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Multiple-input multiple-output (MIMO) systems have shown a huge potential for increased spectral efficiency and throughput.
With an increasing number of transmitting antennas comes the burden of providing training for channel estimation for coherent
detection. In some special cases optimal, in the sense of mean-squared error (MSE), training sequences have been designed. How-
ever, in many practical systems it is not feasible to analytically find optimal solutions and numerical techniques must be used. In
this paper, two systems (unique word (UW) single carrier and OFDM with nulled subcarriers) are considered and a method of
designing near-optimal training sequences using nonlinear optimization techniques is proposed. In particular, interior-point (IP)
algorithms such as the barrier method are discussed. Although the two systems seem unrelated, the cost function, which is theMSE
of the channel estimate, is shown to be effectively the same for each scenario. Also, additional constraints, such as peak-to-average
power ratio (PAPR), are considered and shown to be easily included in the optimization process. Numerical examples illustrate
the effectiveness of the designed training sequences, both in terms of MSE and bit-error rate (BER).
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1. INTRODUCTION

Future wireless systems can offer substantially higher data
rates than current systems by using new, sophisticated
technologies. One of the most promising technologies is
multiple-input multiple-output (MIMO) transmission [1,
2], where spatial multiplexing [3, 4], or more advanced
space-time codes [5–7], can increase the spectral efficiency
by using the spatial domain. One drawback with MIMO sys-
tems is that channel estimation becomes more important.
Not only are MIMO decoders more sensitive to channel es-
timation errors than their single-antenna counterparts, the
overhead in terms of required training sequences is also in-
creased. Thus, it is important to make training as efficient as
possible.

For a MIMO system withM transmit antennas, the sim-
plest form of training sequence is to transmit from only one
antenna at a time. This method, however, requires M slots,
which in some cases can be a large overhead. One technique
that has been applied in MIMO orthogonal frequency di-
vision multiplexing (OFDM) systems (see, e.g., [8] for an
overview of OFDM) to reduce this overhead is to exploit the
channel dimensions. Since OFDM systems design the data
in the frequency domain, channel estimates are required for

all K subcarriers. However, the time-domain channel im-
pulse response (CIR) is often assumed to be shorter than
the length-Q cyclic prefix (CP), where typically Q � K .
Hence, the frequency-domain channel lies in a subspace,
which makes it possible to transmit training sequences si-
multaneously from several antennas (in fact, K/Q) [9–12].
Similar techniques have been shown to work for single-
carrier MIMO systems [13].

In general, it is not enough to simply transmit training
sequences simultaneously from several antennas in a MIMO
system. Indeed, the quality of the channel estimate is, in
many cases, just as important as obtaining an estimate effi-
ciently. Designing training sequences such that they facilitate
high-quality MIMO channel estimation is a topic that has
seen much research for OFDM and single-carrier systems
alike (see, e.g., [10, 12–16]). Sequences that minimize (or
maximize) some cost function associated with the quality of
the channel estimate are said to be optimal. In many ideal
scenarios, training sequences possessing optimal properties
for MIMO channel estimation can be designed analytically.
A typical metric that is used to measure the quality of a chan-
nel estimate, and thus the optimality of training sequences, is
the mean-squared error (MSE) of the channel estimate. Se-
quences that minimize theMSE of aMIMO channel estimate
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have been designed analytically for OFDM systems [10, 12]
as well as single-carrier systems with a CP extension [13].

In addition to providing optimal channel estimation, it is
often desirable forMIMO training sequences to possess other
benefits that facilitate implementation of the sequences. One
such benefit that is commonly required of training sequences
is that they have a low peak-to-average power ratio (PAPR).
An example of optimal MIMO training sequences that have
good PAPR properties can be found in [13].

One practical point that many researchers have over-
looked while designing training sequences forMIMOOFDM
is the fact that many OFDM systems require some sub-
carriers to be nulled. Nulled subcarriers are typically used
for spectral shaping to ensure that the OFDM signal fits
within a given spectral mask. Similarly, some single-carrier
systems utilize a unique word (UW) (a.k.a. known sym-
bol padding (KSP)) to estimate the channel [17, 18]. These
known sequences can be viewed as training sequences with
nulled symbols that are superimposed onto data sequences
prior to transmission. When a portion of a training se-
quence comprises nulled symbols, as in the two previous
examples, the quality of the channel estimate often suf-
fers. For the example of MIMO OFDM, it was pointed
out in [19] that training sequence designs that are opti-
mal when all subcarriers are used no longer achieve the
lower bound on MSE when nulled subcarriers are em-
ployed.

Unfortunately, once constraints such as nulled symbols
are introduced, the problem of optimal training sequence de-
sign often becomes analytically unsolvable. In many of these
cases, one may turn to numerical methods to find optimal
training sequences, such as those proposed in [20, 21]. If,
however, additional constraints are added to the training se-
quences, such as constraints on the PAPR of the sequences,
more sophisticated nonlinear optimization techniques must
be applied. Interior-point (IP) methods, for example, allow
both equality and inequality constraints to be added to con-
ventional optimization problems, which can then be solved
in an efficient manner [22]. These methods have been ap-
plied to solve optimization problems in several areas, in-
cluding power systems, network optimization, and MIMO
transceiver design [22–25].

In this paper, IPmethods are used to designMIMO train-
ing sequences under difficult constraints, such as nulled sym-
bols and an upper limit on PAPR. Two specific scenarios
are considered in order to demonstrate the efficacy of IP
methods in the context of sequence design: MIMO OFDM
with nulled subcarriers and single-carrier MIMO with a UW
extension. In both of these scenarios, a least-squares (LS)
MIMO channel estimator is considered, and it will be shown
that sequences with near-optimal properties (in the MSE
sense) can be found. It should be noted that the techniques
proposed in this paper can be adapted for use with other es-
timators, such as the minimum mean-square error (MMSE)
estimator; however, these estimators typically require addi-
tional knowledge about the MIMO channel, such as the co-
variance and power delay profile. The LS estimator is consid-
ered in this paper for its simplicity.

In Section 2, the two aforementioned scenarios are de-
scribed, and the LS channel estimator is detailed for each
system. The proposed approach for designing optimal se-
quences for the two example scenarios is discussed in
Section 3. In Section 4, results are given in the form of MSE
and error-rate curves for systems that employ training se-
quences obtained through the application of IP methods. Fi-
nally, conclusions are drawn in Section 5.

2. LEAST-SQUARES CHANNEL ESTIMATION
INMIMO SYSTEMS

Channel estimation in MIMO systems has received much at-
tention in recent years (see, e.g., [10–12, 14–16]). A popu-
lar method of performing MIMO channel estimation is the
LS method. LS channel estimation, which can be shown to
be equivalent to maximum likelihood (ML) channel esti-
mation when the noise in the system is white and Gaus-
sian distributed [19], is simple to derive and implement, and
can be generalized to many MIMO scenarios. In this sec-
tion, the LS channel estimator is derived both for single-
carrier MIMO systems using a UW extension and for MIMO
OFDM systems with nulled subcarriers. Furthermore, an
expression for the MSE of the LS estimator will be de-
tailed for each example system. These expressions can be
used with nonlinear optimization techniques, such as IP
methods, to find optimal training sequences in the MSE
sense.

2.1. MIMOuniqueword

The concept of using the UW in single-carrier block trans-
missions as an alternative to the well-known CP extension
was presented in [26]. A UW is simply a short sequence of
symbols that is appended to each data block in a single-
carrier block transmission system. The UW remains constant
from block to block, thus giving the illusion that the trans-
mission is periodic in a similar manner to a CP extension,
but without the need for postprocessing at the receiver. Using
this block transmission structure facilitates the use of low-
complexity frequency-domain equalization techniques at the
receiver.

The constant nature of the UW is its key advantage, and
several uses for the UW extension that utilize this prop-
erty have been proposed, including synchronization, phase
tracking, and channel estimation and tracking [17, 18, 27–
31]. The typical MIMO system with a UW extension can
be described as follows. Let the ith length-K block of sym-
bols at the mth transmit antenna be denoted by xm(i). This
vector can be partitioned into a length-P vector sm(i) of
data symbols and a length-Q vector representing the UW,
which is the same from block to block. An illustration of this
block structure is depicted in Figure 1. In order to mitigate
inter-block interference (IBI), it is assumed that Q ≥ L − 1
where L is the length of the CIR. This condition also in-
duces circularity in the system when the channel remains
static for at least one block duration, which allows the ith
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UW sm(i) UW sm(i + 1) UW · · ·

Q K K

Figure 1: Example of UW block structure for single-carrier sys-
tems.

length-K block of symbols received at antenna n to be ex-
pressed by

yn(i) =
M∑

m=1
Gn,m(i)xm(i) + vn(i), (1)

where M is the total number of transmit antennas, Gn,m(i)
is a K × K circulant matrix representing the channel be-
tween themth transmit antenna and the nth receive antenna
at time i, and vn(i) is a length-K vector of uncorrelated, zero-
mean, complex Gaussian noise samples, each with a variance
of σ2v /2 per dimension. The first column of Gn,m(i) is given
by (gn,m(i, 0), . . . , gn,m(i,L− 1), 0, . . . , 0)T , where gn,m(i, �) de-
notes the CIR coefficient for the (n,m)th channel at time
i.

The circulant nature of the channel matrix facilitates
frequency-domain processing of the received signal since di-
agonalization of the channel matrix is performed by pre-
and postmultiplying the channel matrix by the K × K nor-
malized discrete Fourier transform (DFT) and inverse DFT
(IDFT) matrices, respectively. In other words, the matrix
Hn,m(i) = FGn,m(i)FH is a diagonal matrix where hn,m(i, k) =∑L−1

�=0 gn,m(i, �) exp(− j2πk�/K) is the kth element of the di-
agonal and the (i, k)th element of the DFT matrix F is Fi,k =
1/
√
K exp(− j2πik/K). A block diagram of a MIMOUW sys-

tem that performs frequency-domain equalization on the re-
ceived message is illustrated in Figure 2. Taking the DFT of
the received vector yn(i) gives

ỹn(i) =
M∑

m=1
Hn,m(i)Fxm(i) + ṽn(i)

=
M∑

m=1
Hn,m(i)

(
FPsm(i) + F′Qum

)
+ ṽn(i),

(2)

where ṽn(i) = Fvn(i), um is the UW for the mth transmit
antenna, FP denotes the first P columns of F, and F′Q denotes
the lastQ columns of F. Assuming the channel remains static
over, for example, B block durations and the transmitted data
has a mean of zero, the data portion of the received message
can be somewhat removed by averaging the corresponding B
received vectors. This averaging can be expressed by

yn =
1
B

B∑

i=1
ỹn(i) =

M∑

m=1
Hn,mF′Qum + ν̃n, (3)

where Hn,m(i) ≡ Hn,m due to the static channel assumption
and

ν̃n = 1
B

B∑

i=1

M∑

m=1
Hn,mFPsm(i) +

1
B

B∑

i=1
ν̃n(i). (4)

Note that since the data and noise are zero-mean and uncor-
related,

lim
B→∞

ν̃n = E
{
ν̃n
} = 0K , (5)

where 0K denotes the length-K column vector of zeros. Fur-
thermore, the covariance matrix of ν̃n is assumed to be given
by1

E
{
ν̃nν̃

H
n

} = σ̃2IK , (6)

where σ̃2 is the variance of each element of ν̃n.
The stochastic model presented in (3) can be used to per-

form channel estimation in MIMO systems that use a UW
extension [29]. Following the method of [10], (3) can be
rewritten as

yn =
M∑

m=1

√
KŨmFLgn,m + ν̃n = Agn + ν̃n, (7)

where Ũm := diag{F′Qum}, gn,m is a length-L vector com-
posed of the CIR coefficients for the (n,m)th channel, A :=√
K(Ũ1FL, . . . , ŨMFL), and gn := (gTn,1, . . . , g

T
n,M)

T . It is as-
sumed that K ≥ ML; thus, the matrix A is tall and has full
column rank. Under this necessary condition, it follows that
the LS channel estimate is given by

ĝn =
(
AHA

)−1
AHyn. (8)

From this expression, it is obvious that the channels can be
estimated for each receive antenna separately; consequently,
the index n is omitted from subsequent derivations and dis-
cussion. It should be noted that other channel estimators ex-
ist that outperform this first-order channel estimator; how-
ever, the emphasis here is on simplicity and the ability to de-
sign optimal (or nearly optimal) UWs for this practical esti-
mator.

Typically, single-carrier systems employing a UW exten-
sion exploit the frequency domain to perform channel equal-
ization [27, 28]. Thus, the frequency domain estimate of the
channel is generally of more interest than the estimate of the
CIR given above. This estimate is given by

ĥ = (IM ⊗ FL
)
ĝ, (9)

where⊗ denotes the Kronecker product operation. The MSE
of this LS channel estimate is given by [10, 19]

MSE = E
{‖ĥ− h‖2}

= σ̃2Tr
{(
IM ⊗ FL

)(
AHA

)−1(
IM ⊗ FL

)H}
,

(10)

where Tr{·} denotes the trace operation.
In the limiting case where only one transmit antenna is

used, it can be shown that the MSE term is minimized when

1 Although the noise ν̃n is not strictly white due to the data term, this as-
sumption facilitates the formulation of the LS channel estimator as shown
below.
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Figure 2: Block diagram of a MIMO UW system that performs channel equalization in the frequency domain.
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Figure 3: Block diagram of a MIMO OFDM system.

the partial DFT of the UW, given by F′Qu1, is constant mod-
ulus [32]. This result is intuitively satisfying since it implies
that the channel frequency response coefficient for each fre-
quency tone is given equal importance by the channel esti-
mator. This observation extends to the MIMO case where
the MSE of the channel estimate is minimized when A is
a unitary matrix, which qualitatively implies that the DFT
of each UW should have a constant modulus, but all UWs
should be phase-shift orthogonal to each other [10]. When
these conditions are satisfied, the channel between a given
transmitter and the receiver is estimated optimally, as in the
single-antenna case, and the signals from each transmit an-
tenna are separable at the receiver, thus facilitating MIMO
channel estimation. Unfortunately, UWs that have the prop-
erties described above do not exist in general [33]; however,
nonlinear optimization techniques can be employed to find
sequences that come arbitrarily close to providing optimal
MIMO channel estimation in the MSE sense. These tech-
niques will be discussed in Section 3.

One final note concerning the applicability of the UW
in general MIMO systems should be made. By observing (1)
and regarding the transmitted signal vector xm(i) as compris-
ing only the UW for the mth transmit antenna, that is, the
data is perfectly removed—it is obvious that the mth signal
vectorGn,m(i)xm has onlyQ+L−1 nonzero entries since this
is just the convolution between the (n,m)th CIR and the UW.
Since there areML unknown CIR coefficients, this results in
the necessary (but not sufficient) condition for channel iden-
tifiability Q + L− 1 ≥ML, which is perhaps better expressed
as

M ≤ Q − 1
L

+ 1. (11)

In practical systems, the UW must be at least as long as the
memory order of the CIR (i.e., Q ≥ L − 1) in order to in-
duce circularity in the channel and facilitate low-complexity
frequency-domain equalization at the receiver. Furthermore,
the UW should be designed such that it can support channel

estimation for a given (maximum) delay spread while occu-
pying a minimal amount of overhead.2 Consequently, it fol-
lows that the UW should be chosen to be on the order of the
discrete channel length L. By choosing Q = L− 1, it is appar-
ent from (11) that only one transmit antenna can be sup-
ported while maintaining channel identifiability. However,
by increasing the UW overhead to Q = L + 1, two trans-
mit antennas can be supported. When L� 2, this additional
overhead is very small. Note that in order to maintain chan-
nel identifiability for M > 2 transmit antennas, Q must be
increased by L samples per additional antenna, which leads
to a large overhead.

2.2. MIMOOFDMwith nulled subcarriers

In this section, a MIMOOFDM system with a preamble con-
sisting of a number of OFDM symbols used for training is
considered, and some subcarriers in this system are nulled.
This problem was first considered in [19] where it was shown
that conventional MIMO OFDM training schemes are not
necessarily optimal when subcarriers are nulled, which is al-
ways the case in practice. In [34], a method of construct-
ing optimal preambles for OFDM systems with nulled sub-
carriers was presented; however, it was also shown that this
method is only viable when S ≥ M(2L − 1) where S is
the number of active subcarriers in the preamble. It will be
shown below that the method proposed in this paper relaxes
this bound to S ≥ML.

A block diagram of a MIMO OFDM system is illustrated
in Figure 3.Much of the notation that was used in Section 2.1
to describe a MIMO UW system will be employed here, and
it will soon become apparent that MIMO UW and MIMO
OFDM systems can be described mathematically by using

2 This approach is in contrast to the method discussed in [31] where the
UW is designed specifically for channel estimation, in which case the
amount of overhead that is required is not considered an important is-
sue.
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very similar approaches. Throughout this discussion, it is
assumed that the channel is constant for the duration of a
packet, but varies from packet to packet. The CP in each
OFDM symbol converts the linear convolution of the chan-
nel into cyclic convolution; hence, the input-output relation-
ship of the system can be described in a similar manner to the
MIMO UW case, where the post-DFT block of symbols for
the S active subcarriers in the system at the nth receive an-
tenna is given by

ỹn =
M∑

m=1
Hn,mx̃m + ṽn, (12)

where Hn,m is the S × S diagonal matrix of the frequency re-
sponse coefficients for the active subcarriers in the (n,m)th
channel, x̃m is the length-S active data (or training) signal at
themth transmit antenna specified in the frequency domain,
and ṽn is a vector of zero-mean, white Gaussian noise sam-
ples with variance σ2v /2 per dimension. This system expres-
sion can be rewritten as

ỹn =
M∑

m=1

√
KX̃mWgn,m + ṽn = Bgn + ṽn, (13)

where W ∈ CS×L is a partial DFT matrix choosing the S ac-
tive subcarriers and the L time domain channel taps, B :=√
K(X̃1W, . . . , X̃MW), and X̃m := diag{x̃m}. It is assumed

that S ≥ ML; thus, the matrix B is tall and has full column
rank. Note that this condition is similar to the condition for
channel identifiability stated for the UW case in Section 2.1.
It follows that the LS channel estimate is given by

ĝn =
(
BHB

)−1
BH ỹn. (14)

As in the previous section, it is obvious that the channel es-
timate is independent of the receive antenna; consequently,
the index n can be omitted.

As with MIMO UW systems, OFDM systems exploit the
frequency domain to perform channel equalization. Conse-
quently, the frequency domain estimate of the channel is of
more interest than the estimate of the CIR. This estimate is
given by

ĥ = (IM ⊗W
)
ĝ. (15)

Note that this is only a partial channel estimate, where the
frequency response coefficients have been estimated for the
active subcarriers only. The MSE of this LS channel estimate
is given by

MSE = σ2vTr
{(
IM ⊗W

)(
BHB

)−1(
IM ⊗W

)H}
(16)

which is minimized when the matrix B is unitary [10, 19].
When no subcarriers are nulled (i.e., S = K), sequences

can be easily designed such that this condition is met [10,
12, 19]. However, it was shown in [19] that nulling subcar-
riers causes these conventional optimal sequences to be sub-
optimal inmany cases. As withMIMOUWdesign, nonlinear
optimization techniques can be employed to find sequences
that come close to minimizing the MSE of the channel esti-
mate when nulled subcarriers are used.

3. NUMERICAL OPTIMIZATIONWITH CONSTRAINTS

Due to their computationally complex nature, the optimiza-
tion problems stated above cannot be solved analytically, or
are at least intractable. However, numerical methods can be
applied to solve these problems with good results. In this sec-
tion, standard nonlinear optimization techniques are briefly
reviewed. In particular, one such technique known as the
barrier method is discussed and its application to the MIMO
training sequence optimization problem is detailed. Further-
more, practical constraints such as the mean power and the
peak power of the sequences are discussed in the context
of the optimization problem; these constraints can be easily
added to the problem when the barrier method is employed.

3.1. Standard optimization techniques

Constrained optimization problems generally are of the form
[22, 35]

minimize f0(z),

subject to fi(z) ≤ 0, i = 1, . . . , p,

ri(z) = 0, i = 1, . . . , q,

(17)

where z is the optimization variable (in this case, the UWs
or the OFDM training sequences), f0 is the objective or cost
function, fi are inequality constraints, and ri are equality
constraints. Note that f0, fi, and ri are all real-valued scalar
functions of a complex vector z. If the objective function and
the inequality constraint functions are convex, and the equal-
ity constraint functions are linear, then the theory of convex
optimization can be used to solve this problem.

Convex optimization is a well-researched field; its pop-
ularity owing largely to the fact that most convex problems
can be solved efficiently [22]. When convex optimization
problems cannot be solved analytically, which is often the
case, one must resort to various numerical methods, such as
steepest descent algorithms or Newton’s method. The latter
of these two techniques is generally very efficient at solving
problems with equality constraints only. However, when in-
equality constraints are introduced, other techniques such as
IP methods must be employed. IP methods solve the convex
optimization problem given by (17) by employing Newton’s
method to solve a sequence of equality constrained (or un-
constrained) subproblems. Even when a problem is not con-
vex, IP methods can sometimes be used to great effect (see,
e.g., [25] and the references therein).

One popular IP method that can be used to solve non-
linear optimization problems is the barrier method. This
method is documented for convenience in Algorithm 1 [22].
By applying the barrier method, the problem given in (17)
can be restated as

minimize f0(z) +
p∑

i=1
I
(
fi(z)

)
,

subject to ri(z) = 0, i = 1, . . . , q,

(18)

where I : R → R is the indicator function for nonpositive
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given strictly feasible z, t > 0, μ > 1, εo > 0,
εi > 0
repeat
(1) Newton’s method (z, εi > 0)

(a) Δz = −∇2 f (z)−1∇ f (z)
λ2 = −∇ f (z)HΔz

(b) quit if λ2/2 < εi
return z∗ := z

(c) Line search (determine β)
(d) z := z + βΔz

(2) z := z∗

(3) quit if p/t < εo
(4) t := μt

Algorithm 1: The barrier method.

real numbers given by

I(u) =
⎧
⎨
⎩
0, u � 0,

∞, u > 0.
(19)

The indicator function can, in practice, be approximated by
the function

Î(u) = −1
t
log(−u), (20)

where t is the logarithmic barrier accuracy parameter and (by
convention) Î(u) = ∞ for u > 0. Figure 4 illustrates the in-
dicator function and its approximation for several values of
t. When the equality constraints ri shown in (18) are lin-
ear or do not exist, Newton’s method can be used to find
an optimal point z∗ over the search space as outlined in
Algorithm 1. Note that typical values of the tolerances εo
and εi, which are shown in Algorithm 1, are in the region
0.001 ≤ εo, εi ≤ 0.1, and the scaling factor μ is generally cho-
sen such that 10 ≤ μ ≤ 20. Also, it is worth noting that the
parameters t and p used in Algorithm 1 are the logarithmic
barrier accuracy parameter and the number of constraints,
respectively.

An alternative to the barrier method is the primal-dual
IP method. The primal-dual method is similar to the barrier
method in a number of ways. In general, the only differences
between the two techniques lie with the search directions,
the loop structure of the algorithm (the primal-dual method
only has one loop), and the fact that the temporary solutions
with each iteration of the primal-dual method are not neces-
sarily feasible (i.e., they may not meet the constraints of the
problem) [22]. For brevity, only the barrier method will be
used in this paper.

3.2. Reformulating theMSE for the barriermethod

The barrier method requires the objective function to be
twice differentiable with respect to the optimization variable.
In the examples discussed in this paper, the objective func-

I(
u
),
Î(
u
)

10

5

0

−5
−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1

u

t = 0.5

t = 1

t = 2

Figure 4: Indicator function and approximate logarithmic func-
tions. The dashed lines show the indicator function and the solid
lines show the approximations for t = 0.5, 1, 2. The best approxi-
mation is given by t = 2 [22].

Table 1: Differences in MSE expressions for MIMO UW and
MIMO OFDM channel estimates.

MIMO UW MIMO OFDM
FL ⇐⇒ W

Ũm := diag
{
F′Qum

} ⇐⇒ X̃m := diag
{
x̃m
}

tion is the MSE of the channel estimate and the optimiza-
tion variable is the set of training sequences or UWs. Con-
sequently, it is beneficial to reformulate the expressions for
MSE given by (10) and (16) to be functions of a single vec-
tor of UWs or training sequences. Expressing the problem
in this form facilitates simple differentiation of the objective
functions through the derivation of gradients and Hessians
of the functions.

Notice that the MSE expressions given by (10) and (16)
are very similar. In fact, the structures of the two expressions
are identical. The only differences lie with the definitions of
the partial DFT matrix and the training signal.3 These dif-
ferences are outlined in Table 1. Due to the similarities of the
twoMSE expressions, a single general expression for theMSE
that encompasses the two examples discussed in Sections 2.1
and 2.2 can be derived. This general formula for the MSE is
given by

MSE(z)∝ Tr
{(
IM ⊗ΨFL

)((
IML ⊗Φz

)H

×J(IML ⊗Φz
))−1(

IM ⊗ΨFL
)H}

,
(21)

where z is a stacked column vector of training sequences
or UWs, J is a sparse matrix that contains elements of the
DFT matrix, and Ψ and Φ are defined differently according
to whether UW optimization is being performed for single-
carrier MIMO systems or training sequence optimization is

3 The noise variance scaling parameters in (10) and (16) are ignored here
since theyhave nobearing on the optimal design of the training sequences.
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being performed forMIMOOFDM systems with nulled sub-
carriers. Consider the example where MIMO UW optimiza-
tion is performed. In this case, z := (uT1 , . . . ,u

T
M)

T , Ψ := IK ,
Φ := IM ⊗ F′Q, and J ∈ CM2KL×M2KL contains elements of FL.
For the example where MIMOOFDM training sequence op-
timization is performed, z := (x̃T1 , . . . , x̃

T
M)

T , Ψ ∈ {0, 1}S×K
is defined as the S rows of IK corresponding to the S active
subcarriers,Φ := IMS, and J ∈ CM2SL×M2SL contains elements
of W. The full details of the reformulation of the expression
for the MSE of a MIMO channel estimate can be found in
Appendix A.

Note that the proportionality in (21) does not affect
the minimization of the MSE. Consequently, the expression
given on the right-hand side of (21) can be directly used
as the objective function f0(z) in the minimization prob-
lem stated in (17). Furthermore, this function is twice dif-
ferentiable, which is a requirement of the barrier method.
The gradient and the Hessian of this function are given in
Appendix B.

3.3. Constraints onMIMO training sequences

In order to obtain meaningful results from the optimization
algorithm, a mean power constraint must be placed on the
training sequences and UWs. Without this constraint, the
optimization algorithm would simply increase the power of
the sequences with each iteration, which would obviously
lead to a lower channel estimation MSE. It is desirable to
make the mean power constraint an equality constraint, such
as ‖z‖2 = 1. Unfortunately, Newton’s method, and thus
the barrier method, do not support quadratic equality con-
straints [22]. A small tolerance ε (say, ε = 0.01) can be added
to an inequality constraint to circumvent this problem, giv-
ing the constraint

1− ε ≤ ‖z‖2 ≤ 1 + ε. (22)

Note that all solutions to the optimization problem can be
normalized to have the same power without significantly af-
fecting the optimality of the sequences. By defining the log-
arithmic constraint function as4 φi(z) = − log(− fi(z)), the
logarithmic mean power constraints can be expressed as

φ1(z) = − log
(
1 + ε − ‖z‖2),

φ2(z) = − log
(‖z‖2 − 1 + ε

)
.

(23)

Another desirable property of wireless transmissions,
whether for training or data transfer, is that they have a low
PAPR. The PAPR of the training sequences (or UWs) can be
limited by employing a peak power constraint in addition to
the mean power constraint discussed above. The constraint
on the peak power of the transmitted signal can be written as

∣∣eTi Θz
∣∣2 ≤ δ, ∀i, (24)

4 The multiplication of the objective and constraint functions by t does not
alter the optimization problem.

where the matrix Θ defines the mapping of the data vector z
to the time domain and ei is the ith unit vector of the appro-
priate size. In practical systems, the PAPR constraint should
be applied to the oversampled signal [36]. Consequently, Θ
must account for filtering or interpolation between time-
domain samples. Many different filtering strategies exist, but
a common approach is to use a raised cosine filter [37]. Using
this approach, the mapping matrix can be defined as

ΘUW := IM ⊗ C (25)

for the UW case, where C is the ρQ × Q raised cosine fil-
ter matrix. In the case of the OFDM sequences, the mapping
matrix should be defined as

ΘOFDM := IM ⊗ CW
H
, (26)

where W ∈ CS×K is the normalized DFT matrix mapped to
the S active subcarriers and C is the ρK × K raised cosine
filter matrix. Although the size of C varies for the two cases,
the (i, k)th element of C is defined as

Ci,k = sinc
(
π
(i− ρk)

ρ

)
cos
(
πα
(
(i− ρk)/ρ

))

1− (2α((i− ρk)/ρ
))2 (27)

for both cases, where 0 ≤ α ≤ 1 is the roll-off factor. Regard-
less of the choice of the mapping matrix Θ, the logarithmic
barrier function for the peak power constraint is given by

φ3(z) = −
∑

i

log
(
δ − ∣∣eTi Θz

∣∣2). (28)

Notice that the three logarithmic constraint functions
given above are twice differentiable. The gradients and Hes-
sians of these functions can be found in Appendix C. By us-
ing these constraint functions, the optimization problem can
be rewritten as

minimize f (z) = t f0(z) +
3∑

i=1
φi(z) (29)

which can be solved by employing the barrier method as de-
scribed in Algorithm 1.

3.4. Issues of convergence

As previously mentioned, the barrier method works well
when the objective and constraint functions are convex. Un-
fortunately, this is not the case with the two examples dis-
cussed in this paper; indeed, the objective function given by
(21) is not convex, which can be shown through a numerical
counterexample. Consequently, there exist local minima that
are not equal to the global minimum. The barrier method
can be employed to find a solution to this optimization prob-
lem, but it may not be the optimal solution. The purpose
of using this technique, however, is to find near-optimal se-
quences, which may or may not be the best possible se-
quences that exist under the given constraints. Consequently,
it is usually enough to find a sequence that converges to a low
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local minimum since, as it will be shown later through ex-
perimental results, these minima are generally low enough to
provide near-optimal performance in the MSE sense.

One way of ensuring that a good sequence is found is to
use several different (possibly random) feasible starting vec-
tors.5 If a large number of feasible starting vectors is used,
the likelihood that the barrier method will converge to a low
local minimum, or indeed the global minimum, is high. A
similar technique was used in [25]. It should be noted that
the complexity of computing multiple “optimal” sequences
is not a significant issue since this can be done offline and the
best results can be stored for future use.

4. SIMULATION RESULTS

In this section, results obtained through computer simula-
tions are shown. These results depict the benefits that can be
gained by employing nonlinear optimization techniques to
design MIMO training sequences under difficult constraints.
Furthermore, characteristics of the near-optimal sequences
are discussed. In particular, the structure of the sequences
generated by the proposed approach and the trade-off be-
tween the PAPR of the sequences and the achievable MSE of
the channel estimate are investigated. Results are given for
both the MIMO UW scenario and the MIMO OFDM sce-
nario.

4.1. Channel model and assumptions

The training strategies discussed in this paper are particu-
larly suitable for use in wireless local area networks (WLANs)
where the Doppler spread is low (on the order of a few Hz).
Consequently, the IEEE 802.11n channel models [38] are
used to obtain the results presented below. These models are
cluster-based and cover six fundamental cases ranging from
model “A” (frequency-flat) to model “F” (150 nanoseconds
root-mean square (RMS) delay spread). In the following dis-
cussion, the bandwidth of each transmission is 20MHz at a
center frequency of 5.2 GHz, and each block (for both single-
carrier and multicarrier systems) comprises K = 64 symbols
and has a guard interval of 16 samples. Thus, the coherence
time of the channel is several orders of magnitude greater
than the period of a transmitted block (4 μs). As a result, qua-
sistatic fading is assumed in the following scenarios.

4.2. MIMOUW

One interesting, and intuitively satisfying, result of MIMO
training sequence design is that the PAPR of the training
sequences cannot be decreased without compromising the
MSE of the channel estimate. This trade-off can be observed
for the MIMO UW case in Figure 5, where the system in
question has M = 2 transmit antennas, a UW length of
Q = 16 symbols, and a block size of K = 64. A raised co-
sine filter with a roll-off factor of α = 0.2 and an oversam-

5 A feasible vector is defined as a vector that satisfies the inequality con-
straints in the optimization problem.
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Figure 5: Normalized MSE versus PAPR for three different lengths
of CIR in a UW system.

pling factor of ρ = 4 was used. As shown in this example, the
normalized MSE of the channel estimate, which is defined as

MSE = 1
σ̃2MK

MSE, (30)

where MSE is given by (10), is smaller for shorter CIRs. This
behavior is due to the time-domain windowing performed
by the LS channel estimator, which reduces the noise in the
channel estimate. It is worth noting that all curves level out
to a point beyond which increasing the allowed PAPR does
not reduce theMSE any further. To put these results into per-
spective, the 99.99 percentile PAPRs for QPSK, 16-QAM, and
64-QAM signals are 5.7 dB, 6.8 dB, and 7.1 dB, respectively.

To investigate the impact that block averaging has on
bit-error rate (BER), a UW system with M = 2 transmit
antennas and N = 2 receive antennas, a UW of length
Q = 16 (designed for a channel of length L = 15), a block
size of K = 64 symbols, and a CIR based on the IEEE
802.11n channel model B [38], which is a model of an in-
door environment with 15 nanoseconds RMS delay spread
and 10Hz RMS Doppler spectrum spread, was simulated.
QPSK signaling was employed, and the packet size was var-
ied from three block intervals to 50 block intervals (i.e., six
to 100 blocks in total). A rate-1/2, memory-6 convolutional
code was used, and the receiver employed a linear MMSE
frequency-domain equalizer. Note that the 99.99 percentile
PAPR of a QPSK signal in this example is 5.7 dB. Conse-
quently, the UWs used in this example were constrained
to have a PAPR less than 5.7 dB. The results of this simu-
lation are plotted in Figure 6. The system using optimized
UWs (labeled “optimized UW”) and block averaging as de-
scribed in Section 2.1 was compared to a system using a
one-block preamble supporting both antennas (labeled “1
preamble”) [12] as well as to a system using time-multiplexed
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Figure 6: BER versus packet length for five different systems: “1
preamble” uses a single preamble, which supports both transmit
antennas; “2 preambles” uses time-multiplexed preambles; “opti-
mized UW” uses optimized UWs to estimate the channel; “PN se-
quences” uses PN sequences to estimate the channel; and “known
channel” has perfect knowledge of the channel state information.
M = N = 2, K = 64, Q = 16, L = 15, SNR = 20 dB with a rate-1/2
convolutional code.

preambles (labeled “2 preambles”). The two latter systems
employ puncturing to achieve the same packet size as the for-
mer system (see, e.g., Figure 7). Thus, as the packet length
increases, the puncturing is less severe for these two systems.
Also, a system that uses pseudonoise (PN) sequences as UWs
was simulated, and a system with perfect knowledge of the
channel was simulated as a reference. As shown in Figure 6,
the system using optimized UWs and block averaging to per-
form channel estimation performs poorly for short packets.
However, for packets consisting of fifteen block intervals (ap-
proximately 1500 bits) or more, the block averaging system
outperforms the two systems that use preambles. The sys-
tem that utilizes block averaging and PN sequences performs
poorly for all simulated packet lengths.

4.3. MIMOOFDMwith nulled subcarriers

In this section, an OFDM system based on the IEEE 802.11a
specification [39] is considered. IEEE 802.11a systems em-
ploy K = 64 subcarriers with S = 52 carrying data where
the nulled subcarriers are defined by the set {0, 27, . . . , 37}.
In [19], it was noted that for two transmit antennas, sim-
ple sequences such as x̃1 = (1, 0, 1, . . . , 1, 0)T and x̃2 =
(0, 1, 0, . . . , 0, 1)T (i.e., transmitting on alternate subcarriers)
perform well, although they do not meet the lower bound.
However, this alternate subcarrier transmission strategy does
not generally perform well whenM > 2. In this section, sim-
ilar sequences are used as a reference point to show that it is

possible to design better sequences using the barrier method.
In Figure 8, the normalized MSE of the channel estimate,
which is defined as

MSE = 1
σ2vMK

MSE, (31)

where MSE is given by (16), is plotted as a function of the
channel length L for the reference cases described above and
for the case where the sequences are designed as discussed in
Section 3. The number of transmit antennas is set to M = 3
in this example. As observed in Figure 8, the designed se-
quences have a distinct advantage over the alternating sub-
carriers at large channel lengths; whereas, both sets of se-
quences are very close to the lower bound for shorter chan-
nels.

The BER of an OFDM system that utilizes M = N = 3
transmit and receive antennas and optimized preambles is
depicted in Figure 9. In this example, the BER is shown for
IEEE 802.11n channel model E [38], which has an excess de-
lay spread of 750 nanoseconds (L = 15 samples). The system
uses 16-QAM modulation and a rate-3/4, memory-6 convo-
lutional code. It is observed that when one or two OFDM
symbols are used for the preamble, the system employing
the sequences that were designed through nonlinear opti-
mization techniques performs 2-3 dB better than the system
that transmits training on alternating subcarriers, which is
the optimal case when no nulled subcarriers are employed. It
should also be noted that the method proposed in [34] can-
not be used to find optimal sequences in this example since
S < M(2L− 1).

4.4. Sequence structure

It is interesting to observe the structure of the sequences that
are generated by the proposed optimization algorithm. It was
found that the phases of the sequence elements appear to
be random, both for the OFDM training sequences and the
single-carrier UWs. Similarly, the envelopes of the OFDM
training sequences (in the frequency domain) generally have
no clear structure apart from the location of the nulled sub-
carriers, which are common to all sequences. However, the
near-optimal UWs are more structured. In particular, the
envelopes of all of the UWs that were designed by the pro-
posed method exhibit a distinctive trough in the center, with
peaks occurring near the edges. The depth of this trough
(and thus the heights of the peaks) obviously depends upon
the PAPR constraint that was employed to generate the se-
quences, but for a constraint of greater than 4 dB, the deep-
est point on the trough is typically close to zero and most of
the energy in the UWs is contained in the first and last few
elements. As an illustration of this phenomenon, the pow-
ers of an OFDM training sequence waveform and a single-
carrier UW—in particular, two of the sequences that were
employed to produce the results shown in Sections 4.2 and
4.3—are depicted in Figure 10. The trough can clearly be
seen in the plot of the UW waveform, whereas the time-
domain OFDM waveform appears to have no recognizable
structure. It should be noted that the properties exhibited by
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Figure 7: Illustration of packet format for MIMO UW simulations with puncturing: (a) 1 preamble, (b) 2 preambles, and (c) UW only.
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Figure 8: Normalized MSE for OFDM systems withM = 3.

the waveforms shown in Figure 10 are characteristics of all
OFDM training sequences and single-carrier UWs generated
by the proposed optimization method.

5. CONCLUSIONS

In this paper, nonlinear optimization techniques were used
to design near-optimal sequences for MIMO channel esti-
mation. In particular, two example scenarios were explored:
single-carrier MIMO transmissions with a UW extension
and MIMO OFDM transmissions with nulled subcarriers. A
generalized expression for the MSE of the LS channel esti-
mate was given as a function of a single vector of training
sequences. This expression was used along with the barrier
IPmethod to find near-optimal sequences with a constrained
PAPR. The advantages of using the optimized sequences were
demonstrated by computing both the MSE and the BER of
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Figure 9: BER versus SNR for a 3 × 3 OFDM system: 16-QAM,
rate-3/4 convolutional code, IEEE 802.11n channel model E.

various systems through computer simulations. The new se-
quences were shown to provide better channel estimates than
conventional sequences for all of the systems that were inves-
tigated. It should be noted that the techniques presented in
this paper can be performed offline since training sequences
are generally specified by the system designer.

APPENDICES

A. REFORMULATION OFMSE COST FUNCTION

A generalized equation for the MSE of a MIMO channel esti-
mate for the two examples discussed in this paper can be de-
rived by adopting the matrix definitions given in Section 3.2



J. P. Coon and M. Sandell 11

Unique word

Po
w
er

1.5

1

0.5

0
0 2 4 6 8 10 12 14 16

Time (sample index)

OFDM

Po
w
er

1.5

1

0.5

0
0 10 20 30 40 50 60

Time (sample index)

Figure 10: Time-domain waveforms for an optimized UW and an
optimized OFDM training sequence.

and observing the relations given in Table 1. This expression
can be written as a function of a single concatenated training
sequence, or UW, vector z in order to facilitate the applica-
tion of the nonlinear optimization techniques discussed in
Section 3. This reformulation of the MSE as a function of a
vector is best described through an example; the generaliza-
tion follows easily.

Consider the example of the OFDM system. The MSE in
(16) depends on BHB, which is anM×M blockmatrix where
each submatrix is of size L× L and is given byWH X̃H

mX̃m′W.
After performing some algebraic manipulations, this expres-
sion for the (m,m′)th sub-matrix can be written as

WH X̃H
mX̃m′W

= (IL ⊗ x̃m
)H

⎛
⎜⎜⎝

Ω0,0 · · · Ω0,L−1
...

. . .
...

ΩL−1,0 · · · ΩL−1,L−1

⎞
⎟⎟⎠
(
IL ⊗ x̃m′

)
,

(A.1)

whereΩ�,�′ = diag{W0,�W
∗
0,�′ , . . . ,WS−1,�W∗

S−1,�′ } andWs,� is
the (s, �)th element of W. The training vectors can be con-
catenated to form a single vector z := (x̃T1 , . . . , x̃

T
M)

T , which
can be used to form

BHB = (IML ⊗ z
)H

⎛
⎜⎜⎝

J0,0 . . . J0,M−1
...

. . .
...

JM−1,0 · · · JM−1,M−1

⎞
⎟⎟⎠

︸ ︷︷ ︸
J∈CM2SL×M2SL

(
IML ⊗ z

)
,

(A.2)

where Jm,m′ ∈ CMSL×MSL is given by

Jm,m′ =

⎛
⎜⎜⎝

(
emeTm′

)⊗Ω0,0 . . .
(
emeTm′

)⊗Ω0,L−1
...

. . .
...(

emeTm′
)⊗ΩL−1,0 · · · (emeTm′

)⊗ΩL−1,L−1

⎞
⎟⎟⎠

(A.3)

and em is the mth length-M unit vector. The MSE of the
OFDM channel estimate can now be written as a function
of the vector z as given by (21) where Ψ is defined such that
W = ΨFL and Φ is the identity matrix of the appropriate
size.

It is easy to see that the generalization of the example
given above to include the MIMO UW case is straightfor-
ward. In this case, the partial DFT matrix is defined as FL
rather than W in the derivation given above. Furthermore,
z := (uT1 , . . . ,u

T
M)

T , and the resulting expression for the MSE
as a function of z is given by (21) where Ψ := IK and
Φ := IM ⊗ F′Q.

B. GRADIENT ANDHESSIAN OF THE
OBJECTIVE FUNCTION

To derive the gradient and the Hessian of the objective
function given by (21), the chain rule and the product
rule are required. The chain rule for matrix differentia-
tion is given by ∂ f (X)/∂t = Tr{(∂ f (X)/∂X)T(∂X/∂t)} +
Tr{(∂ f (X)/∂X∗)T(∂X∗/∂t)} and the product rule is given by
∂(UV)/∂t = (∂(U)/∂t)V+U(∂(V)/∂t). By rewriting the MSE
in (21) as MSE(z)∝ Tr{C−1Γ}where Γ = (IM⊗ΨFL)H(IM⊗
ΨFL) and C = (IML ⊗Φz)HJ(IML ⊗Φz), the ith element of
the gradient can be expressed as

∂Tr
{
C−1Γ

}

∂z∗i
= Tr

{
− C−1

∂C
∂z∗i

C−1Γ
}

(B.1)

which follows from the fact that ∂Tr{U}/∂U = I and
∂U−1/∂t = −U−1(∂U/∂t)U−1. The inner derivative is
∂C/∂z∗i = (IML ⊗ ei)TJ(IML ⊗ Φz), where ei is the ith unit
vector of the appropriate size; consequently, the ith element
of the gradient is given by

∂Tr
{
C−1Γ

}

∂z∗i
= Tr

{− C−1ΓC−1
(
IML ⊗ ei

)T
J
(
IML ⊗Φz

)}
.

(B.2)

The Hessian can be defined as the matrix of derivatives
of the conjugate of (B.2). Note that (Tr{A})∗ = Tr{AH} and
C, Γ, and J are Hermitian symmetric. Now, by defining Ξ =
−C−1ΓC−1 and Λ = (IML ⊗Φz)HJ(IML ⊗ ei) and using the
chain and product rules, the (i′, i)th element of the Hessian
matrix can be written as

∂

∂z∗i′

(
∂Tr
{
C−1Γ}
∂z∗i

)∗
= Tr

{
∂(ΞΛ)
∂z∗i′

}
= Tr

{
∂Ξ

∂z∗i′
Λ + Ξ

∂Λ

∂z∗i′

}
,

(B.3)

where ∂Ξ/∂z∗i′ = −(∂C−1/∂z∗i′ )ΓC−1 − C−1Γ(∂C−1/∂z∗i′ ) and
∂Λ/∂z∗i′ = (IML ⊗ ei′)HJ(IML ⊗ ei). Using the inner derivative
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∂C−1/∂z∗i′ = −C−1(IML ⊗ ei′)HJ(IML ⊗ Φz)C−1, the Hessian
can finally be written as

∂

∂z∗i′

(
∂Tr
{
C−1Γ

}

∂z∗i

)∗

= Tr
{(
C−1

(
IML ⊗ ei′

)H
J
(
IML ⊗Φz

)
C−1ΓC−1

+ C−1ΓC−1
(
IML ⊗ ei′

)H
J
(
IML ⊗Φz

)
C−1

)

×(IML ⊗Φz
)H

J
(
IML ⊗ ei

)

− C−1ΓC−1
(
IML ⊗ ei′

)H
J
(
IML ⊗ ei

)}
.

(B.4)

C. GRADIENTS ANDHESSIANS OF THE
CONSTRAINT FUNCTIONS

The gradients and Hessians of the constraints are straightfor-
ward to find and are given by

∇φ1(z) = 2
1 + ε − ‖z‖2 z,

∇2φ1(z) = 2
(
1 + ε − ‖z‖2)2

(
2zzH +

(
1 + ε − ‖z‖2)I),

∇φ2(z) = 2
1− ε − ‖z‖2 z,

∇2φ2(z) = 2
(
1− ε − ‖z‖2)2

(
2zzH +

(
1− ε − ‖z‖2)I),

∇φ3(z) = 2
∑

i

1

δ − ∣∣eTi Θz
∣∣2Θ

HeieTi Θz,

∇2φ3(z) = 2
∑

i

δ +
∣∣eTi Θz

∣∣2
(
δ − ∣∣eTi Θz

∣∣2)2Θ
HeieTi Θ.

(C.1)

Note

This manuscript was submitted in part to Globecom 2005
and CAMSAP 2005.
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