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Received 24 January 2007; Revised 6 June 2007; Accepted 14 October 2007

Recommended by Liang-Gee Chen

We evaluated standard robust methods in the estimation of fluorescence signal in novel assays used for determining the
biomolecule concentrations. The objective was to obtain an accurate and reliable estimate using as few observations as possi-
ble by decreasing the influence of outliers. We assumed the true signals to have Gaussian distribution, while no assumptions about
the outliers were made. The experimental results showed that arithmetic mean performs poorly even with the modest deviations.
Further, the robust methods, especially the M-estimators, performed extremely well. The results proved that the use of robust
methods is advantageous in the estimation problems where noise and deviations are significant, such as in biological and medical
applications.
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1. INTRODUCTION

Bioaffinity assays are used for determining the concentra-
tions of biomolecules—analytes or antigens—of interest in
several fields, such as clinical diagnostics and drug discovery.
The method is based on using biological molecules of specific
affinity towards the analyte for binding the analyte molecules
on a surface and for labelling the analytes. In the fluores-
cence assays, the fluorophore label yields a measurable signal
in the range of visible light proportional to the analyte con-
centration. In this work, the measurements have been car-
ried out by applying the single-step ArcDia TPX assay tech-
nology [1, 2]. Figure 1 illustrates the solid phase assay, where
microparticles are used as a binding surface to condense the
analyte molecules.

The ArcDia TPX technology has been used for the mea-
surement of different assay types: microparticle-based assays
with molecular labels (molecular measurement), assays of
microparticle and nanoparticle complexes where nanoparti-
cles are used as a labelling reagent (nanoparticle measure-
ment), and liquid assays where the fluorochrome concentra-
tion in liquid is defined (liquid measurement) [2]. Recently,
this technology has also been used for monitoring bacterial

growth. In that application, the bacterial cells are captured by
microparticles and labeled with a specific fluorescent-labeled
antibody.

In the TPX technology the fundamental concept is two-
photon excitation which allows excitation of fluorochromes
to take place only in a limited focal volume, providing three-
dimensional resolution for the measurement. The measure-
ment setup for particles is illustrated in Figure 2, which
shows how a laser beam traps the particle and pushes it
through the focal volume [1, 2].

In typical assay measurements, the signals from several
tens of microparticles are integrated and averaged to re-
duce the variance. Similarly, the fluorescence signal from
the liquid measurements is sampled approximately ten times
per second and integrated for several seconds. Despite this,
some measurements show fairly large variance. This is due
to the variance in the measurements, fluorescing dust par-
ticles in the assay solution, and so on. Different bioaffin-
ity assays introduce different types of deviations, for ex-
ample, asymmetric deviation, in which case the arithmetic
mean or the traditional robust method, the median, gives
a biased signal estimate. Recognizing the outliers is not a
trivial task; the ad hoc-based method of choosing suitable
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Polymer microsphere

Figure 1: Solid phase assay (molecular or nanoparticle measure-
ment): formation of “sandwich” complex on the surface of a poly-
mer microparticle. Fluorochrome (star), antigen (pentagon) and
antibody (“Y”).
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Figure 2: Fluorescence excitations occur only within the limited
two-photon excitation focal volume. Fluorophores residing outside
the focal volume do not contribute to the measured signal.

thresholds is troublesome since signal magnitudes vary. The
approach of detecting outliers using the standard deviation
as the measure of distance from the arithmetic mean or me-
dian, for example, as utilized by Koskinen et al. in [3] for
similar TPX measurements, has the disadvantage of nonro-
bustness. In other words, the measure of distance and the
point of comparison are strongly affected by the outliers.
Earlier, a new method called the DER algorithm was de-
veloped and applied to similar types of measurements, but
with multiple fluorescent labels [4]. It was shown to give
good results in estimating the values of the standard par-
ticle measurements. In this study, we use the same Parzen
windowing-based method for the calculation of the proba-
bility density functions of the measurements as in the previ-
ous study, but only for the reference case with a large num-
ber of observations. Our aim was to evaluate the standard
robust estimation methods for the assays of single fluores-

cent label. Using robust methods, we could avoid calculating
the individual probability density functions for each mea-
surement set which, although it gives good results, is com-
putationally more complex than the standard robust meth-
ods.

In our approach, attention is paid particularly to sam-
ple size. The ultimate goal is to decrease the number of re-
quired particle observations, that is, the length of the total
integration time, while maintaining sufficient accuracy of the
measurement. Since it is not possible to choose the optimal
method to cover every instance as the conditions change, for
example, type of contamination (outliers), some prior infor-
mation and preprocessing are used. The idea is to find a link
between the type of measurement and the type of outliers.
In the preprocessing, some of the observations are discarded
in advance as potential outliers based on their time in focus
value, that is, time spent in transition through the focal vol-
ume. However, all outliers cannot be recognized by this tran-
sition time. Thus, the remaining contamination justifies the
use of robust methods.

The applied robust estimates of location comprise the
median, the modified trimmed mean (MTM), and M-
estimators. These estimators treat outliers in three princi-
pal ways: bounding outliers’ influence, smooth rejection, and
hard rejection. The MTM lies in the first category and can
be thought of as a robust version of the above-mentioned
standard deviation approach for detecting outliers. The com-
plete rejection of outliers is attained with redescending M-
estimators. The properties of each estimator are measured
through the influence function and the breakdown point, of-
fering guidelines for choosing a suitable method or the pa-
rameters for a given problem, and explaining the estimator
performance in the experimental part. The experiments in-
clude evaluation of the data through probability density es-
timates, estimation considering sample size, and demonstra-
tions with repeated measurements. Since the correct parame-
ter values are unknown, the reference points are derived from
the distributions and used only in the evaluation of the esti-
mation results. The main purpose of this study is to estimate
the measurement data accurately, paying attention to sample
size. The experiments comprise different types of measure-
ments: solid phase assays with molecular labels and nanopar-
ticle labels and liquid phase assays. Practical examples are in-
cluded to further illustrate the effectiveness of the robust es-
timation in repeated measurements, applied also to the dy-
namic bacterial data.

2. METHODS

To be able to select suitable estimators and tune their pa-
rameters, we need to evaluate the estimator properties. On
the basis of the evaluation of the characteristics, we chose
to apply as the robust estimates of location the median, the
modified trimmed mean (MTM), and a generalization of
the maximum likelihood estimator (MLE), known as the M-
estimator. In addition, a scale-estimate is needed to evaluate
the scale or spread of the sample. In the following, we define
the estimators and explain their properties in detail relying
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on the influence function (IF) and the breakdown point. The
influence function is defined as follows [5]:

IF(x;T ,F) = lim
t→0+

T
(
(1− t)F + tΔx

)− T(F)
t

. (1)

The influence function describes the effect of infinitesimal
contamination at the point x on the estimate T standardized
by the mass t of the contamination [5]. IF is an asymptotic
concept, where the statistic T is defined as a functional of as-
sumed sample distribution F. Here, the standard normal dis-
tribution is used as F, that is to say, the measurement data are
assumed to be composed of Gaussian distributed true signals
and of a contamination part without any specific distribu-
tion. To study the robustness properties of the estimators, the
influence function is quantified, providing measures such as
the gross-error sensitivity (γ∗), the rejection point (ρ∗), and
the asymptotic variance V(T ,F). Due to severe asymmetric
deviations in part of the data, attention is paid particularly
to the rejection point, the point at which IF becomes zero
and contamination further away does not have any influence
on the estimate. The gross-error sensitivity gives the upper
bound for the bias, and the asymptotic variance defines the
efficiency of the estimator. Due to the local nature of the IF,
it is necessary to use an additional global measure of robust-
ness, the breakdown point (ε∗). The breakdown point is the
smallest proportion of outliers which can carry the statistic
over all bounds and makes the estimate totally uninformative
[5, 6]. In the case of the translation equivariant estimator, the
value of the breakdown point is between 0 and 1/2 [7].

2.1. Modified trimmedmean

The modified trimmed mean (MTM) is based on the rejec-
tion of observations lying too far away from the sample me-
dian [8]:

MTM
(
X1,X2, . . . ,XN ; q

) =
∑N

i=1aiXi
∑N

i=1ai
,

where ai =
{

1,
∣
∣Xi −med

(
Xi
)∣∣ ≤ q,

0, otherwise.
(2)

The MTM is represented in the form of a weighted mean,
an observation (Xi) having the weight(ai) equal to one when
distance to the median is within q and otherwise having the
weight zero. Here a fixed value of q is used along with scale
estimation. When q is large, the estimator will resemble the
arithmetic mean; when q is close to zero, the median type of
behavior will be dominant. Due to the use of the median, the
MTM possesses the highest possible breakdown point of 1/2.

2.2. M-estimators

The M-estimator is a generalization of MLE, and it is formed
by replacing the negative log likelihood function with an even
function [8–10]. Since MLE may be solved through mini-

mization, M-estimators are usually defined through deriva-
tive functions

N∑

i=1

ψ
(
Xi − θ̂

)
= 0, (3)

where θ̂ is the estimate and ψ is the derivative function iden-
tifying the M-estimator. The M-estimators applied here are
Andrews’ sine function (ψsin), skipped median (ψsk), and
Welsch estimator (ψwel):

ψsin(x) =
{

sin(x/a), |x| < πa,

0, |x| ≥ πa,

ψsk(x) =
{

sign(x), |x| < r

0, |x| ≥ r,

ψwel(x) = exp
(−x2

c2

)
x.

(4)

The derivative function of Andrews’ sine consists of one pe-
riod of a sinusoidal function, where the width of the period,
thus also the rejection point, is adjusted by the parameter
a. Similarly, the derivative function of the skipped median
is equal to zero beyond its rejection point r. Both estima-
tors are of redescending type, that is, they have finite rejec-
tion points. The third estimator, Welsch, does not have a fi-
nite rejection point, but its IF approaches zero as shown in
Figure 3. All the M-estimators have breakdown points equal
to 1/2 due to an iterative solving method, where the itera-
tion is started from the sample median [9]. The median is
utilized to obtain a robust starting value and to avoid the
problem of nonuniqueness in solving the redescending M-
estimate [8, 11]. Although estimator properties are set by
fixed parameters, the required scale estimation in solving the
location estimate decides how the observations are treated,
for example, which observations are rejected.

2.3. Scale estimateMAD

The robust estimate of scale MAD (median of absolute devi-
ation from median) is based on the double median [5, 10]:

MAD
(
X1,X2, . . . ,XN

)

= 1.483 med
∣
∣Xi −med

(
Xi
)∣∣, 1 ≤ i ≤ N.

(5)

The MAD gives the median of distances between observa-
tions and the median. Factor 1.483 is used due to the as-
sumed normal distribution on the true signals, and again
the use of the median gives a high breakdown point of 1/2.
Concerning the Gaussian distribution, the MAD also has the
lowest possible gross-error sensitivity among all the scale es-
timates [12].

2.4. Estimator properties

In the selection of the estimator parameters, the idea is to
keep the influence of outliers low considering the rather large
deviations in part of the data. In Figure 3(a), the influence
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Figure 3: The influence functions of mean, median, and MTM (q = 2) in (a), and the influence functions of skipped median (r = π/2),
Andrews’ sine (a = 1/2), and Welsch (c = 0.9) in (b). Standard normal distribution is assumed.

Table 1: Quantified estimator properties.

Mean Median MTM (q = 2) ψsk(r = π/2) ψsin(a = 1/2) ψwel(c = 0.9) MAD

ε∗ 0 1/2 1/2 1/2 1/2 1/2 1/2

γ∗ ∞ 1.25 2.27 1.76 2.49 2.49 1.17

ρ∗ ∞ ∞ ∞ π/2 0.5π ∞ ∞
V(T ,F) 1 1.57 1.73 2.76 2.81 2.89 1.36

functions of the arithmetic mean, the median, and the modi-
fied trimmed mean [13] are shown. The IF of the MTM indi-
cates the tradeoff between the mean and the median, the lin-
early behaving central part, while influence outside the dis-
tance q is bounded to a constant. It should be pointed out
that the observations outside the distance q have an influ-
ence on the estimate despite the rejection. Selecting q equal to
two yields very low influence outside distance q, while q itself
has a reasonably low value. Figure 3(b) shows the influence
functions of the applied M-estimators. The skipped median
and Andrews’ sine, representing the redescending type of M-
estimators, are able to reject observations completely, that is,
they have finite rejection points. The Welsch estimator does
not have a finite rejection point, although its influence func-
tion approaches zero. In the case of the M-estimators, the
parameters have been chosen to give a low-rejection point
at the expense of the asymptotic variance, considering the
larger and asymmetric deviations present in the data.

The chosen parameter values and the quantified estima-
tor properties are summarized in Table 1. The MAD is uti-
lized as the estimate of the scale to standardize the data when
applying the MTM and the M-estimators.

The asymptotic breakdown point (ε∗) is a rough measure
of robustness defining the minimum proportion of outliers
that makes the estimate totally uninformative. The gross-
error sensitivity (γ∗) quantifies the worst influence an outlier
can have, and the rejection point (ρ∗) designates the estima-
tors’ ability to totally nullify the influence of an outlier out-
side the given distance. Asymptotic variance (V(T ,F)) de-
scribes the efficiency of the estimator, that is, low variance

indicates high efficiency. In the selection of the parameters
for Andrews’ sine and the skipped median, the low-rejection
point has been emphasized to avoid the inclusion of outliers,
although this results in higher gross-error sensitivity and re-
duction of asymptotic efficiency. Further decreasing the pa-
rameter leads to exponential deterioration of the gross-error
sensitivity and the asymptotic variance. The Welsch estima-
tor approximately coincides with Andrews’ sine according to
other measures than the rejection point. The parameter value
applied with the MTM corresponds to the distance of two
standard deviations, estimated robustly using the MAD.

To complement the evaluation of asymptotic estimator
properties, the finite sample estimator behavior was stud-
ied by forming the output distributional influence functions
(ODIF) for expectation, which is closely related to the sensi-
tivity curve [14, 15]. Mainly the ODIFs for expectation were
similar to the influence functions; only smoothing at discon-
tinuities was observed. The exception was the skipped me-
dian, for which the ODIF did not vanish outside the rejection
point. This indicates that the finite sample skipped median
has quite strong median type properties as it only bounds
the influence of outliers, instead of rejecting them.

3. EXPERIMENTS

Data from different types of TPX assays—molecular, nano-
particles, and liquid-were analyzed. Here, molecular and
nanoparticle refer to the use of molecular and nanoparticle
labels in a solid phase assay, respectively. Both assay types
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employ 3 μm microparticles as a solid phase. In the liquid
assays, measurements are performed in the absence of mi-
croparticles. The molecular label assay data consisted of 8
datasets containing 198 to 552 particle observations. The
sample consisted of BF560.7-BSA coated standard particles
(Arctic Diagnostics Ltd., Turku, Finland). The data from the
nanoparticle label assay of Influenza B virus consisted of 13
datasets with the number of observations ranging from 309
to 493. The liquid phase assay data consisted of 7 datasets
where the number of observations recorded at 100 millisec-
onds intervals varied between 198 and 990. The sample was
a BF560.7 fluorochrome standard solution (Arctic Diagnos-
tics Ltd.). Additionally, bacterial growth of Staphylococcus
aureus was observed by using a novel type of assay, where
microparticles were used as a solid phase for binding the
fluorescent-labeled bacteria. The fluorescence signal from
the particles was recorded over 11.5 hours resulting in 24
datasets containing 53 to 96 particle observations each. The
objective with the bacterial data was to observe the effect of
robust estimation on this kind of dynamic data containing
many outliers.

3.1. Calculation of reference values

Since the correct parameter value to be estimated was not
known, we used the probability density estimates of the data
to define the correct value as the location of the highest peak
in the PDF. In addition, the distributions gave information
on the nature of the measurement data in general, for exam-
ple, the type of contamination. The idea of employing den-
sity estimation can be found in the DER algorithm as well,
but here the approach was based on large sample size, at least
198 observations for molecular, 309 for nanoparticles, and
198 for liquid type of data. Using Parzen’s method, the den-
sity estimate fN is defined as [16]

fN (x) = 1
Nh

N∑

i=1

k
(
x − Xi

h

)
, (6)

where Xi is the observation, N is number of observations, h is
a smoothing parameter, and k is a Gaussian kernel function

k(u) = 1√
2π

e−u
2/2. (7)

Equations (6) and (7) give the density estimate at location
x as the mean of Gaussian distributions, where Xi and h
are expectations and deviation, respectively. Regardless of the
Gaussian kernel, the method does not contain any assump-
tion about the underlying distribution [17]. The smoothing
parameter h was chosen subjectively. The densities were uti-
lized only for evaluation purposes relying on large sample
size and densely computed PDF. Figure 4 shows the density
estimates of typical molecular data, nanoparticle data, and
liquid data.

In the case of the particle measurements, a part of the
outliers has been discarded, based on the time in focus. De-
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Figure 4: Density estimates of molecular (a) and nanoparticle (b)
measurements after removing the potential outliers based on the
time in focus value. Clearly, contamination remains; note small but
distant deviations. Density estimate of a liquid measurement ap-
pears less contaminated and symmetric (c).

spite this, outliers still remain, introducing asymmetric con-
tamination as seen in Figures 4(a) and 4(b), whereas liq-
uid measurements typically contain fewer deviating obser-
vations. The location of the highest peak is assumed to give
the correct value, that is, the parameter to be estimated.
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Figure 5: Bias and RMSE of the molecular particle measurement estimates as function of sample size N . RMSE of Welsch and Andrews
overlap.

3.2. Evaluation of sample size

The estimation was repeated multiple times (n = 1000) for
each sample size (N = 10, 20, . . . , 150) by applying the boot-
strap method [18] to the original data. In total, eight molec-
ular, thirteen nanoparticle, and seven liquid measurements
were resampled with replacement to obtain a large amount of
pseudosamples. Naturally, each dataset was resampled sepa-
rately. Bias and root mean squared error (RMSE) were con-
sidered as measures of performance. Both measures were cal-
culated with respect to the correct parameter given by the
density estimation. To make results from measurements with
different magnitudes comparable, normalization using the
correct parameter was applied. This was done by dividing
the bias and the error term of the RMSE with the correct
parameter. After randomly selecting N observations and be-
fore performing the estimation, part of the potential outliers
was discarded in advance by setting a minimum of 20 mil-
liseconds for the time in focus. The procedure corresponds
to the real measurement situation since N gives the number
of measured observations, though the actual number of ob-
servations used in the estimation is usually less than N . In the
experimental data, the proportion of discarded observations
was approximately one third. This discarding by the time in
focus is applicable only with the particle measurements, not
with the liquid phase. Hence, all the measured observations
of the liquid assays were used in the estimation.

Figure 5 shows the bias and RMSE of the molecular
measurement estimation: the results are a combination of
eight data sets. Bias was formed by averaging the normal-
ized absolute bias values given by distinct measurements.

Similarly, RMSE is the root mean square of normalized er-
rors with respect to the correct parameter. The arithmetic
mean shown for comparison differs clearly from the perfor-
mance of the robust methods and has the largest bias and
RMSE. The M-estimators have the lowest bias and RMSE,
while MTM and median show slightly poorer performance.
The Welsch estimator and Andrews’ sine are the best among
the M-estimators, undershooting the bias and RMSE levels
of 0.02 and 0.04, respectively. Though the margins between
robust methods are rather small, applying Andrews’ sine or
the Welsch in the estimation makes it possible to reach an
RMSE of 0.05 using 70 observations, while conventional and
the most simple robust method, the median, requires 110 ob-
servations. Additionally, the differences between the methods
become more distinct as the sample size increases.

The results of the bootstrap analysis for the nanoparticle
measurements (13 data sets) are displayed in Figure 6. The
bias and RMSE are larger, approximately double, compared
to the molecular data. However, the tendency of the results
is similar, the Welsch estimator and Andrews’ sine have the
lowest bias and RMSE. Moreover, the differences between
the methods are apparent, especially as sample size increases.
The best performance is again obtained with the Welsch and
Andrews’ sine; RMSE less than 0.08 with the sample size of
150.

In Figure 7, the results are shown for the liquid measure-
ments (7 data sets). In general, the performance of the meth-
ods is clearly better than in the previous cases; even the arith-
metic mean undershoots the RMSE level of 0.025, while the
robust methods reach an RMSE of 0.015 with the sample size
of 90, except for the Welsch and Andrews’ sine.
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Figure 6: Bias and RMSE of the nanoparticle measurement estimates as function of sample size N . RMSE of Welsch and Andrews overlap.
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Figure 7: Bias and RMSE of the liquid measurement estimates as function of sample size N .

The results showed that arithmetic mean gave the poorest
performance even in the presence of small deviations in the
data. The combination of mean and median, MTM, did not
behave much differently compared to the median. The best
performance was achieved with the M-estimators. Concern-

ing bias, the M-estimators outperformed the other meth-
ods. Only in the case of liquid measurements, the Welsch
estimator and Andrews’ sine did not give the lowest RMSE
values. This is the consequence of the low-rejection point
resulting in the relative loss of efficiency with only mild
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Figure 8: Repeated measurements and their estimates for molecular measurement (a), nanoparticle measurement (b), liquid assay data (c),
and bacterial measurement (d). Due to axis scaling, all the deviating observations are not shown.

contamination. This was also predicted by the high asymp-
totic variances in Table 1. The preceding points out the trade-
off between powerful bounding or accurate exclusion of
outliers and the efficiency of the estimator [19, 20]. The
somewhat-different behavior of the skipped median, com-
pared to other M-estimators, can be explained by its fi-
nite sample properties given by ODIF. The outcome indi-
cated that the finite sample skipped median had quite strong
median-type properties as the ODIF for the expectation was
only bounded but did not vanish outside the rejection point.
The observed behavior was due to the iterative-weighted
mean solution of the estimate which, in the case of the
skipped median, puts a lot of weight on the previous solu-
tion, making the estimate converge to near the starting point,
the median.

3.3. Time series evaluation

The advantage of the robust estimation is demonstrated fur-
ther with the time series of measurements, that is, repeated
measurements; a more practical example since the sample

size is not pre-determined, only the measurement time. The
measurement time was 10 seconds for the liquid assay and 60
seconds for the other assays. The data in Figure 8 are orga-
nized according to the type of the assay: molecular, nanopar-
ticle, liquid assay, and bacterial application where the sample
sizes were 81–128, 35–64, 99, and 53–96, respectively. In the
panels, the fluorescence signals of single observations and the
estimated values are shown for each repetition. In contrast
to the other data where a stable estimate is desired, bacte-
rial growth is a dynamic process. In the beginning, the sig-
nal was proportional to the number of bacteria in the as-
say. However, the excess of bacteria compared to the fluo-
rescent label resulted in signal reduction after some hours
(hook effect). In the panel, the horizontal axis represents a
time span of about 11.5 hours. The robust estimation meth-
ods in Figure 8 were chosen on the basis of the results in
the previous section (Figures 5–7), the median for the liq-
uid assay and Andrews’ sine for the others. Estimates given
by arithmetic mean are shown for comparison. To visualize
the performance of the methods, estimates are represented as
curves.
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In the case of molecular and nanoparticle measurements,
Andrews’ sine gives more stable estimates, particularly in
the latter case since the data contain some severe deviations.
With the liquid measurements, the median provides steady
estimates; only mild fluctuation is observed. Andrews’ sine
was also applied to the dynamic bacterial data, yielding a
smooth curve following the dense clusters and clearly indi-
cating the expected increase and decrease in the signal over
time. The arithmetic mean performs much more poorly.

4. CONCLUSION

The goal of this study was to improve the accuracy and the re-
peatability of the new TPX assay technology-based measure-
ment by decreasing the influence of the outliers in the esti-
mation of the true signal value from measured observations.
Since the true values were unknown, they were defined using
the density estimates of the data having an abundant num-
ber of observations for experimental purposes. True signals,
that is, the proper part of the measurement data, were as-
sumed to be normally distributed, which is a typical assump-
tion considering biological data. In the experimental data
(molecular-labeled microparticles, nanoparticle-labeled mi-
croparticles, and liquid assay), somewhat-different types of
contamination were noticed. The aim was twofold: to study
whether we could estimate the true signal with a smaller
number of observations leading to a shorter measurement
time and to investigate the parameters of the robust methods
using the influence function (IF). When applied to the solid
phase measurements, introducing large and asymmetric con-
tamination, the M-estimators showed the best performance.
With the liquid data, having only mild deviations, good re-
sults were achieved using simpler robust estimators, such as
the median. The robustness of the median against small pro-
portions of contamination was also pointed out by Bickel and
Frühwirth in [21]. Therefore, we propose to use Andrews’
sine or the Welsch estimator in estimation with the TPX par-
ticle data, and the median with the liquid data, in the future.

Besides the IF, assessing estimator properties relied on
the breakdown point. However, there are some drawbacks.
First of all, the IF is an asymptotic concept and may not
correspond to the finite case, as noticed with the skipped
median. Secondly, the IF considers infinitesimal contamina-
tion and the breakdown point the smallest proportion of
outliers making the estimate totally uninformative, that is,
minimum and maximum number of outliers, respectively.
Clearly, in real life, deviations in measurements lie some-
where between these two situations. Other means of assessing
estimator properties are different types of approximations of
the IF for an arbitrary estimator, for example, the sensitivity
curve used in [21] to evaluate the effect of a single contam-
ination point. In [22], a sensitivity curve with more outliers
was introduced, but the approach is obviously computation-
ally problematic when applied to large sample sizes.

We have shown in this study that the application of
robust estimation methods complements the two-photon
excited fluorescence-based assay measurement. The experi-
ments indicated that the feasibility of the estimator depends
on the characteristics of the contamination. Obviously, it il-

lustrates the problem of having different types of data; the
estimator can be optimal only under certain conditions. This
leads to the selection of the methods and the parameters ac-
cording to the nature of the deviations, for which the in-
fluence function offers a suggestive tool. Often it is difficult
or impossible to exactly characterize deviations, but we have
shown that even a crude division of contamination, for ex-
ample, into asymmetric or mild, can help to achieve better
results using robust estimation methods. Further, application
of robust methods ensures more precise results when sample
size is undetermined due to restricted measurement time, as
was shown in Figure 8. Therefore, the use of the robust es-
timators is beneficial in biological and medical applications,
which are inherently noisy due to the sensitivity of the mea-
surement and the complexity of the problem.
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