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1. INTRODUCTION

The problem of estimation of a probability density function
f (x) is interesting for many reasons, among which are the
possible applications in the field of discriminant analysis or
the estimation of functions of the density. The parametric
approach to density estimation assumes a functional form
for the density and then estimates the unknown parameters
using techniques such as the maximum likelihood estimation
or Pearson system based on the estimation of the skewness
and the Kurtosis [1]. However, unless the form of density
is known a priori, assuming a functional form for a density
very often leads to erroneous inference. On the other hand,
nonparametric methods do not make any assumptions as to
the form of the underlying density. Today, a rich basket of
nonparametric density estimators (Kernel, orthogonal series,
histogram, etc.) exists [2–4].

This work focuses on kernel density estimators (KDE)
as introduced by Rozenblatt [5] and Parzen [6]. These
estimators are defined by

̂fn(x) = 1
nhn

n
∑

i=1

K
(

x − Xi

hn

)

, (1)

where (Xi)1≤i≤ n is the observed data with length equal to
n; hn is called the bandwidth; and K is a probability density
function called the Kernel. K is assumed to be an even regular
function with unit variance and zero mean. The Kernel K is
called regular if it is a square integrated density.

For a practical implementation of KDE, the choice of
the bandwidth hn is very important. Small hn leads to an
estimator with a small bias and large variance, whereas large
hn leads to a small variance at the expense of increase: the
bandwidth has to be optimally chosen.

Several techniques have been proposed for optimal
bandwidth selection. The best known of these include rules
of thumb, oversmoothing, least squares cross-validation,
direct plug-in methods, solve-the-equation plug-in method,
and the smoothed bootstrap [7].

Here, a fast version of the plug-in method which gives a
good approximation of the optimal bandwidth in the mean
integrated square error (MISE) sense is considered. The plug-
in method achieves approximation of the bandwidth hn by an
iterative approximation of second derivative of the density f,

noted by J( f ). Thus, a sequence of positive numbers h(k)
n is

constructed through the iterations with n as the sample size,
and k as the number of iterations.
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The analytical approximation of J( f ) enables us to
estimate the pdf only once, whereas the numerical approx-
imation of J( f ) requires the estimation of the pdf for each
iteration.

The present paper is organized as follows. We recall, in
Section 1, the principle of the convergence theorem of such
an estimator in the mean integrated square error (MISE)
sense. A description of the plug-in algorithm is proposed
in Section 2. In Section 3, the fast plug-in algorithm is
introduced. Therefore, an experimental comparison between
the numerical and analytical plug-in KDE is presented. The
last section is devoted to the study of the distribution of
the statistic D obtained from simulated neutral populations
which is described in the same section.

2. THEORETICAL STUDIES

2.1. Notations and recalls

To evaluate the performance of the KDE, it is necessary
to choose a measure of distance between the true density

f and its estimate ̂fn. Especially, common choices are the
integrated square error (ISE) and its expected value, the
mean integrated square error (MISE):

ISE
(

f , ̂fn
) = D2

(

̂fn, f
) =

∫ +∞

−∞

∣

∣ ̂fn(x)− f (x)
∣

∣

2
dx,

MISE = E
[

ISE
(

f , ̂fn
)] = E

[∫ +∞

−∞

∣

∣ ̂fn(x)− f (x)
∣

∣

2
dx
]

.

(2)

The convergence of ̂fn depends on the choice of both the
kernel function and the bandwidth hn. However, the choice
of hn is much more important for the behavior of ̂fn than the
choice of K .

The optimal kernel Ko and the optimal bandwidth are
those which minimize the mean integrated square error
(MISE). However, the condition of convergence required by
MISE is as follows: n(hn)2 has to tend toward 0 when n tends
toward the infinity.

2.2. Convergence in theMISE sense

The minimization of MISE with respect to the bandwidth,
for a fixed size n of the sample, implies the following asymp-
totic study.

Let us consider the expression of mean square error
(MSE):

MSE = E
[
∣

∣ ̂fn − f
∣

∣

2
]

= var
(

̂fn
)

+
(

f − E
[

̂fn
])2

. (3)

The development of this expression gives the following
formula (see the appendix):

E
[
∣

∣ ̂fn − f
∣

∣

2
]

= 1
nhn

∫

K2(u) f
(

x − hnu
)

du

+
[∫

K(u)
(

f (x − uhn
)− f

)

du
]2

− 1
n

(∫

K(u) f
(

x − hnu
)

du
)2

.

(4)

Firstly, let us consider the Taylor pdf expansion:

f
(

x − hnu
)

= f (x)− hnu f
′(x) +

u2

2
h2
n f

′′(x)− u3h3
n

6
f (3)(x − θhnu

)

,

(5)

where 0 < θ < 1.
By using the following notations:

M(K) =
∫ +∞

−∞
K2(u) du, (6)

J( f ) =
∫ +∞

−∞

(

f ′′(x)
)2
dx, (7)

where f ′′ is the second derivative of f .
Δ(hn), which is the Taylor expansion of the MISE (and

consequently an approximation of MISE), is given by (more
details are given in the appendix)

MISE ≈ Δ
(

hn
) = M(K)

nhn
+
J( f )h4

n

4
. (8)

The minimum value of the function Δ(hn) is obtained by
annulling its derivative Δ′(hn) = 0:

Δ′
(

hn
) = −M(K)

nh2
n

+ h3
nJ( f ) = 0. (9)

Therefore, the optimal value of hn noted by h∗n becomes

h∗n = n−1/5·(J( f )
)−1/5·(M(K)

)1/5
. (10)

This gives the minimum for the MISE formulated in this
expression:

MISE = 5
4
n−4/5(M(K)

)4/5(
J( f )

)1/5
. (11)

On the other hand, the optimal kernel Ko, in MISE sense,
has the following expression:

Ko(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if |x| > √5,

3
4
√

5

(

1− x2

5

)

if |x| ≤ √5.
(12)

2.3. Plug-in algorithm

Even if the asymptotic study gives the expression of the
optimal bandwidth, it seems to be difficult to use it in
practice as it depends on the unknown density f. Thus,
several methods have been developed to estimate the optimal
bandwidth from a given data set X1, . . . ,Xn. In this paper,
we are interested in the plug-in method. Such a method
is an iterative algorithm which converges to the optimal
bandwidth.

In this section, we will recall the different steps of the
plug-in algorithm. In Section 3, the new idea which reduces
it to another algorithm having a less complex computation is
described.
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Step 1. Determination of M(K) which is computed using an
analytical integration (6).

Step 2. Arbitrary initialization of J (0)( f ) in order to deter-

mine h(0)
n , the first value of hn (10).

Step 3. Estimation of the pdf f (0) using h(0)
n and (1).

Step 4. At the Kth iteration, deduction of J (k)( f ) value from

the pdf f (k−1) by using (7). Therefore, h(k)
n is computed

by using (10), and f (k) is re-estimated by using (1). The
iterations will allow each time to re-estimate numerically
J( f ), and therefore hn and f.

Step 5. Stop criterion: |h(k−1)
n − h(k)

n | < ε.

3. FAST ITERATIVE PLUG-IN ALGORITHM

3.1. The analytical approximation of J( f ) in
the case of optimal kernel

In this section, we intend to show how it is possible to
compute analytically J( f ) in the case of the optimal kernel:

̂f ′′(x) = 1
nh3

n

n
∑

i=1

K ′′
(

x − Xi

hn

)

. (13)

We have

Ko(x) =

⎧

⎪
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⎪

⎪
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0 if |x| > √5,

3
4
√

5

(

1− x2

5

)

if |x| ≤ √5.
(14)

Then,

K ′′(x) =

⎧
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⎪

⎪
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⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

0, if |x| > √5,

indefinite, if |x| = √5,

−3
√

5
50

, if |x| < √5,

(15)

Considering the following function which is constant in
intervals and which forms a partition of the real line:

β(x) =
[ n
∑

i

K ′′
(

x − Xi

hn

)

]2

=
[

∑

i∈An(x)

K ′′
(

x − Xi

hn

)

]2

,

(16)

where An(x) is the following subset of natural integers:

An(x) =
{

0 ≤ i ≤ n;

∣

∣x − Xi

∣

∣

hn
≤
√

5
}

. (17)

J( f ) is composed of a finite sum of second derivatives
of the optimal kernel. Therefore, the number of indefinite
points for the function β(x) is also finite.

The contribution of such a set of points to the integral
value (J( f )) is, therefore, relatively marginal. This implies
that

J( f ) ≈
∫ +∞

−∞

[

1
nh2

n

n
∑

i=1

K ′′
(

x − Xi

hn

)

]2

dx, (18)

J( f ) ≈ 1
n2h6

n

∫ +∞

−∞
β(x)dx. (19)

Nevertheless, as observed in the following simulations,
the best power of the bandwidth hn which optimizes the
MISE belongs to the interval [4, 5] of the real line. This
result has been deduced experimentally: several simulated
distributions have been tested versus hn powers.

Table 1 visualizes the evolution of MISE for some values
of hn power. The three distributions presented are selected
from an important number of studied ones. Distribution 1
is a mixture from two uniform distributions; Distribution 2
is exponential, whereas Distribution 3 is a mixture between
a uniform distribution and a Gaussian distribution. It is easy
to observe that the power 4.5 seems to be that which allows
the convergence.

From a theoretical point of view, this could be explained
by the fact that the derivation proposed here could be seen as
the well-known kernel approximation method. The variance
parameter of the kernel approximation method corresponds
to the bandwidth of the kernel estimator which needs to
be adjusted. Consequently, the optimal expression of J( f )
becomes

J( f ) ≈ 9
500

1
n2h4.5

n

∫ +∞

−∞
β(x)dx. (20)

3.2. The fast plug-in optimal KDE

In this section, we intend to describe the different steps of the
proposed fast iterative optimal kernel estimator algorithm.

Step 1. Determination of M(K) which is computed using an
analytical integration (6).

Step 2. Arbitrary initialization of J (0)( f ) in order to deter-

mine h(0)
n , the first value of hn (10).

Step 3. At the kth iteration, computation of J (k)( f ) value

directly from the sample (Xi) using (20). Therefore, h(k)
n is

computed from (10), and J( f (k)) is recomputed from (20).
The iterations will allow each time to re-estimate analytically
J( f ).

Step 4. Stop criterion: |h(k−1)
n − h(k)

n | < ε.

The improvement in the complexity computation sense
is obtained by the introduction of the analytical approxima-
tion of J( f ). For this reason, the proposed fast algorithm
does not need the estimation of the pdf step.
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Table 1: MISE versus power of hn for three selected distributions.

Power of hn 6.0 5.5 5.0 4.5 4.0 3.5 3.0

Distribution 1∗10−4 58.0 11.0 5.5 4.3 4.4 5.9 5.9

Distribution 2∗10−4 66.0 35.0 34.0 17.0 27.0 34.0 53.0

Distribution 3∗10−4 64.0 5.8 3.1 1.1 4.8 6.0 9.8

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8
Fast optimal plug-in KDE

Theoretical pdf
Estimated pdf

(a)

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8
Optimal plug-in KDE

Theoretical pdf
Estimated pdf

(b)

Figure 1: Multimodal pdf estimated using optimal plug-in KDE
and fast optimal plug-in KDE (power 6).

3.3. Estimation of simulated Gaussianmixture pdf

In this section, the following Gaussian distribution mixtures
are considered.

3.3.1. Multimodal distribution

f (x) = π1 fμ1, σ1 (x) + π2 fμ2, σ2 (x) + π3 fμ3, σ3 (x) (21)

with μ1 = −1, μ2 = 0, μ3 = 1, and σ1 = 0.5, σ2 = 0.3, σ3 =
0.2, μi, and σ2

i are, respectively, the mean and the variance of
each distribution.

The a priori probabilities π1, π2, and π3 are, respectively,
equal to 0.3, 0.35, and 0.35. The data size is 1000. Then, plug-
in optimal KDE and fast plug-in optimal KDE are applied.
The two estimations are compared with the theoretical dis-
tribution in the mean of MISE criterion which is computed
for each case.

Figure 1 represents each of the KDE pdf estimations
using both the fast plug-in algorithm (power 6 and power
4.5) and the classical plug-in algorithm for estimating the

Table 2: MISE and variance of 100 simulations of the two studied
KDE.

MISE ∗10−4 Variance ∗10−8

Plug-in optimal KDE 2.8 9.9

Fast plug-in optimal KDE 2.7 1.1

optimal bandwidth. It is clear that the convergence is not
reached with the bandwidth selected by using the fast plug-in
algorithm.

However, the power of hn has been adjusted experimen-
tally. Figure 2 clearly shows that the choice of 4.5 as a power
value of hn in (20) instead of 6 enables the fast plug-in
optimal KDE to give a pdf estimation as good as the classical
plug-in optimal KDE. This result is corroborated by MISE
values and their variance presented in Table 2.

Figure 3 plots the evolution of the MISE versus the
sample size (100 iterations). The two curves are very close:
the MISE, while having nearly the same values, are weaker,
and tends toward 0 when the sample size is growing.

Table 3 summarizes the MISE values and their variances:
the difference between the estimations issued from the two
plug-in KDE tends toward 0.

3.3.2. Bimodal distribution

The study of another example which includes a uniform
distribution known for its estimation difficulties is proposed
below:

f (x) = π1 fμ,σ(x) + π2 fa,b(x) (22)

with μ = 0.3 and σ = 0.2; μ and σ are, respectively, the
mean and the variance of the Gaussian distribution. The
parameters of the uniform distribution are a = −0.3 and
b = 0.2.

The a priori probabilities π1 and π2 are, respectively,
0.75 for the Gaussian distribution and 0.25 for the uniform
distribution. The sample size is 4000.

The results are the same as those obtained for the multi-
modal distribution. As observed in Figure 4, the convergence
is obtained with (20), that is, a power value of 4.5 for hn. The
two KDE give close estimations of the pdf. The MISE and
their variances confirm these observations (Table 4).

3.4. Complexity and convergence

For the plug-in optimal KDE algorithm, f and J( f ) are
estimated k times, where k is the number of iterations. k
has a small value due to the speed convergence of the KDE
algorithm. We note by n the sample size and by p the
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Figure 2: Estimation of simulated pdf using optimal plug-in KDE and fast optimal plug-in KDE (power 4.5).

Table 3: Convergence of MISE and variance values versus sample size computed from 1000 simulations of the theoretical distribution using
the two studied KDE.

Sample size 500 1000 1500 2000 2500 3000 3500 4000

Fast plug-in KDE
10−4∗MISE 8.3 6.3 5.5 5.3 4.7 4.4 4.4 4.3

10−8∗ variance 27.5 13.6 9.6 8.3 6.2 5.2 3.4 3.0

Plug-in KDE
10−4∗MISE 8.5 6.4 5.6 5.3 4.7 4.5 4.4 4.3

10−8∗ variance 26.7 13.0 7.8 7.4 4.3 4.3 3.2 3.0

500 1000 1500 2000 2500 3000 3500 4000

Sample size

3

4

5

6

7

8

9
×10−4

M
IS

E

Plug-in KDE
Fast plug-in KDE

Figure 3: MISE estimated by plug-in optimal KDE and fast plug-in
optimal KDE (power 4.5) versus the sample size.

Table 4: MISE and variance of 100 simulations of the theoretical
distribution using the two studied KDE.

MISE ∗10−3 Variance ∗10−6

Plug-in optimal
KDE

21.8 26.1

Fast plug-in optimal
KDE (power 4.5)

21.8 26.4

−1.5 −1 −0.5 0 0.5 1 1.5 2
0

1

2

3
Fast optimal plug-in KDE (power 6)

Theoretical pdf
Estimated pdf

(a)

−1.5 −1 −0.5 0 0.5 1 1.5 2
0

1

2
Fast optimal plug-in KDE (power 4.5)

Theoretical pdf
Estimated pdf

(b)

−1.5 −1 −0.5 0 0.5 1 1.5 2
0

1

2
Optimal plug-in KDE

Theoretical pdf
Estimated pdf

(c)

Figure 4: Bimodal pdf estimated by optimal plug-in KDE and fast
optimal plug-in KDE (power 6 and 4.5).
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Table 5: Characteristics of the studied populations.

Population n π Dp

Sened 55 7.60471 −1.717

Testour 40 6.33846 −1.755

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

Estimation of D-pdf with plug-in optimal KDE

(a)

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

Estimation of D-pdf with fast plug-in optimal KDE

(b)

Figure 5: Estimation of the D-pdf of Sened by optimal plug-in KDE
and fast plug-in KDE.

resolution. The estimation of f is O(2np), and the estimation
of J( f ) is O(2p). The complexity of this iterative algorithm
is consequently O(2knp). In the fast plug-in optimal KDE
algorithm, f is estimated only once. Thus, the computational
cost of this algorithm is O(2p(k + n)). The value of k is
small in comparison to the value of n : k is around 5 and
n generally exceeds 500. It can, therefore, be neglected and
the computational cost becomes O(2np).

4. ESTIMATIONOF PDF OF TUNISIAN
GENETIC PARAMETER

In this section, we are interested in the genetics of pop-
ulations and more specifically in Tajima’s estimation of
the pdf of the statistic D of Tajima. This is estimated in
order to evaluate the neutrality of studied populations. The
data are obtained by generating neutral populations, using
parameters θ and n [8]. Such parameters are computed from
the sample data. The parameter θ is defined as equal to
4Nμ, N being the effective population size, μ the mutations
number per generation, and n is the sample size.

Several methods have been proposed to estimate θ. We
can cite here the number of segregation sites S [9] and
the average number of (pairwise) nucleotides differences
between the DNA sequences, called π [10].

π gives a direct estimation of θ, that is, E(π̂) = θ.

On the other hand, we have ̂θ = S/a1, where a1 =
∑n−1

i=1 (1/i).

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

Estimation of D-pdf with plug-in optimal KDE

(a)

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

Estimation of D-pdf with fast plug-in optimal KDE

(b)

Figure 6: Estimation of the D-pdf of Testour by optimal plug-in
KDE and fast plug-in KDE.

The difference between S and π is the effect of selection.
Deleterious mutants are maintained in a population with
low frequency. If some of the mutants observed have a low
frequency, π̂ may not be the same as S/a1.

Tajima has proposed the following statistic:

D = d
√

̂V (d)
= π̂ − S/a1
√

̂V (d)
. (23)

The mean and the variance of the statistic D are
approximately 0 and 1, respectively. If the distribution of D
is known, it is possible to use it in testing neutral mutation
hypothesis. For this purpose, a computer simulation was
conducted [8] using S and π̂ parameters computed from
the actual data. The value of D obtained from the studied
population sample using (23) is called Dp. P[D < Dp] must
be higher than 0.02 for declaring the population as neutral
with a first-kind risk α equals to 5%.

The characteristics of the considered populations are
introduced in Table 5.

Pdf of theoretical neutral distributions of D are estimated
by using the two plug-in optimal KDE studied in this paper:
the plug-in optimal KDE and the fast plug-in optimal KDE.
It is noticed that there are no differences between the two
estimations (Figures 5 and 6).

For a better estimation of the neutrality of the studied
populations, we propose to compute a mean value of
P[D < Dp] deducted from 100 simulations of theoretical

neutral populations. The obtained results are presented in
Table 6.

The two KDE give the same conclusions about the
neutrality of studied populations. Yet, it is possible to say
without any ambiguity that Sened population is a neutral
population, whereas Testour population is not neutral.
The improvement given by the implementation of the
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Table 6: Mean values of P[D < Dp] obtained from the two optimal
plug-in KDE studied.

P[D < Dp] (Mean value)

Population Plug-in optimal KDE Fast plug-in optimal KDE

Sened 21.3∗10−3 21.4∗10−3

Testour 18.3∗10−3 18.4∗10−3

fast optimal KDE relatively to the optimal KDE concerns
particularly the computational cost.

5. CONCLUSIONS

In this paper, we have presented a fast version of the plug-
in algorithm which estimates the optimal KDE bandwidth
as well as the classical plug-in algorithm. Such a method is
based on the optimal kernel which is directly derived without
taking the indefinite points into account. The convergence in
the MISE sense is obtained with less complexity.

The entity noticed by J( f ) which represents the integral
of the second-order derivative of the pdf is approximated
analytically at each iteration in order to tend to the
optimal bandwidth. However, the mathematical expression
computed analytically (19) gives an incorrect estimation of
the tested pdf. The value of the power of hn was, therefore,
experimentally adjusted to 4.5. The efficiency of this fast
algorithm was tested on several simulations of multimodal
densities which are known for being difficult cases in the
mean of estimation problem, and the proposed algorithm
allows estimation comparable to the plug-in optimal KDE in
the MISE sense with an improvement of the computational
cost.

In the field of genetic population, this fast algorithm
allows a better estimation of the neutrality of studied
populations in the computational cost sense, especially if
this neutrality is not robust (P[D < Dp] ≈ 0.02). The
computation of a mean value of this probability needs a large
computational time. The use of the fast plug-in optimal KDE
provides an improvement of the computational cost without
any loss of quality of results studied.

In fact, several applications could be concerned by the
proposed fast algorithm. The estimation of the probability
error for the CDMA communication systems should be
mentioned as it will be considered in future work. The
generalization to the multivariate case will also be dealt with,
in addition to the consideration of densities confined to a
bounded support [3, 11, 12] in order to study the same idea
for the diffeomorphism KDE.

APPENDIX

MSE = E
[
∣

∣ ̂fn − f
∣

∣

2
]

= E
[

̂f 2
n

]

+ f 2 − 2 f E
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̂fn
]
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[
∣
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∣

∣

2
]

=E
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]−(E[ ̂fn
])2
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[
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])2
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∣

∣
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= var
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])2

.

(A.1)

Let us compute the variance of ̂fn for a kernel density
estimator assuming that the kernel K is an even regular
function with unit variance and zero mean:
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(
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( n
∑

i=1

K
(
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(
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(
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(
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(
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(
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2)

,

var
(

̂fn
) = 1

nh2
n

[
∫

K2
(

x − y

hn

)

f (y)dy

−
(∫

K
(

x − y

hn

)

f (y)dy
)2
]

.

(A.2)

Let us consider the following change of variable: u = ((x −
y)/hn),

var
(

̂fn
) = 1

nh2
n

[
∫

K2(u) f
(

x − hnu
)

hndu

−
(∫

K(u) f
(

x − hnu
)

hndu
)2
]

,

var
(

̂fn
) = 1

nhn

∫

K2(u) f
(

x − hnu
)

du

− 1
n

(∫

K(u) f
(

x − hnu
)

du
)2

.

(A.3)

Secondly, we are interested in the development of ( f −
E[ ̂fn] )2,

E
[

̂fn
] = E

[

1
nhn

n
∑

i=1

K
(

x − Xi

hn

)

]

,

E
[

̂fn
] = 1

nhn
E

[ n
∑

i=1

K
(

x − Xi

hn

)

]

,

E
[

̂fn
] = n

nhn
E
[

K
(

x − X1

hn

)]

,

E
[

̂fn
] = 1

hn

∫

K
(

x − y

hn

)

f (y)dy.

(A.4)
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Let us consider the following change of variable u = ((x−
y)/hn),

E
[

̂fn
] = 1

hn

∫

K(u) f
(

x − uhn
)

hndu

=
∫

K(u) f
(

x − uhn
)

du,

(

f − E
[

̂fn
])2 = (E[ ̂fn

]− f
)2

=
[∫

K(u) f
(

x − uhn
)

du−
∫

K(u) f (x)du
]2

,

(

E
[

̂fn
]− f

)2 =
[∫

K(u)
(

f
(

x − uhn
)− f (x)

)

du
]2

.

(A.5)

Using (A.3) and (A.5), we have

E
[
∣

∣ ̂fn − f
∣

∣

2
]

= 1
nhn

∫

K2(u) f
(

x − hnu
)

du

+
[∫

K(u)
(

f
(

x − uhn
)− f (x)

)

du
]2

− 1
n

(∫

K(u) f
(

x − hnu
)

du
)2

= An(x) + Bn(x)− Cn(x)
(A.6)

with

An(x) = 1
nhn

∫

K2(u) f
(

x − hnu
)

du,

Bn(x) =
[∫

K(u)
(

f
(

x − uhn
)− f (x)

)

du
]2

,

Cn(x) = 1
n

(∫

K(u) f
(

x − hnu
)

du
)2

.

(A.7)

By introducing the following Taylor expansion,

f
(

x − hnu
)

= f (x)− hnu f
′(x) +

u2

2
h2
n f

′′(x)− u3h3
n

6
f (3)(x − θhnu

)

,

(A.8)

where 0 < θ < 1, An(x) and Bn(x) can be approximated by

An(x) ≈ f (x)
nhn

∫ +∞

−∞
K2(u)du,

Bn(x) ≈
[

− f ′(x)h4
n

∫ +∞

−∞
uK(u)du

+
f ′′(x)

2
h2
n

∫ +∞

−∞
u2K(u)du

]2

,

Cn(x) ≈ f 2(x)
n

.

(A.9)

By considering only even kernels with unit variance and zero
mean,

Bn(x) ≈ f ′′2

4
h4
n,

MISE =
∫ +∞

−∞

(

An(x) + Bn(x)− Cn(x)
)

dx.

(A.10)

By using the following notations:

M(K) =
∫ +∞

−∞
K2(u)du, J( f ) =

∫ +∞

−∞

(

f ′′(x)
)2
dx,

(A.11)

where f ′′ is the second derivative of f ; MISE can be
approximated by Δ(hn); the Taylor expansion. Then,

MISE ≈ Δ
(

hn
) = M(K)

nhn
+
J( f )h4

n

4
. (A.12)
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