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An accurate autoregressive (AR) model can reflect the characteristics of a dynamic system based on which the fault feature
of gear vibration signal can be extracted without constructing mathematical model and studying the fault mechanism of gear
vibration system, which are experienced by the time-frequency analysis methods. However, AR model can only be applied to
stationary signals, while the gear fault vibration signals usually present nonstationary characteristics. Therefore, empirical mode
decomposition (EMD), which can decompose the vibration signal into a finite number of intrinsic mode functions (IMFs), is
introduced into feature extraction of gear vibration signals as a preprocessor before AR models are generated. On the other hand,
by targeting the difficulties of obtaining sufficient fault samples in practice, support vector machine (SVM) is introduced into gear
fault pattern recognition. In the proposed method in this paper, firstly, vibration signals are decomposed into a finite number
of intrinsic mode functions, then the AR model of each IMF component is established; finally, the corresponding autoregressive
parameters and the variance of remnant are regarded as the fault characteristic vectors and used as input parameters of SVM
classifier to classify the working condition of gears. The experimental analysis results show that the proposed approach, in which
IMF AR model and SVM are combined, can identify working condition of gears with a success rate of 100% even in the case of
smaller number of samples.

Copyright © 2008 Junsheng Cheng et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

The process of gear fault diagnosis includes the acquisition of
information, extracting feature, and recognizing conditions,
in which the last two are the prior.

Signal processing methods have been widely used to
extract fault feature of gear vibration signals [1, 2]. Fourier
transform (FT), which has been the dominating analysis tool
for feature extraction of stationary signals, could produce
the statistical average characteristics over the entire duration
of the data. However, it fails to provide the whole and
local features of the signal in time and frequency domain.
Unfortunately, the gear fault vibration signals exactly present
nonstationary characteristics. On the other hand, the time-
frequency analysis methods can generate both time and
frequency information of a signal simultaneously. Therefore,
in the most recent studies, the time-frequency analysis
methods are used in gear fault feature extraction [3–5].
Among all the available time-frequency analysis methods,

the wavelet transform may be the best one [6, 7], however,
it still has some inevitable deficiencies [8]. Firstly, energy
leakage will occur when wavelet transform is used to process
signals due to the fact that wavelet transform is essentially
an adjustable windowed Fourier transform. Secondly, the
appropriate base function needs to be selected in advance.
Moreover, once the decomposition scales are determined,
the results of wavelet transform would be the signal under
a certain frequency band. Therefore, wavelet transform is
not a self-adaptive signal processing method in nature. In
addition, the mathematical model needs to be established
or the fault mechanism of the gear vibration system needs
to be studied before the feature extraction in above-
mentioned methods, which usually are quite difficult to be
fulfilled in practice. Autoregressive (AR) model, which has
no requirements of constructing mathematical model and
studying the fault mechanism of a complex gear vibration
system in advance, is a time sequence analysis method whose
parameters comprise significant information of the system
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condition; more importantly, an accurate AR model can
reflect the characteristics of a dynamic system. Additionally,
it is indicated that the autoregression parameters of AR
model are very sensitive to the condition variation [9, 10].
The gear fault vibration signals own shock characteristics,
whereas AR model can model transients and its frequency
response function can be calculated from autoregression
parameters of AR model. Therefore, the autoregression
parameters can be used to analyze the condition variation
of dynamic systems. However, when the AR model is
applied to nonstationary signals, it is difficult to estimate
autoregression parameters by the least square method or
Yule-Walker equation method. The time-dependent autore-
gressive and moving average (ARMA) model, on the other
hand, can be applied to nonstationary signals, but the more
computation time is needed. Furthermore, only when the
time-dependent ARMA model is applied to the commonly
linear frequency and amplitude modulated signals, can the
satisfactory results be obtained [11]. Therefore, it is necessary
to preprocess the vibration signals before the AR model is
generated. Empirical mode decomposition (EMD) is anew
time-frequency analysis method proposed by Huang et al.
[12, 13], which is based on the local characteristic time
scale of signal and decomposes the complicated signal into
a number of intrinsic mode functions (IMFs). By analyzing
each IMF component that involves the local characteristic
of the signal, the features of the original signal could
be extracted more accurately and effectively. In addition,
the frequency components involved in each IMF not only
relates to sampling frequency but also changes with the
signal itself, therefore EMD is a self-adaptive time frequency
analysis method that is perfectly applicable to nonlinear
and nonstationary processing. Now EMD method has been
widely applied to the mechanical fault diagnosis and con-
dition monitoring. In [14], EMD method is combined with
smoothed nonlinear energy operator to detect flute breakage.
The results demonstrate that this method can efficiently
monitor the conditions of the endmill under varying cutting
conditions. In [15], a fault diagnosis method for sheet
metal stamping process based on EMD and learning vector
quantization is proposed. The results show that this method
could successfully detect the artificially created defects. In
this paper, targeting the nonstationary characteristics of gear
vibration signal and disadvantage of AR model, a fault
feature extraction method in which IMF and AR model are
combined is proposed.

After the feature extraction, the pattern recognition is
another point of gears fault diagnosis [16–18]. Conventional
statistical pattern recognition methods and artificial neural
networks (ANNs) classifiers are studied based on the premise
that the sufficient samples are available, which is not
always true in practice [19]. In recent years, support vector
machines (SVMs) have been found to be remarkably effective
in many real-world applications [20–23]. They are based
on statistical learning theories that are of specialties for a
smaller sample number and have better generalization than
ANNs and guarantee that the extremum and global optimal
solution are exactly the same. Meantime, SVMs can solve the
learning problem of a smaller number of samples [24, 25].

Due to the fact that it is difficult to obtain sufficient fault
samples in practice, SVMs are introduced into gears fault
diagnosis due to their high accuracy and good generalization
for a smaller sample number in this paper.

2. EMDMETHOD

EMD method is developed from the simple assumption that
any signal consists of different simple intrinsic modes of
oscillations. Each linear or nonlinear mode will have the
same number of extrema and zero-crossings. There is only
one extremum between successive zero-crossings. Each mode
should be independent of the others. In this way, each signal
could be decomposed into a number of intrinsic mode
functions (IMFs), each of which must satisfy the following
definition [12, 13].

(1) In the whole dataset, the number of extrema and the
number of zero-crossings must either equal or differ
at most by one.

(2) At any point, the mean value of the envelope defined
by local maxima and the envelope defined by the local
minima is zero.

An IMF represents a simple oscillatory mode compared
with the simple harmonic function. With the definition, any
signal x(t) can be decomposed as follows.

(1) Identify all the local extrema, then connect all the
local maxima by a cubic spline line as the upper envelope.

(2) Repeat the procedure for the local minima to produce
the lower envelope. The upper and lower envelopes should
cover all the data between them.

(3) The mean of upper and lower envelope value is
designated as m1, and the difference between the signal x(t)
and m1 is the first component, h1:

x(t)−m1 = h1. (1)

Ideally, if h1 is an IMF, then h1 is the first IMF component of
x(t).

(4) If h1 is not an IMF, h1 is treated as the original signal
and repeat (1), (2), (3), then

h1 −m11 = h11. (2)

After repeated sifting, that is, up to k times, h1k becomes an
IMF:

h1(k−1) −m1k = h1k, (3)

then it is designated as

c1 = h1k, (4)

the first IMF component from the original data.
(5) Separate c1 from x(t), we could get

r1 = x(t)− c1, (5)

r1 is treated as the original data and repeat the above
processes, therefore the second IMF component c2 of x(t)
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Figure 1: Acceleration vibration signal of a gear with a broken
tooth.

could be got. Let us repeat the process as described above for
n times, then n-IMFs of signal x(t) could be got. Then,

r1 − c2 = r2
...

rn−1 − cn = rn.

(6)

The decomposition process can be stopped when rn
becomes a monotonic function from which no more IMF can
be extracted. By summing up (5) and (6), we finally obtain

x(t) =
n∑

j=1

cj + rn. (7)

Thus, one can achieve a decomposition of the signal
into n-empirical modes and a residue rn, which is the mean
trend of x(t). Each of the IMFs c1, c2, . . . , cn includes different
frequency bands ranging from high to low and is stationary.

Figure 1 shows an acceleration vibration signal of a gear
with a broken tooth. It is decomposed into 5 IMFs and a
remnant rn by using EMD method as Figure 2 illustrates. It
can be concluded from Figure 2 that each IMF component
implies distinct time characteristic scale.

3. SUPPORT VECTORMACHINES (SVMs)

SVM is developed from the optimal separation plane under
linearly separable condition. Its basic principle can be
illustrated in two-dimensional way as Figure 3 [25]. Figure 3
shows the classification of a series of points for two different
classes of data, class A (circles) and class B (stars). The SVM
tries to place a linear boundary H between the two classes
and orients it in such way that the margin is maximized,
namely, the distance between the boundary and the nearest
data point in each class is maximal. The nearest data points
are used to define the margin and are known as support
vectors.

Suppose there is a given training sample set G =
{(xi, yi), i = 1 · · · l}, each sample xi ∈ Rd belongs to a class
by y ∈ {+1,−1}. The boundary can be expressed as follows:

ω·x + b = 0, (8)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time t (s)

−50
0

50

c 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time t (s)

−50
0

50

c 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time t (s)

−20
0

20

c 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time t (s)

−10
0

10

c 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time t (s)

−10
0

10

c 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time t (s)

−10
0

10

r n

Figure 2: The EMD results of a gear vibration signal.
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Figure 3: Classification of data by SVM.

where ω is a weight vector and b is a bias. So the following
decision function can be used to classify any data point in
eitherclass A or B:

f (x) = sign(ω·x + b). (9)

The optimal hyperplane separating the data can be
obtained as a solution to the following constrained optimiza-
tion problem:

minimize
1
2
‖ω‖2,

subject to yi
[(
ω·xi

)
+ b
]− 1 ≥ 0, i = 1, . . . , l.

(10)
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Introducing Lagrange multipliers αi ≥ 0, the optimiza-
tion problem can be rewritten as

minimize L(ω, b,α) =
l∑

i=1

αi − 1
2

l∑

i, j=1

αiαj yi y j
(
xi·xj

)
,

subject to αi ≥ 0,

l∑

i=1

αi yi = 0.

(11)

The decision function can be obtained as follows:

f (x) = sign

( l∑

i=1

αi yi
(
xi·x

)
+ b

)
. (12)

If the linear boundary in the input spaces is not enough
to separate into two classes properly, it is possible to create
a hyperplane that allows linear separation in the higher
dimension. In SVM, it is achieved by using a transformation
Φ(x) that maps the data from input space to feature space. If
a kernel function

K(x, y) = Φ(x)·Φ(y) (13)

is introduced to perform the transformation, the basic form
of SVM can be obtained:

f (x) = sign

( l∑

i=1

αi yiK
(
x, xi

)
+ b

)
. (14)

Among the kernel functions in common use are linear
functions, polynomials functions, radial basis functions, and
sigmoid functions.

4. DIAGNOSIS APPROACH FOR GEARS BASEDON
IMF ARMODEL AND SVM

The following autoregressive model AR(m) could be estab-
lished for each IMF component ci(t) in (7) [26]:

ci(t) +
m∑

k=1

ϕikci(t − k) = ei(t), (15)

where ϕik (k = 1, 2, . . . ,m), m are the model parameters
and model order of the autoregressive model AR(m) of
ci(t), respectively; ei(t) is the remnant of the model and
is a white noises sequence whose mean value is zero and
variance is σ2

i . Since the parameters ϕik can reflect the
inherent characteristics of a gear vibration system and the
variance of the remnant σ2

i is tightly related with the output
characteristics of the system, ϕik and σ2

i can be chosen as
feature vectors Ai = [ϕi1,ϕi2, . . . ,ϕim, σ2

i ] to identify the
condition of the gears system.

The flow chart of a diagnosis method proposed in this
paper is illustrated in Figure 4.

The fault diagnosis approach for gearsbased on IMF AR
model and SVM is represented as follows.

(1) Sample signals N times at a certain sample frequency
fs under the circumstance that the gear is normal and the

Start

Input original signal x(t)

IMF components c1, c2, . . . , cn are
obtained after applying EMD to x(t)

AR model is created for
each IMF component ci(t)

Extract feature vectors Ai

SVM classifier

Identify the condition of the gears

End

Figure 4: The flow chart of the proposed method.

gear has the crack faults. And the 2N signals are taken
as samples that are divided into two subsets, the training
samples and test samples.

(2) Each signal is decomposedby EMD. Different signal
has different amount of the IMFs, denoted by n1,n2, . . . ,n2N ,
and let n = max(n1,n2, . . . ,n2N ). If some samples whose
amount nk (k = 1, 2, . . . , 2N) of IMF components is less
than n, it can be padded with zero to n components
c1(t), c2(t), . . . , cn(t), that is ci(t) = {0}, i = nk + 1,nk +
2, . . . ,n.

(3) In order to eliminate the effect of the signal amplitude
to the variance of the remnant σ2

i , normalize each IMF
component to achieve a new component:

ĉi(t) = ci(t)√∫∞
−∞c

2
i (t)dt

. (16)

(4) Establish AR model for the normalized component,
determine the order m of the model and estimate autore-
gressive parameters ϕik (k = 1, 2, . . . ,m) and the remnant’s
variance σ2

i , where ϕik means the kth autoregressive param-
eters of the ith IMF component. Therefore, the feature
vector used as input vector of SVMs is as follows: Ai =[
ϕi1,ϕi2, . . . ,ϕim, σ2

i

]
.

(5) Separate the training set into two classes: y = +1 and
y = −1, which represent two kinds of working condition of
the gears, namely, the normal gear and the gear with crack
fault. Actually, the decision function f (x) is determined
only by the support vectors, so after the support vectors are
obtained the feature vector of test samples can be input into
the trained SVM classifier and then the working condition
can be classified by the output of the SVMs classifier.
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Table 1: The identification results based on IMF AR model and SVM.

Conditions of the signals IMF
Feature vectors Distance

Results
ϕi1 ϕi2 ϕi3 σ2

i 6 training samples 3 training samples

Normal
c1 0.4488 0.2870 0.2498 2.1331

1.4313 0.9421 +1c2 −0.7683 1.5523 −1.0823 0.9972

c3 −2.1518 2.6944 −2.0254 0.2134

Normal
c1 0.3980 0.1908 0.2330 1.7583

1.3609 1.0774 +1c2 −1.0207 1.8408 −1.6746 0.7681

c3 −2.1360 2.7934 −2.2215 0.1856

Normal
c1 0.5110 0.2482 0.2179 2.0377

1.7666 1.4178 +1c2 −0.7941 1.5924 −1.1135 0.9576

c3 −2.0363 2.4411 −1.5479 0.2315

Crack fault
c1 0.0545 6.7798 0.1888 1.2081

−1.7755 −1.5707 −1c2 −1.7086 2.0489 −1.3569 0.4271

c3 −2.8216 3.9288 −3.2710 0.0439

Crack fault
c1 0.0072 0.7102 0.2035 1.0662

−1.2758 −1.0311 −1c2 −1.7070 2.0933 −1.5511 0.3248

c3 −2.8072 3.7685 −2.9271 0.0321

Crack fault
c1 0.1515 0.5989 0.0622 1.5854

−1.5496 −1.5219 −1c2 −1.4817 1.8108 −1.1972 0.5092

c3 −2.8286 4.0104 −3.4727 0.0436

5. APPLICATIONS

An experiment has been carried out on the small
experiment-rig developed by the Vibration and Test Center
of Hunan University itself. The fault is introduced by cutting
slot with laser in the root of tooth, and the width of the
slot is 0.15–0.25 mm, as well as its depth is 0.1–0.3 mm.
The acceleration sensor has been fixed on the cover of the
gear box before 30 signals under two circumstances are
sampled with sample frequency of 1024 Hz, among which
three randomly chosen samples for each condition are taken
as training samples, and the remain are test data.

Decompose each vibration signals under different condi-
tions with EMD method into a number of IMFs. The analysis
results show that the fault information of gear vibration
signals is mainly included in the first three IMF components.
Therefore, the AR models of the first three IMF components
are established merely. In this paper, the order of the model,
m, is determined with FPE criterion [26]; the autoregressive
parameters ϕik (k = 1, 2, . . . ,m) and the remnant variance
σ2
i of the model are computed with least squares criterion

[26]. As, in fact, the system condition is mainly decided by
the autoregressive parameters of the first several ones and the
remnant variance, those of only the first three ones, that is
ϕik (k = 1, 2, 3) and σ2

i , are chosen as feature vectors in this
paper for convenience.

Define the normal condition as y = +1 and the one with
the crack fault as y = −1; choose the linear kernel function to
calculate and by formulas (11) we can obtain the parameters
of SVM classifier, α = [0, 0.1699, 0.6091, 0.7790, 0, 0]T ,
‖ω‖ = 1.2482, and b = 2.5942. Then, by formula (12)
the identification result of each test sample is obtained, part
of which are shown in Table 1. Obviously, the identification

results are totally consistent with the fact. For further study
of the application of SVMs in the pattern identification with
smaller number of samples, the number of training samples
decrease to three (one is normal and the others is with
crack fault) and the calculation procedure is the same as
above. Here, the parameters of the SVM classifier become
α = [0.5014, 0.5014, 0]T , ‖ω‖ = 1.0014, b = 2.5485. The
identification results to the same test samples are shown in
Table 1 too.

It can be seen from Table 1 that SVM classifier can
still classify the two conditions of gears accurately after
the training samples are decreased, which confirm fully
that the SVM classifier can be applied successfully to the
pattern recognition even in cases where only limited training
samples are available. It also can be found, if we compare
the distances between test samples with different number
of training samples to the optimal separating hyperplane
H , that the distance decreases after the number of training
samples become smaller although the gear work states can
still be identified by SVM, which shows that in this way the
whole performance of the classifier somewhat reduces.

What we discuss above is how to classify two conditions
of gears (normal and crack fault), that is, two-class problem.
When it comes to the multiple-class problems, that is, how
to identify the gears with multiple-class faults (e.g., crack,
broken teeth, etc.), generalizing method can be introduced
to decompose the multiple-class problems into two-class
problems which then can be trained with SVM. In other
words, each time take one group of the training samples as
one class and therest, which do not belong to the former,
can be taken as the other class. Hence, for the k (k ≥ 3)
classes’ problems, the classification of the input space can be
achieved by k decision-functions based on SVM.
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Table 2: The identification results based on IMF AR model and SVMs.

Conditions of the signals
SVM classifier

Identification results
SVM1 SVM2 SVM3

Normal +1 Normal

Normal +1 Normal

Crack fault −1 +1 Crack fault

Crack fault −1 +1 Crack fault

Broken teeth −1 −1 +1 Broken teeth

Broken teeth −1 −1 +1 Broken teeth

Three SVM classifiers are needed to design if three classes
of gear work conditions are to be identified like normal,
with crack fault and with broken teeth fault. First of all,
define that y = +1 represents the normal condition and
y = −1 represents the faults condition, that is, identify the
gear whether it has fault or not by SVM1. Secondly, identify
the gear whether it has crack fault or not by SVM2, here
y = +1 represents crack fault and y = −1 represents other
faults. Finally, identify the gear whether it has broken teeth
fault or not, here y = +1 represents broken teeth fault and
y = −1 represents other faults. The identification approach
is the same as above, that is, extract nine samples as training
ones at random (three samples with normal condition, three
samples with crack fault, and three samples with broken teeth
fault); and then calculate the parameters of SVM classifier.
The part identification results are shown in Table 2 from
which we can see that three SVM classifiers can identify the
working conditions and fault patterns of gears accurately.

6. CONCLUSIONS

AR model is an information container that contains the
characteristics of gear vibration systems, based on which the
fault feature of gear vibration signal can be extracted. The
most important is that the gear work states can be identified
by the parameters of the AR model after the AR model
of vibration signals is established without constructing
mathematical model and studying the fault mechanism.
However, AR model can only be applied to stationary
signals, while the gear fault vibration signals always display
nonstationary behavior. To target this problem, in this paper
before AR model is established, a preprocessing on gear fault
vibration signals is carried out with EMD method, which can
decompose a signal, in terms of its intrinsic information, into
a number of IMFs. The decomposition of EMD is a process of
origin signal linearization and stationary in nature, thus AR
model can be established for each of the IMF components.

The limitations of the conventional statistical pattern
recognition methods and ANNs classifies are targeted.
Support vector machine, which has better generalization
than ANNs and can solve the learning problem of smaller
number of samples quite well, has been introduced into the
pattern recognition.

By the analysis results of three kinds of gears vibration
signals among which one is normal and the other two are
the gears with crack and gears with broken tooth faults
respectively, it has been shown that the gear fault diagnosis

approach based on IMF AR model and SVM can be applied
to classify the gear working conditions and fault patterns
effectively and accurately even in case of smaller number of
samples, which accordingly offers a new approach for the
fault diagnosis of gears. However, because it would take more
time to determine the parameters of SVM classifier and the
AR model, the proposed method cannot be available in real-
time. In addition, what is necessary to point out is that the
SVM theory is still in its perfecting phase, for example, the
problems of kernel functions selection in different condition
and so on are still needed to research further.
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