
Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2007, Article ID 89170, 9 pages
doi:10.1155/2007/89170

Research Article
A Fast Mellin and Scale Transform

Antonio De Sena1 and Davide Rocchesso2
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1. INTRODUCTION

The Mellin transform, and the particular version called scale
transform, can represent a signal in terms of scale. The scale
can be interpreted, similarly to frequency, as a physical at-
tribute of signals. The proposed fast (subquadratic) imple-
mentation allows this transform to be used in practical ap-
plications. The algorithm can compute the Mellin transform

Mf (p) =
∫∞
0

f (t)tp−1dt, (1)

in the complex variable p = − jc + β, with β ∈ R fixed pa-
rameter and c ∈ R independent variable. We call this family
of transforms the β-Mellin transform. It is indeed a restric-
tion of the Mellin transform, as the real part of the complex
variable p is parameterized. The β parameter allows to se-
lect among: (i) a scale-invariant transform (β = 1/2, scale
transform); (ii) a compression/expansion invariant trans-
form (β = 0); (iii) a shape-invariant transform (β = −1, the
ratio between themaximum of the function and its extension
is a constant).

The proposed algorithm is based on the well-known re-
lation between the Mellin and Fourier transforms. While
methods that exploit such relation have been proposed long
ago [1, 2], efficiency and practicality are still remarkable ob-
jectives to be achieved.

Mellin and scale transforms are important in vision and
image processing. In particular, a so-called Fourier-Mellin
transform can be used for pattern recognition for its in-

variance to shift, scale, and rotation. In [3], various tech-
niques have been presented for the implementation of the
Fourier-Mellin transform, including a polar-log coordinates
remapping. In [4], the problem of estimation of scale and
orientation differences between objects in images has been
approached using the analytical Fourier-Mellin transform
[3].

Other approaches to the Mellin transform implementa-
tion have been taken by J. Bertrand et al. [5–7]. In their
studies, the authors tackled the transform in the frequency
domain by considering analytic signals. An implementation
based on exponential resampling in the time domain should
give a solution to a few practical problems. Namely, a starting
point near 0 implies an impossible exponential resampling,
and if the signal support in time is very small compared to
the starting point of the signal, the exponential sampling
becomes a quasiuniform sampling. An implementation that
follows this idea has been made by Gonçalvés and Lemoine
(http://gdr-isis.org/tftb/refguide/node32.html), but the algo-
rithm appears to be quadratic in complexity. The authors
have searched for other implementation of J. Bertrand et al.
fast Mellin transform idea, but no sub-quadratic implemen-
tation has been found.

In our work, that proceeds in the time domain by cre-
ating parallels with Fourier-based theories, we tried to find
practical solutions for exponential sampling, while simulta-
neously keeping the whole framework as simple as possible.
In particular, the resampling process does not pose problems
regarding the relative small length of the signal because there

http://gdr-isis.org/tftb/refguide/node32.html
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is no prebuilt exponential grid, and the exponential warping
is adapted to the signal under analysis.

We are mainly interested in applications of the scale
transform in the realm of speech and audio processing,
where it can be used for various purposes, like scale normal-
ization, signal analysis in the scale domain [8] (scale can be
considered as a joint time-frequency attribute), audio ma-
nipulation in scale domain [9], and vowel recognition [10].

In Section 2, an introduction to the Mellin and scale
transforms will be given along with the definitions of scale pe-
riodicity and an interpretation of the scale transform. Analo-
gies and relations with the Fourier transformwill also be pro-
vided. An exponential sampling theorem (an extension of the
one provided in [11]) will be presented. This section is the
collection of known concepts and new definitions and ex-
tensions useful as support for the β-Mellin transform imple-
mentation. In Section 3, the base theory for the implemen-
tation of the fast Mellin transform will be provided. Expo-
nential sampling will be introduced and sinc, cardinal spline,
and spline interpolations will be discussed. In Section 4, the
implemented algorithm, its computational cost, and an error
analysis will be described.

2. THEMELLIN TRANSFORM

Originally developed by Robert Hjalmar Mellin (1854–1933)
for the study of the gamma function, hypergeometric func-
tions, Dirichlet series, the Riemann zeta function and for the
solution of partial differential equations, the Mellin trans-
form was also used in electrical engineering, for example
for studying motor control systems [12]. In [8], Cohen in-
troduced the “scale transform.” This transform is said to
be scale-invariant (the Fourier transform is shift-invariant),
thus meaning that the signals differing just by a scale trans-
formation (compression or expansion with energy preserva-
tion) have the same transform magnitude distribution. Co-
hen showed that the scale transform is a restriction of the
Mellin transform on the vertical line p = − jc + 1/2, with
c ∈ R.

2.1. Definition and existence ofMellin transform

The Mellin transform of a function f is defined as in (1),
where p ∈ C is the Mellin variable.

The existence of the Mellin transform (1) depends on
convergence of the transform integral,

∫∞
0

∣∣ f (t)∣∣tp−1dt <∞. (2)

This is a general sufficient condition for the existence of the
transform. Further considerations [5] can be made using the
fact that p = − jc + β, and different or simpler forms of (2)
can be derived.

2.2. Definition of scale transform

The scale transform [8] is a particular restriction of the
Mellin transform on the vertical line p = − jc + 1/2, with

c ∈ R, just as the Fourier transform can be seen as a restric-
tion of the Laplace transform on the imaginary axis. Thus,
the scale transform is defined1 as

Df (c) = 1√
2π

∫∞
0

f (t)e(− jc−1/2) ln tdt. (3)

The scale inverse transform is given by

f (t) = 1√
2π

∫∞
−∞

Df (c)e( jc−1/2) ln tdc. (4)

The key property of the scale transform is its scale in-
variance. This means that if f is a function and g is a scaled
version of f , the transform magnitude of both functions is
the same. A scale modification is a compression or expan-
sion of the time axis of the original function that preserves
signal energy. Thus, a function g(t) can be obtained with a
scale modification from a function f (t) if g(t) = √

α f (αt),
with α ∈ R+. When α < 1, we get a scale expansion, when
α > 1 we get a scale compression. Given a scale modification
with parameter α, the scale transforms of the original and
scaled signals are related by

Dg(c) = αjcD f (c). (5)

This property derives from a similar property of the Mellin
transform. In fact, if h(t) = f (αt), then

Mh(p) = α−pMf (p). (6)

In both (5) and (6), scaling is reflected by a multiplicative
factor for the transforms, and for (5) such factor reduces to a
pure phase contribution. So, the scale transform magnitudes
of the original and scaled signals are the same,

∣∣Dg(c)
∣∣ = ∣∣Df (c)

∣∣. (7)

2.3. Relationwith the Fourier transform

From its definition and interpretation, the Mellin transform
provides a tight correspondence with the Fourier transform
[10]. More precisely, the Mellin transform with parameter
p = − jc can be interpreted as a logarithmic-time Fourier
transform:

Mf (c) =
∫∞
−∞

f (t)e− jc(ln t)d(ln t). (8)

Similarly, we can define the scale transform of a function f (t)
using the Fourier transform of a function g(t) [8] with g(t)
obtained from f (t) by time-warping (g(t) = f (et)):

Mf (c) =
∫∞
−∞

g(t)e− jctdt. (9)

This result can be generalized for any p defined as p = − jc+
β, with β ∈ R, by using g(t) = f (et)eβt.

1 The heading 1/
√
2π is for energy normalization purpose.
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2.4. Scale periodicity and scale
transform interpretation

A parallel can be drawn between the properties of the Fourier
and scale transforms. In particular, we can define scale pe-
riodicity [11] as follows: a function f (t) is said to be scale
periodic with period τ if it satisfies f (t) = √

τ f (tτ), where
τ = b/a, with a and b starting and ending points of the scale
period. C0 = 2π/ lnτ is the “fundamental scale” associated
with the scale periodic function. By analogy with the Fourier
theory, we can define a “scale series” and Parseval theorem.
Of particular importance is the “exponential sampling the-
orem” [11] that, like the Nyquist-Shannon theorem, allows
the reconstruction of a scale-band limited signal from its
samples. These samples must be distributed exponentially in
time according to positions pk = τk

s , with k ∈ Z, τs = eπ/Cm ,
and Cm is the signal maximum scale.

A more general theorem can be formulated by working
on β-Mellin (rather than scale) band-limited signals.

2.5. Exponential sampling theorem

Starting from what has been done for the scale transform
[11], an extension/generalization of the exponential sam-
pling theorem can be provided for all types of β-Mellin trans-
forms.

Definition 1. The β-Mellin band of a function f (t) is the sup-
port of F(c), where F(c) is the β-Mellin transform of f (t).

Definition 2. A function f (t) is β-Mellin band-limited to C0

when F(c) = 0 for all c /∈ (−C0,C0), where F(c) is the β-
Mellin transform of f (t).

Now the exponential sampling theorem for β-Mellin
band-limited functions can be stated.

Theorem1. A function f (t) ∈ L2(R), β-Mellin band-limited2

to C0, can be exactly reconstructed from its samples in the time
domain if the samples are spaced exponentially along the time
axis as in {τn}∞−∞, where τ = e2π/2C0 .

A quick outline of proof can be given. The proof is similar
to the one shown in [11] for the scale transform. We need to
rebuild the equation chains using the β-Mellin related equa-
tions. Let ψ(t) be the following function:

ψ(t) = 2√
2π

sin
(
C0 ln t

)
ln t

t−β. (10)

The β-Mellin transform of γα(t) = αβψ(αt) (i.e., γ is a β-
scaled version of ψ), where α = τm, τ = e2π/2C0 and m ∈ Z,

2 Obviously, the theorem assumes that the β-Mellin transform of f (t) ex-
ists.

is

Γ(c) =
⎧⎨
⎩
e jc lnα, |c| ≤ C0,

0 elsewhere.
(11)

The β-Mellin transform of f (t), indicated with M
β
f (c), is

a support-limited function by assumption. Then an expan-

sion ofM
β
f (c) using Fourier series representation can be per-

formed. The period (in the Fourier sense) of M
β
f (c) is sup-

posed to be T = 2C0 (the whole support of M
β
f (c), i.e., the

bandwidth in β-Mellin domain of f (t)),

M
β
f (c) =

∞∑
m=−∞

ame jc ln τ
m
, (12)

with am defined as

am = 1√
2π

ln(τ)eβ ln τ
−m

f
(
τ−m

)
. (13)

Now, starting from the definition of inverse β-Mellin trans-
form, and using (10)–(13), the reconstruction equation for
exponential sampling can be obtained:

f (t) = 1√
2π

∫ C0

−C0

M
β
f (c)e

( jc−β) ln tdc

= ln τ
1√
2π

∞∑
m=−∞

f
(
τm
)
ψ
(
tτ−m

)
.

(14)

Equation (14) allows a perfect (in the Nyquist-Shannon
sense) reconstruction of the signal starting from its (expo-
nentially spaced) samples. Furthermore, (14) can be shown
to be very close to the Nyquist-Shannon interpolation for-
mula, in fact it can be rewritten as

f (t) =
∞∑

m=−∞
f
(
τm
)(
tτ−m

)−β
sinc

(
C0 ln

(
tτ−m

))
. (15)

The reconstruction function (tτ−m)−β sinc(C0 ln (tτ−m)) is
composed by a logarithmic-time sine cardinal functionmod-
ulated by a power function. The summation (15) is made by
summing β-dilatocyclic3 versions of the reconstruction func-
tion weighted by each sample taken exponentially in time.

3. THE FASTMELLIN TRANSFORM

Computing a discrete Mellin transform is relatively straight-
forward. For example, we can do an approximation of the
transform integral using the Riemann sum. Unfortunately,
doing this would give us algorithms exhibiting quadratic
complexity, thus meaning that they are not usable in most

3 Similar to the definition given in [5], a β-dilatocyclic signal is a sig-
nal composed by expanded/compressed replicas of a base signal, mod-
ulated/amplified by a function of β. This concept is in some way similar
to the concept of periodic signal.
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f (t)

Exponential
time warping

Exponential
multiplication

Fourier
transform

Mf (c)

(a)

x(n)

Spline interpolation and
exponential resampling

Point-by-point
exponential multiplication

FFT algorithm

Mx(c)

(b)

Figure 1: Block diagram of the fast Mellin transform idea (a) and
the relative implementation blocks (b).

practical applications. The basic idea of the fast Mellin trans-
form (FMT) algorithm comes from (9), in particular when
β = 1/2 (scale transform). While presented in prior works
(i.e., [1, 2, 13]), this idea is here used to build a practical and
efficient computer program (in particular a Matlab toolbox).
The algorithm approximates

Mf (c) =
∫∞
−∞

f
(
et
)
eβte− jctdt (16)

by taking a uniformly sampled function, warping it exponen-
tially, multiplying it by an exponential, and performing a fast
Fourier transform (see Figure 1). Naturally, all the problems
come from the warping operation. Once digitized, the signal
must be resampled from a uniform to an exponential sam-
pling grid. A resampling-based approach has been already
studied in vision and image processing. In particular in [3],
an implementation of the Fourier-Mellin transform of im-
ages has been presented, based on the idea of log warping,
which can be dated back to [1, 2]. Conversely, in the imple-
mentation of the fractional Mellin transform [14], warping
is done logarithmically instead of exponentially.

3.1. Sampled signal

In practical applications, the original analog signal is hardly
available, because a uniform-sampling stage is inherent in
the acquiring process. So, the raw material is the Shannon-
sampled version of a Fourier band-limited signal. The
Nyquist-Shannon theorem tells us that in this condition, we
can reconstruct the original (analog) signal from the sampled
version. This implies that we can resample the original (ana-
log) signal in a different way. In particular, after resampling
the signal exponentially (see Section 3.2), two interpretations
can be used. The first interpretation is based on an exponen-

tially sampled signal view in which we know that the signal
must be considered along a warped time axis. In that view,
the signal is a Mellin (more precisely β-Mellin) band-limited
signal. In this case, for example, a single-cycle sinusoid can
still be plotted with the same shape as the original, but with
a higher sample density near the signal start. The other inter-
pretation is the time-warped uniformly sampled signal view.
In that view, the warped signal is Fourier band-limited. In
this case, for example, the shape of a single-cycle sinusoid will
be heavily distorted. The assumptions underlying our imple-
mentation are that the signal is (i) time-limited because it
is saved in a finite-dimensional storage system; (ii) Fourier
band-limited because it results from uniform sampling un-
der Nyquist-Shannon conditions; (iii) β-Mellin band-limited
to have a finite number of points in theMellin transform rep-
resentation. These conditions are possible only if the original
signal is thought as a single period of an infinitely long pe-
riodic signal (to have a Fourier band-limited signal) or as a
single scale-period of a infinitely long β-dilatocyclic signal.

3.2. Exponential resampling

Several problems arise when making an exponential resam-
pling starting from an unknown uniformly sampled signal:
how many samples are needed, how they should be dis-
tributed over time, how the signal start time alters this in-
formation, how can we reconstruct the signal, and so forth.
While being aware of prior answers [11, 13], we address these
questions in this section.

First of all, we must fulfill the Nyquist-Shannon sampling
condition, so the distance between two adjacent samples in
the exponential resampling cannot exceed the distance of the
original uniform sampling step. This means that the sam-
pling period Ts is the upper limit for the distance between
the last two contiguous samples in exponential resampling.
The second constraint is that the resampling process must
cover the entire signal, from its starting point to its ending
point. The two constraints force us to have more samples in
the exponential resampled signal. The original signal starting
point t0 is very important: in fact, the more t0 is close to zero,
the more samples are needed in the exponential resampling
process. Thus, if we let t0 = 0, we need an infinite number
of exponential samples. So, for using this algorithm we need
a starting point strictly greater than zero. We can write the
exponential sampling like a sequence:

{(
τs
)k}∞

k=−∞, (17)

where k is the sample index and τs can be called the exponen-
tial base step. So, using the first4 constraint (τke

s − τke−1
s =

Ts), we can find

τs = t0 + nTs

t0 + (n− 1)Ts
, (18)

4 In theory, we should writeτke
s −τke−1

s ≤ Ts, but if we want to use as few

samples as possible, we can useτke
s −τke−1

s = Ts.τke
s is the last sample

and ke is the last sample index (sample at the ending temporal point te).
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where n is the number of samples of the uniformly sampled
signal. Now, using the second constraint (τk0

s = t0 ∧ τke
s =

t0 + nTs = te), the number of needed exponential samples is

eN = ln
((
t0 + nTs

)
/t0
)

ln
((
t0 + nTs

)/(
t0 + (n− 1)Ts

)) + 1. (19)

If we use Ts as the starting point (i.e., t0 = Ts), we can obtain
the lighter approximate expression

eN = ln (n + 1)
ln
(
(n + 1)

/
n
) . (20)

Furthermore, if we use a high number of samples (in prac-
tice, e.g., a number greater than 16 is sufficient) we can ap-
proximate (20) in a very simple form [13] using a known
important limit (limx→∞(1 + 1/x)x = e):

eN = n lnn. (21)

Now we have the exponential sampling step and the number
of samples needed, so we can proceed with resampling (see
Figure 2).

3.3. Sinc, cardinal spline, and spline interpolation

Resampling (in a nonuniform way) an already sampled sig-
nal is not trivial. In theory, the Nyquist-Shannon sampling
theorem tells that a signal, under well-known conditions, can
be reconstructed from its samples using a sinc interpolation.
Unfortunately, fast sinc interpolation on an exponential grid
is cumbersome, even using lookup table [15]. In [16] (but
also [17, 18] are important for more stable algorithms), an
idea for reducing the theoretically infinite computation of a
sinc interpolation to a finite summation has been presented,
but the computation still requires a quadratic algorithm. A
fast interpolation technique that can approximate sinc inter-
polation is cardinal spline interpolation [19]. This interpo-
lation is a modified version of the cubic Hermite spline in-
terpolation. The Hermite spline is a third-degree spline with
each polynomial of the spline in Hermite form. The Hermite
form consists of two control points and two control tangents
for each polynomial. On each subinterval, the interpolating
polynomial depends on the starting point pi and an ending
point pi+1, with starting and ending tangentsmi andmi+1, re-
spectively. A cardinal spline is a cubic Hermite spline whose
tangents are defined by the points and a tension parame-
ter c. The tension allows the computation of the tangents.
A general-purpose tension value can be 0.5 and the cardinal
spline using this value is called Catmull-Rom spline. In the
FMT algorithm, various values of tension have been tested
along with other types of spline interpolation, in particular,
natural cubic spline interpolation [19]. A natural cubic spline
is a spline constructed of piecewise third-order polynomials
which pass through a set of m control points. The second
derivative of each polynomial is set to zero at the endpoints,
and this provides a boundary condition that completes the
system ofm−1 equations. This interpolation is simpler than
cardinal spline, yet offering the same goodness of approxi-
mation.

0 1 2 3 4 5 6 7 8 9

Samples

Uniform sampling

Exponential resampling

Figure 2: Uniform sampling and (critical) exponential resampling.

The use of cardinal spline interpolation is, from a the-
oretical point of view, a good choice. In fact, the cardinal
spline, generated by cardinal B-spline [19], has a behavior
similar to the sinc function. Like the sinc function, each car-
dinal spline vanishes at all integers except the origin, and the
value at 0 is 1. Furthermore, at limit, the cardinal spline con-
verges to the sinc function.

Eventually, it is an experimental analysis of errors that
guides the choice of the interpolation method, as presented
in Section 4.2, for different oversampling factors.

4. IMPLEMENTATION AND EXPERIMENTS

Using the ideas presented in Section 3, a fast Mellin trans-
form has been developed. The algorithm takes a signal uni-
formly sampled and performs an exponential resampling.
The signal is considered to be sampled at Nyquist frequency
and, to obtain a good tradeoff between accuracy and speed,
the number of new (exponential) samples used is 2eN . Here,
the starting point of the signal is considered to be Ts (the uni-
form sampling step), but in Section 4.2 a solution for com-
puting the Mellin transform with a different starting point is
given. The algorithm can use a natural spline interpolation
or cardinal spline interpolation. Either solutions has a linear
computational cost (natural spline interpolation is embed-
ded in Matlab): more precisely, the asymptotic complexity is
O(N), where N is the number of exponential samples. After
resampling, an exponential point-by-point multiplication is
performed (the eβt component of (16)) with a computational
cost of O(N). Then a fast Fourier transform is computed.
The FFT has a subquadratic computational cost, more pre-
ciselyO(N lnN) (see Figure 1). At last, an energy normaliza-
tion is performed, again a linear operation (O(N)). So the
whole asymptotic complexity depends only on the FFT and
is O(N lnN). Written in terms of n (the initial number of
uniform samples), the asymptotic complexity is O(n ln2 n).
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Figure 3: Reconstruction error for a white noise using twice as
many samples as strictly needed (2eN).

4.1. Assumptions and approximations

The algorithm works using the assumptions and approxima-
tions presented in the previous sections and are summarized
here.

First, there are errors due to quantization and finite-
precision arithmetics. Then we can mention all the approxi-
mations bound to the algorithmic realization. Namely, spline
interpolation introduces errors; (21) is a limit approxima-
tion; signals are supposed to start at t0 = Ts, where Ts is
the sampling period of the uniformly sampled signal; no in-
formation on Mellin bandwidth is typically available before-
hand.5

4.2. Errors and reversibility

The algorithm is clearly based on subblocks: the interpola-
tion block, the FFT block, and the multiplication and nor-
malization blocks. In the case of complexity analysis, all the
focus was on the FFT and on the relation between the num-
ber of uniform samples and the number of exponential sam-
ples. The error analysis, instead, is all focused on the interpo-
lation block. Other computational errors are negligible. As it
was explained in Section 3.3, the exponential distribution of
samples and the need of a fast interpolation algorithm force
us to choose an approximation for the sinc interpolation and
this introduces errors.6 Alternative distributions of interpo-
lation nodes have been tried to reduce error, like Chebyshev
or Leja nodes, but although the interpolation error becomes

5 Indeed, the unknown Mellin bandwidth can be approximately computed
after exponential warping.

6 Actually, true sinc interpolation would also introduce errors, due to the
intrinsic problem of the noninfiniteness of the computer-computed sinc
function.

10−15

10−10

10−5

100

105

E
rr
or

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Time (s)

0.5eN samples; maximum absolute error: 1.83e+000
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Figure 4: Error trend (in time) for a white noise. When taking twice
asmany samples as required (2eN), themaximum error of these sig-
nals goes towards 10−2. Each curve is derived from piecewise-linear
regression of the actual error curve, as the one shown in Figure 3.

smaller, the displacement of the samples on the exponential
grid is dramatically less accurate and this introduces an even
larger error in the computation of the transform.

So, the preferred solution for error reduction is oversam-
pling. Using more samples than those strictly required by
the sampling theory allows the implemented transform to be
more precise. This oversampling can be tuned with respect to
the user needs. A good choice is to use twice as many samples
as those required by theory. In this way, the maximum inter-
polation error goes towards 10−2 on amplitude-normalized
signals. The “worst-case scenario” (shown in Figure 4) is
when using signals that, in the final part of them, have fre-
quency components near the Nyquist limit. Violet noise and
white noise are simple examples that maximize the error, but
it is sufficient that only the final part of the signal has high
frequency components. In fact, at the end of the resampling
grid, the samples are spaced as in the original uniformly sam-
pled signal. So, in that region of the signal the exponential
sampling is very close to the uniform and then you do not
have the benefit of the oversampling and errors can be big-
ger. In the final part of the signal, the interpolator is an ap-
proximation of the theoretical sinc interpolator. The closer
the frequencies are to the Nyquist limit, the more the dif-
ference between spline and sinc interpolators is noticeable
(see Figures 6 and 7). In Figure 3, the reconstruction error
is shown, while in Figure 4 the curves show the trends of the
reconstruction errors as obtained from piecewise linear re-
gression on log-scale plots. From a computational point of
view, the oversampling introduces a multiplication by a con-
stant to the number of exponential sampling points, so the
asymptotic complexity remains O(n ln2 n).

In Figure 5, a short-time SNR plot has been drawn. The
plot shows how the SNR varies over time for a white noise
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Test signal: white noise, 16 bits, 44100Hz, 65536 samples.

Table 1: Elapsed times in seconds. Times for complete operation
(including loading file from disk).

Number of samples
Oversampling

3eN 2eN 1eN 0.5eN

218 306.594 56.703 45.297 8.297

216 9.953 6.735 3.531 2.328

214 2.218 1.312 0.656 0.359

212 0.782 0.297 0.140 0.110

210 0.515 0.094 0.047 0.046

208 0.453 0.047 0.031 0.031

Table 2: Elapsed times in seconds. Times for FMT algorithm only.

Number of samples
Oversampling

3eN 2eN 1eN 0.5eN

218 167.735 39.625 17.157 6.890

216 7.172 4.985 2.640 1.640

214 1.890 1.078 0.547 0.390

212 0.484 0.203 0.093 0.062

210 0.250 0.047 0.032 0.016

208 0.219 0.015 0.016 0.016

signal. In this example, the overall SNR for three-times over-
sampling (3eN) is 123 dB, for 2eN is 100 dB, for 1eN is 49 dB,
and for 0.5eN is 15 dB.

Tables 1 and 2 give a short snapshot of the algorithm per-
formance. Data of the first table are recorded elapsed times
for entire operations (from loading a wave file to the end
of the transform computation, including separation of phase
and magnitude, etc.), while data from the second table are
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Figure 6: Error trend over time for three different oversampling
factors and a sinc interpolator. Test signal: sparrow chirp, 16 bits,
16000Hz, 2048 samples.

recorded elapsed times only for the FMT algorithm without
any other operation. The first and the last rows of each table
are affected by machine limitations. In fact for n = 218, the
machine begins to paginate memory to disk so the perfor-
mance is heavily affected. For n = 28, secondary operations
unbound to the algorithm result to be heavier than the algo-
rithm itself. The machine that has been used for the tests was
a notebook with 3Ghz Pentium 4 processor, with 512Mb of
RAM running Matlab 7R14 for WindowsXP.

Theoretically, the most accurate interpolation is sinc in-
terpolation. So, we compared cardinal spline interpolation
and sinc interpolation. Results can be viewed in Figures 6 and
7, computed using real recording (sparrow chirp) containing
frequencies near Nyquist limit (signal sampled at 16 kHz).
The experiments showed that in every case, a non-efficient
interpolation (i.e., O(n2) complexity) is too slow and not
practical. For example, analyzing 8192 samples required 202
minutes. Conversely, the factor-3 oversampling with spline
interpolation is almost as accurate as sinc interpolation.

The FMT is reversible (if the Mellin transform of a func-
tion exists, then the inverse of the transformed function also
exists) and an IFMT algorithm has been implemented. The
IFMT is entirely based on the FMT. The only caveat is in
the computation of the inverse of the equation N = n lnn,
which can be performed with a bisection method. The inter-
polation scheme is the same as the one used in the FMT, and
the process of interpolation is simply reversed. Alternatively,
backward interpolation can proceed by warping linear time
to logarithmic time. Again, the error is totally due to inter-
polation. The pairs transform and antitransform allow us to
work in the Mellin domain and then go back to the original
time domain [9].
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Figure 7: SNR over time for three different oversampling factors
and a sinc interpolator. Test signal: sparrow chirp, 16 bits, 16000Hz,
2048 samples.

4.3. Scale shifting and hybrid transform

The FMT works under the assumption that the signal starts
from Ts, where Ts is the uniform sampling interval. The im-
pact of this hypothesis can be important, especially when the
transform is used for scale analysis. In fact, the starting point
of the signal changes the associated Mellin distribution, be-
cause the Mellin is not shift-invariant. If the objective is to
analyze just the Mellin magnitude, a simple scale shifting can
be done. This means that the signal in the original domain
must be shifted and scaled according to its scale period. The
scale period, in the case of an unknown finite-length signal,
is the ratio between the ending instant and the starting in-
stant. When shifting the signal to a new starting point (Ts

for our purposes), the ratio must be still the same, so the
signal must be scaled, that is, compressed or expanded pre-
serving the total energy of the signal. However, this solution
presents problems if phase analysis is needed or if the orig-
inal signal starts near zero, as in the limiting zero case, the
scale-periodicity is not computable. To avoid these problems,
the scale shift must be done with a granularity computed
according to the scale period (see Figure 8), thus implying
that zero padding will be necessary to compensate the dif-
ferences between the obtained point and the wanted starting
point. Moreover, if the starting point is far from Ts, the re-
quired sampled frequency becomes too high, thus becoming
unpractical.

If the signal starts exactly at zero, a hybrid approach can
be pursued: the part of signal from 0 to Ts can be trans-
formed directly. For example, we can consider the signal con-
stant in the one-sample interval between 0 and Ts, and pro-
ceed by explicit area computation. This initial contribution
can be summed with the FMT of the remaining part of the
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Figure 8: Scale shifts tuned with the scale period of the original
signal (the original signal starts at 1 second and ends at 4 seconds).
One scale-compressed version with the same scale period has been
reproduced from 0.25 second to 1 second, and two scale-expanded
versions with the same scale period are reproduced from 4 seconds
to 16 seconds, and from 16 seconds to 64 seconds.

signal starting from Ts. In conclusion, the algorithm can be
extended to afford the choice of the starting point, possi-
bly setting it to multiples of Ts. Nevertheless, if the trans-
form is used only for scale normalization or for filtering
or recognition applications, the starting point looses impor-
tance.

4.4. Availability of the code

A matlab implementation of the FMT and some process-
ing examples are freely available at http://profs.sci.univr.it/.
˜desena/FMT.

5. CONCLUSIONS

This paper proposed a fast algorithm for the discrete-scale
(and β-Mellin) transform. The idea is based on the well-
known relation between the Mellin and Fourier transforms,
and has been developed to be practical and accurate. As op-
posed to other implementations, this work tries to solve the
problem entirely in the time domain by choosing an efficient,
yet accurate, exponential resampling process. The proposed
algorithm has been analyzed in terms of computational com-
plexity and precision. In particular, the fast algorithm has
been compared with a nonapproximated interpolation solu-
tion.
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