vec 2.0 as the input of content encoders [13]. In 
S2VC [14], CPC [15] is used as the input of both the con-
tent encoder and the speaker encoder.

In the early VAE-VC, the traditional Mel-spectro-
gram is often selected as the input acoustic features and 
reconstruction features, which are fed into the encoder 
and obtained from the decoder, respectively. Then vari-
ous vocoders such as WaveNet  [16], MelGAN  [17], 
and HiFi-GAN vocoder  [18] are used to convert Mel-
spectrogram to waveform speech. Even in recent VC 
studies using SSPR  [11, 13, 14] as the input feature of 
content representation extraction for source speaker, 

Mel-spectrogram is also selected as the reconstructed 
acoustic feature converted from transformed SSPR. 
Though SSPRs have been used in previous work of 
voice conversion such as [11, 13, 14] and made prom-
ising progress in VC performance, there are still two 
limitations in current system configurations:

•	 There is no special tactic to remove speaker infor-
mation in content representation extraction for the 
source speaker when SSPR is used as the input. As 
a result, there is still more or less speaker informa-
tion in the content representation.

•	 Mel-spectrogram is often selected as the recon-
structed representation by decoding the combining 
content representation and speaker representation 
(denoted transformed-SSPR hereafter), there will 
inevitably be some information missing in the process 
of converting transformed-SSPR to Mel-spectrogram.

In order to settle the problems in VC based on SSPR 
mentioned above, several strategies are proposed. 

(1)	 Connectionist temporal classification (CTC) [19] is 
used to align content representation and text con-
text from the phoneme level, and content encoder 
plus gradient reversal layer (GRL)-based speaker 
classifier [20, 21] are used to remove speaker 
information from content representation with 
WavLM representation (WLMR) [22] as the input. 
The reason is that the GRL-based speaker classi-
fier can make the content information not flow to 
the speaker classifier, which makes the output of 
the content encoder have no speaker information. 
Finally, WLMR can be used as the input to extract 
content representation because it can make great 
success in speech recognition [22].

(2)	 WLMR is selected as the reconstructed representa-
tion rather than the commonly used Mel-spectro-
gram, which can be consistent with the input of the 
content representation to escape the information 
lost.

(3)	 WLMR-based HiFi-GAN vocoder is trained to 
convert the reconstructed WLMR to waveform 
speech.

In this regard, a VC method based on WLMR is pro-
posed in this work, which is termed as W2VC for 
short. The contribution of the work can be described as 
follows:

•	 Content encoder plus GRL-based speaker classifier 
are used to remove speaker information in the con-
tent representation extraction of source speaker.
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•	 The reconstructed feature is WLMR rather than 
commonly acoustic features such as Mel-spectro-
gram. We compare the quality of the reconstructed 
Mel-spectrogram synthesized audio obtained by the 
traditional VAE structure, using this novel WLMR 
that can escape the information lost in the process of 
converting transformed-SSPR to acoustic feature.

•	 WLMR-based HiFi-GAN vocoder is trained to con-
vert synthesized WLMR to waveform speech. We 
retrain the HiFi-GAN vocoder using WLMR instead 
of Mel-spectrogram obtained from speech sig-
nal processing, resulting in a direct mapping from 
sampling points to audio. The experimental results 
show that the quality of the audio generated by the 
retrained vocoder is greatly improved. The problem 
of inconsistent input features between WLMR and 
conventional vocoder is solved.

The rest of the paper is organized as follows: Section  2 
introduces the proposed method. Section  3 gives the 
evaluation and analysis. Section 4 draws the conclusion.

2 � Methods
We first described the proposed W2VC in detail. Figure 1 
demonstrates the framework. As shown, the proposed 
W2VC includes a content encoder, a speaker encoder, 
a decoder, and a retrain vocoder. In which, we adopt 
the pre-trained self-supervised model WavLM to learn 

the representation and feed the resulting WLMR to the 
content encoder to extract the content representation. 
The speaker embedding is obtained from the speaker 
encoder. The CTC auxiliary module and the GRL-based 
speaker classifier are used to remove speaker informa-
tion in the content representation. It is worth noting that 
these two kinds of auxiliary networks are only used in the 
training stage and not in the inference stage. The two rep-
resentations are concatenated into the decoder to obtain 
the reconstructed representation and then sent to the re-
training vocoder to synthesize speech. Next, they will be 
introduced in detail one by one.

2.1 � WavLM representations
In this paper, we employ the well-known pre-trained 
model WavLM to learn the representation. This new 
WLMR replaces the traditional acoustic features as 
input to the system. The schematic diagram of WavLM 
is shown in Fig.  2. The pre-trained WavLM model uses 
a masked speech denoising and prediction framework, 
where some of the inputs are simulated noise/overlapped 
with the mask, and the goal is to predict pseudo-labels of 
the original speech in the masked region. The WavLM 
model uses a pre-training scheme for speech modeling 
with denoising masks. As shown below, the WavLM 
model consists of a convolutional encoder and a Trans-
former encoder. Among them, the convolutional encoder 
has seven layers, and each layer contains a time domain 

Fig. 1  The framework of W2VC
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convolutional layer, a normalization layer, and a GELU 
activation function layer. The Transformer encoder has 
24 encoder layers, 1024-dimensional hidden states, and 
12 attention heads, resulting in 316.62M parameters. The 
relative position embedding is shared by all layers, so it 
does not significantly increase the number of parameters. 
Researchers use gated relative position bias to introduce 
relative position into the calculation of attention net-
works, so as to better model local information. During 
training, WavLM randomly transforms the input waves, 
for example mixing two waves, or adding background 
noise. Then, about 50% of the audio signal is randomly 
masked, and the label corresponding to the mask posi-
tion is predicted at output. WavLM draws on the idea 
of HuBERT [23] and converts the continuous signal into 
discrete markers by the K-means method and models the 
discrete markers as targets.

2.2 � Content represesentation extraction
Content representation extraction is used to extract 
content representation from WLMR and it is realized 
by three modules which consist of the content encoder, 
CTC auxiliary networks and GRL-based speaker classi-
fier. This part describes the network structure of the con-
tent encoder and its two auxiliary networks.

2.2.1 � Content encoder
The content encoder is shown in Fig.  3. According 
to [24, 25], it can be known that the effectiveness of 
instance normalization for disentanglement in com-
puter vision has been verified. Instance normalization 
in [26] works well to separate speaker and content rep-
resentations in one-shot voice conversion. We improve 
the content encoder in [26] with four convolutional 
blocks with one more block and a bottleneck linear 
layer. The instance normalization layer is used in the 
content encoder to normalize the global information 
and effectively extract the content representation. The 
content encoder takes the WLMR as input from which 
the content information is decoupled and used as a pre-
liminary extraction of the content embedding.

2.2.2 � CTC auxlilary network
CTC is a loss function of neural networks, which is often 
used to solve the problem of time series mapping with 
uncertain alignment between input features and output 
labels. More specifically, the CTC loss function is mod-
eled by an auxiliary network that enables the content 
encoder to learn content representation that contains 
only textual information. The CTC-aided network design 
aims to improve the decoupling ability of the content 

Fig. 2  The architecture of the WavLM model
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encoder from the content information by using stronger 
textual supervision.

Supposing the feature obtained from WavLM pre-
trained model can be denoted as x. Then x is fed into 
the content encoder to obtain z(x). Given an z(x) input 

sequence I = [i1, i2, ..., iT ] , where T is the length of the 
input sequence. The task of the CTC loss function is to 
maximize the probability distribution P(m|I) for the cor-
responding phoneme label sequence m of length. Here, 
the length we use is the CMU dictionary plus a blank 
label from CTC is 40. CTC represents P(m|I) as a sum-
mation of all possible frame-level intermediate represen-
tations ω = [ω1,ω2, ...,ωT ] . The CTC loss is defined as:

2.2.3 � GRL‑based speaker classifier
GRL-based speaker classifier is used to remove speaker 
information in the content representation. Inspired by 
[27], an adversarial prediction network [28] is designed 
to reduce the information overlap between the speaker 
embedding and the content embedding. The common 
classifier is to pass the loss layer by layer in the back prop-
agation, and then each layer of the network will calculate 
the gradient according to the returned error, and then 
update the parameters of the network layer to realize the 
classification task. What the GRL-based speaker classifi-
cation network does is to multiply the error passed to this 
layer by a negative number � , which makes the network 
before and after GRL have opposite training objectives to 
achieve an adversarial effect. By adding GRL loss to guide 
the content encoder, the embedding learned contains 
more speaker-independent information. The GRL-based 
speaker classifier loss is defined as follows:

where II(·) is the indicator function, K is the number 
of speakers and u denotes the speaker who produced 
speech x, pk is the probability of speaker k, θe denotes the 
parameters of the content encoder, and θS+G denotes the 
parameters of the GRL-based speaker classifier.

2.3 � Speaker encoder
The goal of the speaker encoder is to generate the same 
embedding for different utterances from the same 
speaker, but different embeddings for different speakers. 
Conventionally, one-hot embedding of speaker identity 
is used in many-to-many VC. To build zero-shot VC, 
the speaker encoder needs to produce an embedding 
that is generalizable to unseen speakers. In this work we 
use Global Style Tokens (GST) [29] which has also been 
widely used speech synthesis [30, 31], as the speaker 
encoder. GST has the ability to compress a variable-
length acoustic feature sequence into a fixed-dimensional 

(1)LCTC = Pmax(m|I) =

ω∈φ(m)

P(ω|I)

(2)

LGRL = Lgrl−cls(θe, θS+G) = −

K∑

k=1

II(u==k) log pk ,

Fig. 3  Block diagram of the content encoder
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speaker reference embedding and learn the speaker 
embedding without an explicit style label. As shown in 
Fig.  4, two steps are needed for GST to extract speaker 
reference embedding: 

(1)	 The reference encoder compresses the acoustic 
feature sequence by using continuously stacked 
Conv2d layers. It then takes the last state of a bidi-
rectional GRU (Bi-GRU) layer as the output of the 
reference encoder. The variable-length acoustic fea-
ture sequence is therefore transformed into a fixed-
length embedding, which is denoted as the refer-
ence embedding.

(2)	 The reference embedding is passed to a style token 
layer. In the style token layer, several equal-length 
style tokens (for example, A, B, C, D) are initial-
ized to simulate different components of speech 
(for example, emotion, rhythm, pitch, and speech 
rate). Then, a multi-head self-attention module 
is constructed, which learns a similarity measure 
between the reference embedding and each style 
token. The attention module outputs a set of com-
bination weights that represent the contribution of 
each style token to the reference embedding. The 
weighted sum of the style tokens is named as the 
reference embedding.

2.4 � Decoder
The decoder takes the outputs of all encoders as input 
and reconstructs the representation, and feeds the 
decoded representation into the reconstructed vocoder. 
In terms of implementation details, the network archi-
tecture used in the experiments is shown in Fig.  5. The 
decoder contains 3 Conv1d layers, a BLSTM layer, and a 
linear layer. Each Conv1d layer has a kernel size of 5, a 
channel number of 512 and a stride of 1. The number of 
units of the BLSTM layer is 512.

2.5 � Vocoder
The reconstructed feature in this work is WLMR, 
which has more comprehensive information than that 

in Mel-spectrogram and also is also consistent with the 
input of content encoder. In order to convert the recon-
structed WLMR to waveform speech, we trained a 
HiFi-GAN vocoder with WLMR as input and waveform 
speech as output here.

2.6 � Loss function
The total loss function has three parts: the first is used 
to calculate the loss between the input WLMR and the 
reconstructed WLMR, the second is used to calculate the 
loss of CTC, the third is GLR-based speaker classifica-
tion, which can be written as:

where x and x̂ stand for the input WLMR and the 
reconstructed WLMR respectively, LMSE is the mean-
square-error (MSE) between x and x̂ , α , and β are hyper-
parameters of LCTC and LGRL , respectively.

3 � Evaluation and analysis
In this section, the proposed method is evaluated and 
corresponding analysis is given. Next, the used database, 
experimental setup, evaluation and analysis will be intro-
duced one by one.

3.1 � Database
The VCTK [32] and the CMU ARCTIC [33] corpora 
were used to evaluate the proposed method. There are 
109 English speakers with different accents in the VCTK 
database and 43,398 utterances were obtained as the 
training set after pre-processing. Different from VCTK, 
CMU ARCTIC is a parallel English corpus. We per-
formed both intra-gender and inter-gender voice con-
version experiments and tested four transformations for 
each model :rms→slt(male to female), rms→bdl(male to 
male), clb→slt(female to female), and clb→bdl(female 
to male). All four sets of speakers were invisible dur-
ing training, and 40 sentences were randomly selected 
for each speaker in the test set. Twenty volunteers were 
recruited for each subjective assessment test. For a 

(3)LVC = LMSE(x, x̂)+ αLCTC + βLGRL,

Fig. 4  Block diagram of speaker encoder. The input features are fed to the reference encoder followed by a style token layer to get the reference 
embedding
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random sample from the CMU dataset, participants were 
asked to rate the naturalness of speech on a scale from 1 
to 5. Higher scores represent higher speech naturalness.

The male speaker “bdl” and the female speaker “slt” were 
selected as the target speakers. The male speaker “rms” and 
the female speaker “clb” were selected as the source speak-
ers. In addition, both VCTK and CMU ARCTIC were used 
for training and test. In addition, we selected a portion of 
the CMU Arctic corpus to evaluate our approach, includ-
ing 40 utterances per speaker. Firstly, the waveform data is 
selected from the corpus and converted to 16 kHz. Then, a 
WavLM Large pre-trained model extracts a 1024-dimen-
sional representation and sends it to the content encoder, 
while an 80 dimensional Mel-spectrogram is extracted and 
sent to the speaker encoder.

3.2 � Experimental setup
3.2.1 � Model configurations
  

(1)	  Speaker and content encoder: Our architecture uses 
the same speaker encoder as [29], which ultimately 
produces 256-dimensional speaker embeddings. 
The content representation is generated by 4 con-

volution blocks and a bottleneck linear layer. Each 
convolution block contains 3 Conv1d layers with 
skip connection, and each Conv1d layer combines 
with the instance normalization and the ReLU acti-
vation function. The kernel size, channel, and stride 
of the Conv1d layer are set to 5, 256, and 1, respec-
tively. The resulting 1,024-dimensional represen-
tation is fed to the decoder. It’s worth noting that 
the CTC auxiliary network and adversarial learning 
networks are only used during the training phase. 
The CTC auxiliary network is shown in Fig.  6, 
which contains 3 Conv1d layers, a BLSTM layer, 
and a linear layer. Each Conv1d layer is combined 
with batch normalization and a ReLU activation 

Fig. 5  Block diagram of the decoder

Fig. 6  Block diagram of the CTC model
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layer. The number of BLSTM layer and linear layer 
units are set to 128 and 40, respectively. The 40 out-
puts of the linear layer correspond to the 39 English 
phonemes and an extra blank phoneme. Adversarial 
classifier is shown in Fig. 7, which consists of 2 acti-
vation functions, 2 linear layers for normalization, 
and a common speaker classifier. In the backword, 
gradient inversion is used.

(2)	  WLMR: In the experiments, we choose the WavLM 
Large models pre-trained for 1M and 700k steps on 
94k large-scale diverse data using the labels gener-
ated by clustering the 9th transformer layer output 
of the released 2nd-iteration HuBERT Base model 
to get the 1024-dimensional bottleneck features.

(3)	  Decoder: The decoder is used to reconstruct the 
WLMR, which is composed of 3 Conv1d layers, a 
BLSTM layer, and a linear layer. Each Conv1d layer 
has a kernel size of 5, a channel number of 512, and 
a stride of 1. The number of units of the BLSTM 
layer is 512. The final linear layer maps the output 
of the BLSTM layer to reconstructed features.

(4)	  Retrained HiFi-GAN: In recent years, GAN-based 
vocoders have been more and more applied to 
speech synthesis, such as MelGAN, which can 
achieve CPU real-time synthesis. However, Mel-
GAN still needs to be improved in sound quality 
and synthesis speed. Compared with the traditional 
GAN-based MelGAN vocoder, HiFi-GAN adds a 
Multi-Period Discriminator (MPD) on the basis 

of retaining the MelGAN multi-scale discrimina-
tor Multi-Scale Discriminator (MSD) and applies a 
multi-receptive field fusion module in the genera-
tor. Speech quality and reasoning speed are further 
improved. The advantage of the HiFi-GAN vocoder 
is that it can compress the audio signal while main-
taining a high-quality audio output, which is use-
ful for applications that require high-fidelity audio 
signals. In our experiments, we retrained the HiFi-
GAN vocoder with the aim of allowing the repre-
sentation extracted by the pre-trained model com-
bined with the speaker features to better form the 
audio. This makes the vocoder change from Mel-
spectrogram to audio synthesis in the traditional 
sense to adoption point to audio synthesis. We 
trained a multi-speaker HiFi-GAN neural vocoder 
using the features extracted by the WavLM Large 
pre-trained model on the VCTK corpus. The gener-
ated essential features are converted into waveform. 
The segment size of HiFi-GAN is set to 8192 and 
the sampling rate is 16k.

To fit our corpus, we change the upsampling rate and 
kernel size of the first layer in the generator network to 
10 and 20, respectively, in order to adapt to the feature 
length extracted by WavLM can be upsampled to the 
length of wav. Other model configuration methods are 
the same as [18].

ADAM optimizer with a learning rate of 0.0003 is used 
to train the model, batch size was set to 16. In the process 
of model training, the loss weight of LCTC in Equation (3) 
increases linearly with the increase of training steps, and 
it will remain fixed after arrival, with a maximum value of 
0.001 within 50k steps. The loss weight α of LGRL is set to 
1 and the number of training steps is set to 300K.

3.2.2 � Training details
The following are the three baselines that are to be used 
for comparisons: 

(1)	 VQ-VAE baseline: We learn from the model in 
paper [8]. The system is based on a non-parallel 
corpus, the acoustic feature is the Mel-spectrum 
feature, and the model structure includes four parts: 
content encoder, embedding dictionary, decoder, 
and GST timbre encoder. We train the VQ-VAE 
baseline model with a learning rate of 0.0003 using 
an ADAM optimizer. The Mini-batch size is set to 
8. The number of VQ embeddings is set to 40 and 
the number of training steps is set to 300K.

(2)	 CTC-VQ-VAE baseline: We reproduce the model of 
[34], which consists of a content encoder with CTC Fig. 7  Block diagram of GRL-based speaker classifier
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auxiliary loss, a vector quantizer, a speaker encoder, 
and a decoder. The weight of CTC loss increases 
linearly during model training, the maximum value 
within 50k steps is 0.001.

(3)	 FragmentVC:The SOTA approach FragmentVC 
[13] is considered as a baseline here. FragmentVC 
is proposed to obtain the latent phonetic struc-
ture of the source speaker’s speech using the pre-
trained model and the timbre features of the target 
speaker using log Mel-spectrograms. The alignment 
of two different feature Spaces is realized by add-
ing an attention mechanism. We use the WavLM 
pre-trained model instead of the wav2vec2.0  [35] 
model, and the remaining configurations are con-
sistent with [13].

When analyzing the results of the voice conversion sys-
tem, the evaluation criteria are divided into two types: 
objective evaluation and subjective evaluation. Objective 
evaluation refers to the application of some measure-
ment methods according to the results of the experiment, 
while subjective evaluation refers to the evaluation of the 
naturalness and similarity of the speech according to the 
subjective consciousness of the evaluator.

3.3 � Subjective evaluation
To evaluate the overall speech synthesis quality we col-
lect Mean Opinion Score (MOS) for all the neural models 
outputs as well as ground truth recordings. Speech qual-
ity includes naturalness and similarity. We performed 
both intra-gender and inter-gender voice conversion 
experiments, and for each model we tested four transi-
tions: rms→slt(male to female), rms→bdl(male to male), 
clb→slt(female to female), and clb→bdl(female to male). 
All four groups of speakers were invisible during train-
ing, and 40 utterances were randomly selected for each 
speaker in the test set. We recruited 20 volunteers for 
each subjective evaluation test. For a random sample 
from CMU dataset, participants were asked to rate the 
naturalness of the speech on a 5 point scale from 1 to 5.

The MOS results with 95% confidence intervals of 
speech naturalness and speaker similarity are shown in 
Tables 1 and 2, respectively. The above two tables count 
the subjective evaluation results of speech naturalness 
and similarity of four models: VQ-VAE, CTC-VQ-VAE, 
FragmentVC, and W2VC in three aspects: intra-gen-
der, inter-gender, and average. The proposed method, 
W2VC, significantly outperforms the other methods 
on both intra-gender and inter-gender voice conversion 
and achieves very good scores, with an average natural-
ness score (4.45 ± 0.1970) and an average speaker simi-
larity score (3.62 ± 0.2153). CTC-VQ-VAE is superior to 
the VQ-VAE model in speech naturalness and speaker 

similarity, and the CTC text supervision information 
added by CTC-VQ-VAE is beneficial to content mod-
eling. In addition, compared with the other three models, 
the poor performance of FragmentVC in speech natu-
ralness may be caused by the fact that the model uses a 
retrained HiFi-GAN vocoder, and the features obtained 
by the decoder do not match the input features of the 
vocoder.

3.4 � Objective evaluation
Mel cepstral distortion (MCD) is used to evaluate the 
naturalness for objective evaluation, wherein, lower 
MCD indicates better naturalness. In each set of VC 
systems, we used four pairs of transformations (clb-slt, 
clb-bdl, rms-slt, rms-bdl) and generated 40 utterances 
for each pair of transformations, totaling 160 utterances. 
We validate the results of MCD with 160 utterances pro-
duced by each VC system.

The objective evaluation results are shown in Table 3. 
From the results in the table, it can be seen that the 
MCD value of W2VC is lower than that of VQ-VAE and 
CTC-VQ-VAE. In other words, the performance of using 
CTC-assisted network and GRL-based speaker classi-
fication network is better than that of using CTC alone 
and introducing embedding dictionary or only intro-
ducing embedding dictionary. Because adding these two 
auxiliary networks enables the content encoder to learn 
more content information. This table also shows that the 
mapping between content and audio using the attention 
mechanism is the worst.

Table 1  The MOS results with 95% confidence intervals show 
the impact of VQ-VAE, CTC-VQ-VAE, FragmentVC, and the 
proposed method on speech naturalness

Method Intra-gender Inter-gender Average

VQ-VAE 2.08 ± 0.1912 2.18 ± 0.2297 2.13 ± 0.2817

CTC-VQ-VAE 3.36 ± 0.1546 3.22 ± 0.1754 3.29 ± 0.1465

FragmentVC 1.54 ± 0.1497 1.54 ± 0.2216 1.54 ± 0.2437

W2VC 4.42 ± 0.1737 4.48 ± 0.1632 4.45 ± 0.1970

Table 2  The MOS results with 95% confidence intervals showing 
the impact of VQ-VAE, CTC-VQ-VAE, FragmentVC, and the 
proposed method on speech similarity

Method Intra-gender Inter-gender Average

VQ-VAE 1.97 ± 0.2736 1.91 ± 0.2576 1.94 ± 0.2113

CTC-VQ-VAE 3.22 ± 0.2897 3.23 ± 0.2812 3.22 ± 0.2476

FragmentVC 2.34 ± 0.3666 2.42 ± 0.3878 2.38 ± 0.2635

W2VC 3.46 ± 0.2571 3.78 ± 0.2859 3.62 ± 0.2153
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3.5 � Comparison with MelGAN vocoder
As mentioned above, WLMR-based HiFi-GAN vocoder 
is used to convert the synthesized WLMR to waveform 
in W2VC. Here we compare the performace between tra-
ditional vocoder such as MelGAN and the WLMR-based 
HiFi-GAN vocoder. To this end, we show in Table 4 the 
comparison of naturalness, similarity and MCD between 
speech formed using WLMR-based HiFi-GAN and the 
MelGAN vocoder. Note that, in order to use MelGAN 
vocoder, the synthesised feature by using the decoder is 
Mel-spectrogram rather than WLMR.

As shown in Table  4, the synthesized speech by the 
HiFi-GAN vocoder is much more better than that gener-
ated by MelGAN in naturalness and similarity. The same 
conclusion also can be found from the objective evalua-
tion. We attribute this because some information is more 
or less lost in the process of Mel-spectrogram generation 
because the input feature is WLMR.

3.6 � Speaker classification
To verify that the speaker encoder can effectively extract 
speaker information, we conducted speaker classifica-
tion experiments on the speaker embeddings extracted 
by the speaker encoder. The speaker embedding is gen-
erated from the selected sentence, which represents the 
information about the speaker extracted from the sen-
tence. The ability of a speaker classifier to classify speaker 
embeddings was used as a measure of speaker modeling 
ability. The desired result is that different utterances from 
the same speaker can be clustered together, and different 
speakers can be separated from each other. Better clus-
tering indicates better results of speaker classification 

experiments, thus proving that the speaker encoder can 
effectively extract speaker information. The speaker clas-
sifier consists of three Conv1d layers, a BLSTM layer, 
and a linear layer. Each convolutional layer is paired with 
batch normalization and Relu activation functions, and 
the number of BLSTM nodes is 128. The activation func-
tion of the linear layer is softmax and the loss function is 
cross-entropy.

Figure  8 shows the vector comparison of CTC-VQ-
VAE and the proposed W2VC with t-SNE in 2D space, 
where (a) and (b) denote CTC-VQ-VAE and W2VC, 
respectively. The same color represents the same speaker. 
For the speaker classification experiment, we selected 
five female (p225, p228, p229, p230, p231) and five male 
(p226, p227, p232, p237, p241) speakers from the VCTK 
corpus, each with 10 utterances for classification. The 
selected utterance is passed through the GST timbre 
encoder to generate its timbre vector. As can be seen 
from Figure (a) and Figure (b), the 10 utterances of the 
same speaker are well clustered and can be clearly sepa-
rated between different speakers, which indicates that the 
speaker encoders of both systems have learned mean-
ingful speaker embeddings and the utterances of differ-
ent speakers are well distinguished from each other. It 
indicates that the embedding extracted by GST is able to 
serve as speaker identity. In addition, compared to Figure 
(a), the sentences of the same speaker are more closely 
distributed in Figure (b). Therefore, compared with CTC-
VQ-VAE, W2VC has better clustering performance in 
terms of different speaker identities.

3.7 � Visual analysis
We carried out a visual analysis of the W2VC model 
before and after conversion. The ground truth and the 
converted speech utterance obtained by W2VC were 
visualized in the Mel-spectrogram. Figure 9 shows a Mel-
spectrogram comparison of the W2VC model for same-
gender and cross-gender conversions. We use the source 
speaker “rms” for providing converted speech. Figure 9a 
demonstrates the Mel-spectrogram of the ground truth 
(arctic_a0002.wav) of the source speaker “rms”. Figure 9b 
illustrates the results of cross-gender male-to-female 
conversion (“rms”-“slt”). Figure 9c shows the result of the 
same-gender male-to-male conversion (“rms”-“bdl”).

Table 3  Objective evaluation results comparison among 
VQ-VAE, CTC-VQ-VAE, FragmentVC, and the proposed method in 
terms of MCD

Method MCD(dB)

VQ-VAE 9.716

CTC-VQ-VAE 8.988

FragmentVC 10.204

W2VC 8.901

Table 4  The MOS results with 95% confidence intervals in naturalness, similarity and MCD of the generated speech using WLMR-
based HiFi-GAN and that using the MelGAN vocoder

Vocoder Nat. Sim. MCD

Intra Inter Avg Intra Inter Avg

MelGAN 2.27 ± 0.2364 1.98 ± 0.3334 2.13 ± 0.2692 2.45 ± 0.3133 1.83 ± 0.4296 2.14 ± 0.2589 9.508

HiFi-GAN 4.42 ± 0.1737 4.48 ± 0.1632 4.45 ± 0.1970 3.46 ± 0.2571 3.78 ± 0.2859 3.62 ± 0.2153 8.901
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As can be seen in Fig. 9, the Mel-spectrogram outline of 
the converted speech using W2VC is consistent with that 
of the ground truth, which indicates that the converted 
speech content is preserved. Comparing Fig.  9b and c 
with a, respectively, the brighter points in the figure rep-
resent higher decibels. The comparison between (b) and 
(a) at the same frequency shows that the identity infor-
mation such as timbre and pitch converted to the “slt” of 
the target speaker is also guaranteed. By comparing (a) 

with (c), we can see that the brightness and pitch of male-
to-male (“rms”-“bdl”) are basically the same, indicating 
better performance in male-to-male conversion.

3.8 � Ablation study
We perform ablation studies on the GRL-based speaker 
classifier network and the CTC-assisted network 
based on W2VC. We conducted a subjective evalua-
tion of MOS scores including naturalness and speaker 

Fig. 8  Visualization of speaker embedding comparison between CTC-VQ-VAE (a) and W2VC (b)
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similarity scores and an objective evaluation of MCD 
scores. Table  5 shows the influence of different mod-
ules on the MOS values of speech naturalness and 
speaker similarity of the network at 95% confidence 
intervals. As shown in Table  5, the models from both 
auxiliary networks outperform the models using only 
CTC or GRL-based speaker classification networks in 
terms of naturalness and similarity of intra-gender and 
inter-gender conversions. They are superior to a model 
where neither auxiliary network is used. Therefore, the 
presence of the auxiliary networks improves the perfor-
mance of the models.

Table  6 explores the objective impact of the CTC-
assisted network and the GRL-based speaker classi-
fier network on W2VC. We used the MCD score for 
objective evaluation. As can be seen from Table 6, the 
proposed model with both auxiliary networks has the 
smallest MCD value and is better than the model using 
only CTC or GRL-based speaker classification net-
work. Models that use neither CTC nor GRL perform 
the worst. The above two sets of experiments demon-
strate the effectiveness of the two auxiliary content 
encoders proposed by W2VC in learning a purer con-
tent representation. Someone may argue the model’s 
vulnerability to different types of target reference, e.g., 
speech with a high level of expressivity, or speech with 
noisy conditions. We think the current model might to 
some extent vary with these conditions. Generally, we 
may need to resort to additional model or method to 
extract diverse fine-grained information of the target 
speech, which could be further fully investigated in the 
future work.

3.9 � Speech recognition results
We objectively measure the effect of CTC-assisted net-
work module on text supervision. Speech intelligibility 
was measured using word error rate (WER) and char-
acter error rate (CER) to observe the regression with 
respect to the source audio, and the results are shown in 
Table 7.

As can be seen in Table  7, W2VC shows the highest 
recognition accuracy, CTC-VQ-VAE performs worse 
than W2VC, and FragmentVC achieves the worst. The 
experimental results show that CTC can be used as an 
auxiliary network to accelerate the convergence of the 

Fig. 9  a Mel-spectrogram of ground truth (arctic_a0002 
of the source speaker “rms” in the CMU corpus). b W2VC cross-gender 
conversion, Mel-spectrogram of the target speaker “slt”. c W2VC 
same-gender conversion, Mel-spectrogram of the target speaker “bdl”
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model. Moreover, the additional text supervision can 
jointly optimize the content encoder to learn pure con-
tent representation and improve the sound quality of the 
converted speech.

4 � Conclusions
In this paper, we propose W2VC, a one-shot VC method 
based on WLMR. The traditional Mel-spectrum is used 
as the input content feature, and the synthesized speech 
quality is not high. We use WLMR and the reconstructed 
representation as the embedding of content information. 
Compared with the baseline, using WLMR reduces the 
loss of content information in the embedding vector and 
improves the speech quality. To address the impact of the 
content vector, we employ a supervised model based on 
connection timing classification and a speaker classifier 
based on gradient inversion layer to remove the adulterated 
speaker information from the content representation. From 
the subjective and objective tests of the experiment, these 
two auxiliary network modules, the purification of the con-
tent vector is complementary in performance. To address 

the impact of inconsistent input features of the vocoder 
on speech quality, we adopt the WLMR-based HiFi-GAN 
vocoder. From the subjective and objective evaluation of the 
vocoder experiments, it can be seen that using the retrained 
vocoder can synthesize well speech from the reconstructed 
WLMR, greatly improving the speech quality.
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