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Local binary patterns (LBPs) are one of the features which have been used for texture classification. In this paper, a method based
on using these features is proposed for fabric defect detection. In the training stage, at first step, LBP operator is applied to an
image of defect free fabric, pixel by pixel, and the reference feature vector is computed. Then this image is divided into windows
and LBP operator is applied to each of these windows. Based on comparison with the reference feature vector, a suitable threshold
for defect free windows is found. In the detection stage, a test image is divided into windows and using the threshold, defective
windows can be detected. The proposed method is multiresolution and gray scale invariant and can be used for defect detection
in patterned and unpatterned fabrics. Because of its simplicity, online implementation is possible as well.
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1. INTRODUCTION

Defect detection is an important problem in fabric quality
control process. Cost reduction in production and inspection
process is also an important objective for textile manufac-
turers. At present the quality inspection process is manually
performed by experts. Typical fabrics are 1–3 m wide and are
driven with speeds ranging from 20 to 200 m/min. Experts
cannot detect more than 60% of the overall defects if the fab-
ric moves faster than 30 m/min or wider than 2 m [1]. Like
other inspection processes, it has depended on workers’ ex-
perience until now. The development of a flexible, efficient,
reliable, and integrated real-time vision system for industrial
application is an essential issue in quality control process for
textile manufacturers. In particular, if there is a defect, it re-
duces the price of the fabric by 45%–65%. To increase the
overall quality, the homogeneity of fabric, and reliability, an
automated visual inspection system is needed for better pro-
ductivity. Therefore, automation of visual inspection tasks
can increase the efficiency of production lines and improve
quality of the products as well. The previous works in the
field of automatic defect detection are mainly done on paper
[2], steel roll [3], wood [4, 5], carpet [6], and textile [7–11].
Most of the automatic fabric inspection systems are offline
and have detection speed up to 100 m/min. An important
point regarding these systems is that each of them can only

detect specific types of the defects. Therefore, detection speed
and the range of the detectable defects are two main issues in
the field of automatic fabric inspection.

Many attempts have been made in the past three decades
to solve these problems. These attempts have been based on
three different approaches: statistical, spectral, and model
based. In statistical approach, gray-level texture features ex-
tracted from cooccurrence matrix [12], mean and standard
deviations of subblocks [13], autocorrelation of subimages
[14], and Karhunen-Loeve (KL) transform [15] have been
used for the detection of fabric defects. Bodnarova et al.
[16] made use of normalized cross-correlation functions for
detecting defects in fabrics. There exist many model-based
techniques for fabric defect detection. For example, Cohen et
al. [17] used a Markov random field (MRF) model for defect
inspection of fabrics. Chen and Jain [18] used a structural
approach to detect defects in textured images. Atalay [19] has
implemented an MRF-based method on TMS320C40 paral-
lel processing system for real-time defect inspection of fab-
rics. Methods that use low-order MRF are not capable of de-
tecting all kinds of the defects in fabric texture. In order to
detect all kinds of the defects, the order of the model should
be increased. This yields an increase in computational com-
plexity of the algorithm. There also exist many spectral ap-
proaches for fabric defect detection. For example, Kumar
and Pang [20] proposed a method for defect detection using
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Figure 1: Classification of fabrics [23].

Gabor filters which needs a large amount of computations.
They also developed a method for defect detection using only
imaginary part of Gabor filters. Chan and Pang [21] offered
a method for defect detection in textile fabrics using Fourier
analysis. Since Fourier bases are of infinite length, the con-
tribution from each of the spectral components is difficult
to quantify. Therefore, Fourier analysis is not suitable for
detecting local defects. Kumar and Pang [22] developed a
method for defect detection in textile fabrics using optimized
filters.

It should be noted that most of the researches about fab-
ric defect detection are made on unpatterned fabrics and
only a few works for defect detection in patterned fabrics
have been reported. For example, Ngan et al. [23] used a
wavelet-based method for defect detection in patterned fab-
rics. A patterned fabric is defined with repetitive patterned
units in its design. Under the class of patterned fabric, there
are many categories. Patterned fabrics that are used in this
research are Jacquard patterned fabrics. In these types of fab-
rics a flower or a graphical logo may appear on the fabric.
The repetitive unit can range from the simplest charter box,
dots, to the most complicated multiple flower, animals, or
other designed patterns. Besides there are a lot of subcate-
gories under patterned fabric. Figure 1 illustrates a classifica-
tion of fabrics [23].

The researches in this area can be divided into two dif-
ferent categories. In the first category, all attempts are con-
ducted to increase the range of the defects to be detected,
while they need a large amount of computations. References
[20–22] belong to this category. In the second one, increasing
detection speed is the aim, while a restricted range of defects
can be detected. References [12–19] belong to the second cat-
egory.

In this paper, a simple and straightforward method for
detecting irregularities in fabric texture is proposed, which
can detect a wide range of the defects. In this method, local
binary patterns (LBPs) are used. It should be noted that LBP
is used for texture classification [24] but in this paper for the
first time it is used for detecting textural defects in fabric. LBP
is theoretically very simple, yet efficient approach for texture
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Figure 2: Circularly symmetric neighborhoods for different P and
R [24].

classification. This method is based on recognizing that cer-
tain LBP features are fundamental properties of local image
texture and their occurrence histograms are proven to be a
very powerful texture feature [24]. LBP is a highly discrimi-
native texture operator. It records the occurrence of various
patterns in neighborhood of each pixel in P-dimensional his-
tograms. Therefore, this method is used for detecting textural
defects in fabric. The proposed method is simple, multires-
olutional, and invariant to gray scale. Experimental results
show that a wide range of the defects can be detected through
this method. This method is applicable for defect detection
in both unpatterned and patterned fabrics which have a re-
peated and periodic texture.

This paper is organized as follows: in Section 2, local bi-
nary patterns are described in its basic and modified versions.
In Section 3, the proposed method for defect detection is pre-
sented. Section 4 is devoted to implementation and experi-
mental results and the conclusion is provided in Section 5.

2. USING LBP IN TEXTURE CLASSIFICATION

One of the methods used in texture classification is LBPs
[24]. In this method, a neighborhood of the image is consid-
ered and the gray value of the pixel in the center is compared
with the gray values of the other pixels in the neighborhood.
Usually the neighborhood is in circular form and the gray
values of the neighbors which do not fall exactly in the center
of pixels are estimated by interpolation. Figure 2 illustrates
circularly symmetric neighbor sets for various radii, R, and
different numbers of neighbors, P.

In basic form of this method, LBP operator in one neigh-
borhood of the image is defined as follows [24]:

LBPP,R =
P−1∑

i=0

s
(
gi − gc

)
2i, s(x) =

{
1, x ≥ 0,

0, x < 0.
(1)

In (1), the gray value of the central pixel is gc and the gray
value of the ith neighbor is gi. According to this definition, it
is seen that the output of the operator is a P bit binary num-
ber with 2P distinct values. On the other hand, the value of
the output is quite dependent on the labeling of the neigh-
bors. When the image is rotated, since the neighborhood is
considered in circular form, neighbors will correspondingly
move along the perimeter of the circle. In order to make the
algorithm invariant to rotation and assign a unique value to
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each neighborhood, the output of LBP operator is rotated
and the minimum value is selected:

LBPri
P,R = min

{
ROR

(
LBPP,R, i

) | i = 0, 1, . . . ,P − 1
}
. (2)

In (2), a P-bit number is rotated i times and the minimum
value between resulting numbers for i between 0 to P − 1 is
selected. In (2), ROR is the abbreviation of rotate right.

In modified version of LBP [24], at first a uniformity
measure, U , is defined as the number of spatial transitions
between 1 s and 0 s in the pattern. Then patterns that have
uniformity measure less than UT are defined as uniform pat-
terns. The modified LBP is defined as follows:

LBPriuT
P,R =

⎧
⎪⎪⎨
⎪⎪⎩

P−1∑

p=0

s
(
gp − gc

)
if U ≤ UT ,

P + 1 otherwise.

(3)

Equation (3) shows that modified LBP assigns labels from 0
to P to uniform neighborhoods and label P + 1 to nonuni-
form ones. After applying this operator to the image, the
probability of encountering a specific label can be approxi-
mated by the ratio of the number of neighbors which have
that label to the number of all neighbors. Therefore, at the
end of this process P+2 probabilities will be computed. These
probabilities can be used as powerful features for texture clas-
sification. For classification task, the log-likelihood ratio is
used. The sample under test belongs to class K if the com-
puted probabilities minimize the following ratio:

L(S,K) =
P+1∑

i=0

Si log
(

Si
MiK

)
. (4)

In (4), MiK is the probability of encountering label i in the
patterns of class K , and Si is the probability of encountering
label i found from the sample under test. According to (3),
it is obvious that any monotonic change in gray values does
not change the pattern and this method is invariant to gray
scale changes.

3. THE PROPOSED ALGORITHM FOR
TEXTILE DEFECT DETECTION

In this section, a new method for defect detection in fab-
rics, based on a modified version of LBP, is presented. In
basic and modified versions of LBP, selecting neighborhood
in circular form is to make the algorithm invariant to rota-
tion. Since during inspection process, rotation of fabric rolls
can be avoided, selecting circular neighborhood is not neces-
sary. On the other hand, computing brightness using inter-
polation in circular neighborhood takes a lot of time. There-
fore, in our proposed method, a square neighborhood is con-
sidered. In this case, the notation of LBPs is renamed from
LBPP,R to LBPP,wm , where the size of the window for apply-
ing LBP operator is wm×wm pixel. Figure 3 illustrates square
neighborhoods and how to apply the LBP operator. Using
LBP operator, a label from 0 to P + 1 is assigned to each
neighborhood of the image. These labels reflect the relation
between a pixel and its neighbors. We use the probability of
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Figure 3: LBPs for two square neighborhoods: (a) wm = 3, P = 8
and (b) wm = 5, P = 16.

encountering these labels, as a key feature for our proposed
defect detection method. Experimental results show that if
the probability of encountering label P + 1 which is assigned
to nonuniform patterns is small (less than 1%) these features
can classify the texture correctly, otherwise different patterns
in the texture take the same label (P + 1) and cannot be clas-
sified.

Our simulation results show that if in the definition of
LBP operator the value of UT is selected equal to P/4, only
a negligible portion of the patterns in the texture takes label
P + 1.

In the subsequent sections, the proposed method for de-
fect detection in unpatterned and patterned fabrics will be
presented. Output of the proposed algorithm is a binary im-
age which is called defect pattern. Black pixels in the defect
pattern represent nondefective areas of the fabric and white
pixels represent defective areas. The size of the defect pattern
is the same as the size of the input image.

3.1. Defect detection in unpatterned fabrics

For detecting defects in unpatterned fabrics, in training stage,
LBP operator is applied to the whole image of a defect free
fabric and reference feature vector, M, is computed. Each el-
ement of this vector is the probability of encountering la-
bels 0 to P + 1 in the defect free image. If the number of
points in LBP (number of pixels in the neighborhood) op-
erator is P, the reference feature vector which is called M will
be P + 2 dimensional. After computing M, the image of the
defect free fabric is divided into nonoverlapping windows of
size Wd×Wd which are called detection windows. Then LBP
operator is applied to each of these windows. The window
for applying LBP operator is called LBP mask. Each element
of the feature vector computed for a window is the proba-
bility of encountering a specific label in that window. In or-
der to estimate these probabilities accurately, the number of
operators applied to each detection window should be large
enough (as a rule of thumb, at least 100 operators in each
window). If the size of the detection window is Wd × Wd

and the size of LBP mask is wm × wm(Wd � wm), then the
number of operators in each window will be (Wd −wm + 1)2.
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Therefore, if the minimum number of operators applied in
each window is 100, then Wd ≥ 9 + wm.

It should be noted that the features extracted by LBP op-
erator can describe fabric texture correctly if the textures ap-
peared in detection windows are similar to fabric texture.
Therefore, the size of the detection window (Wd ×Wd) cre-
ated on the image should be greater than the size of the repet-
itive unit of fabric texture. However, in unpatterned fabrics
the only condition for window size is Wd ≥ 9 + wm. As the
size of the detection window increases, the capability of the
algorithm in detecting small defects and the resolution of the
defect pattern decrease. By applying LBP operator to each of
these windows, vector Sk which is P + 2 dimensional is com-
puted. The log-likelihood ratio for each of these windows will
be computed as follows:

Lk
(
Sk,M

) =
P+1∑

i=0

Sik log
(
Sik
Mi

)
, k = 1, 2, . . . ,N. (5)

In (5), N is the number of detection windows. Since the min-
imization of log-likelihood ratio shows the similarity to a
specific class, the maximum value between these ratios will
be used as a threshold for defect-free windows as follows:

T = Max
(
Lk
)
, k = 1, 2, . . . ,N. (6)

After computing reference feature vector M and the
threshold T , in the detection stage, the test image is divided
into the detection windows and log-likelihood ratio is com-
puted for each of these windows. If log-likelihood ratio ex-
ceeds the threshold, the relevant window belongs to the de-
fective areas of the fabric. In order to increase the detection
capability of the algorithm, a large area of the detection win-
dow should be occupied by the defect. Therefore, in the de-
tection stage, image is divided into overlapping windows. Ac-
cording to the simulation results, if the overlapping step of
the detection windows is Wd/2, the proposed algorithm has
appropriate detection power. Increasing overlapping step will
decrease detection speed.

3.2. Defect detection in patterned fabrics

For detecting defects in patterned fabrics which have a peri-
odic texture, in training stage, as it was mentioned in the pre-
vious sections, at first LBP operator is applied to the whole
image of a defect free sample then the image is divided into
the detection windows and LBP operator will be applied to
each of these windows. Since the fabrics are patterned if the
size of the window is less than the size of the repetitive unit
in the fabric texture, then the texture in the detection win-
dows will be different. So, the size of the detection window
should be much greater than the repetitive unit of the fab-
ric texture. Increasing the size of the detection window will
increase computational complexity and decreases the resolu-
tion of the defect pattern. In order to solve this problem, the
size of the detection window will be chosen a little greater
than the size of the repetitive unit in the fabric texture and in
order to take into account the interaction between all pixels
with their neighbors, the image is divided into overlapping

windows. In this case, if the size of LBP mask is wm × wm

pixel, overlapping step of wm − 1 between detection win-
dows is sufficient to take into consideration the interaction
between all pixels in different detection windows (interaction
between pixels in the last column and the last row of a win-
dow with pixels in the first column and the first row of the
adjacent window). Using these types of windows, the thresh-
old is computed as in (5) and (6). The remaining stages are as
for unpatterned fabrics. It should be noted that this method
is a multiresolution and the results of selecting different win-
dows can be combined easily as follows:

LNK =
N∑

n=1

LK
(
SnK ,Mn

)
, (7)

where N is the number of windows (neighborhood) selected
for applying LBP operator and K is the index of the test-
ing window. The overall block diagram of the proposed al-
gorithm is shown in Figure 4.

It should be mentioned that, in the training stage, if the
number of defect free sample is Ndf , then the reference fea-
ture vector can be estimated more accurately using

M =
∑Ndf

i=1 Mi

Ndf
, (8)

where Mi is the reference feature vector computed for sam-
ple i. After computing the reference feature vector, M, the
threshold is computed using

T = max
i

(
Ti
)
, (9)

where Ti is the threshold computed for sample i using (5)
and (6) and computed M.

4. IMPLEMENTATION AND RESULTS

In this research, two types of unpatterned fabrics, twill and
plain, are used. Six different types of the defects like dou-
ble yarn, missing yarn, broken fabric, weft crack, float, and
knots in these types of fabrics are considered. These defects
are shown in Figure 5. All these fabrics have yarns of different
thicknesses, and their warp and weft direction thicknesses are
also different. Detection results for unpatterned fabrics are
also shown in Figure 5.

In patterned fabrics, six different types of defects that
usually appear in fabric texture are considered. These defects
are shown in Figure 6. Detection results for patterned fabrics
are also shown in Figure 6. Images are 8-bit gray scale images
of size 256× 256. These images are also used in [23, 26]. The
resolution of the camera used for these images is 200 dpi.

For detecting defects, different sizes of detection windows
were tested and the size of 16 × 16 yielded the best results.
In patterned fabrics the size of the repetitive unit is nearly
16× 16. As explained in Section 3.1, in order to estimate the
probability of encountering different labels (0 to P + 1) ac-
curately, the size of the detection windows should be large
enough. It is also dependent to P. Increasing the size of the
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Figure 4: Overall block diagram of the proposed algorithm.

(a) (b) (c) (d) (e)

Figure 5: (a) Images of defective unpatterned fabrics from top to bottom: double yarn, missing yarn, broken fabric, weft crack, float, and
knot. Detection results in the form of defect pattern using (b) LBP8,3, (c) LBP16,5, (d) LBP24,7, and (e) LBP8,3+16,5.

detection windows decreases the capability of the algorithm
in detecting small size defects. Experimental results show that
if there are at least 100 operators in each detection window,
the probability of encountering different labels can be esti-

mated accurately. Since the maximum size of LBP mask in
the proposed algorithm is 7× 7, the size of 16× 16 for detec-
tion windows is sufficient for estimating these probabilities
accurately.
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(a) (b) (c) (d) (e)

Figure 6: (a) Images of defective patterned fabrics from top to bottom: dirty yarn, hole, thick bar, broken end, netting multiple, knot.
Detection results in the form of defect pattern using (b) LBP8,3, (c) LBP16,5, (d) LBP24,7, and (e) LBP8,3+16,5.

Table 1: Detection rate (%) for different defect types of patterned fabrics: (a) dirty yarn, (b) oil stain, (c) broken end, (d) netting multiple,
(e) hole, and (f) knots.

Operator P,w Number of features
Defect types

(a) (b) (c) (d) (e) (f)

LBPP,w

8,3 10 97 95 95 92 96 95

16,5 18 96 94 94 N.D1 95 N.D

24,7 26 97 95 94 N.D 95 N.D

8, 3 + 16, 5 10 + 18 98 98 98 95 96 95

8, 3 + 24, 7 10 + 26 98 96 96 94 95 97

16, 5 + 24, 7 18 + 26 97 95 94 N.D 95 N.D

8, 3 + 16, 5 + 24, 7 10 + 18 + 26 98 98 98 96 97 97
1Not detected, when the number of detected defective windows is less than half of the number of true defective windows.

One of the ways to measure the performance of defect de-
tection algorithms is calculating the detection rate [25] which
is defined as follows:

DR = 100×
(
Ncc + Ndd

Ntotal

)
, (10)

where Ncc is the number of defect free windows which are de-
tected as nondefective (true negative). Ndd is the number of
defective windows which are detected as defective (true pos-
itive). Ntotal is the total number of detection windows that
is created on the image. Table 1 illustrates the detection rate
for different types of the defects using different LBP masks.
For computing the detection rate, defect pattern generated
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Table 2: Detection rate (%) for different defect types of unpatterned fabrics: (a) Double Yarn, (b) Missing Yarn, (c) Broken Fabric, (d) Weft
Crack, (e) Float, and (f) Knots.

Operator P,w Number of features
Defect types

(a) (b) (c) (d) (e) (f)

LBPP,w

8,3 10 97 85 95 92 94 95

16,5 18 98 90 93 90 94 93

24,7 26 95 N.D 93 90 93 90

8, 3 + 16, 5 10 + 18 98 98 98 95 97 97

8, 3 + 24, 7 10 + 26 98 96 96 94 95 95

16, 5 + 24, 7 18 + 26 97 N.D 94 92 95 94

8, 3 + 16, 5 + 24, 7 10 + 18 + 26 99 98 98 96 97 97

(a) (b) (c) (d)

Figure 7: (a) Images of defective fabrics, (b) defect pattern generated by the method of [26], (c) defect pattern generated by proposed
algorithm (overlapping step 8 pixels), and (d) defect pattern generated by proposed algorithm (overlapping step 15 pixels).

by the algorithm is divided into 16× 16 windows and a win-
dow that contains at least one white pixel is considered as
defective. Since images are of size 256 × 256, Ntotal is 256. In
our image dataset of patterned fabrics, there exist sixty im-
ages of dot patterned Jacquard fabrics. Half of these images
are defect free. Training stage is done using only five sam-
ples of defect free images. In testing stage all of the defect free
samples are classified correctly. On the other hand, for each

type of the defects there exist five different images in our data
set. The detection rate listed in Table 1 is the average of the
detection rates for all of the defective images in the database.
In Table 2 detection rates for different types of the defects in
unpatterned fabrics are listed.

As shown in Figures 5 and 6, a 3 × 3 mask for apply-
ing LBP operator, LBP8,3, detects almost all kinds of the de-
fects, but the defect pattern found for patterned fabrics is not
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Table 3: Detection rate (%) of proposed algorithm and algorithm of [26] tested on dot patterned fabrics: (a) dirty yarn, (b) hole, (c) oil
stain, (d) knot, (e) broken end, and (f) netting multiple.

Algorithm
Defect type

Average detection rate
(a) (b) (c) (d) (e) (f)

Reference [26] 96 97 94 95 95 94 95.1

Proposed1 98 95 97 94 97 93 95.8

Proposed2 98 96 98 94 98 95 96.5
1
Overlapping step 8 pixels.

2
Overlapping step 15 pixels.

continuous and exact in unpatterned fabrics. Therefore, the
features of 3×3 mask are combined with the features of 5×5
and 7 × 7 masks using (7). On the other hand, using 5 × 5
and 7× 7 (LBP16,5 and LBP24,7) masks for detection as illus-
trated in Table 1 do not detect defects like netting multiple
and knots. Table 1 shows that combination of features of 3×3
and 5 × 5 masks (LBP8,3+16,5) has an appropriate detection
rate (more than 95%).

4.1. Performance comparison

In the subsequent subsections, the performance of the pro-
posed algorithm is compared with the performance of simi-
lar algorithms. For performance comparison two criteria are
used:

(1) defect detection accuracy,
(2) computational complexity and speed.

For comparing the detection accuracy of the algorithms,
the defect patterns generated by different algorithms are
compared visually. The detection rate is also used to compare
the detection accuracy.

In order to compare the computational complexity, the
number of operations required for processing a test sample
is considered.

4.1.1. Patterned fabrics

In order to make a comparison between the proposed
method and the existing methods for defect detection in pat-
terned fabrics, the results of the proposed method are com-
pared with the results of methods in [26, 27]. These methods
are the two newest methods for detecting defects in patterned
fabrics. In the training stage of the method of [26], a win-
dow of a defect free sample is selected. The size of this win-
dow should be greater than the size of the repeated part of
fabric texture. This window will be moved on a defect free
sample image pixel by pixel. At each point, difference be-
tween gray values of pixels in the window and gray values
of pixels in the underlying window on the image is com-
puted. The average of absolute value of differences is com-
puted for each point. By defining a suitable threshold, de-
fective points can be detected. Images of patterned fabrics
in both methods are the same. Comparison of the results
in Figure 7 reveals that in some specific types of the defects
like knot and hole, the method of [26] yields more accurate
defect pattern; and in some other types like dirty yarn, oil

Broken end

Holes

Netting multiple

Thick bar

Thin bar

(a) (b) (c)

Figure 8: Detection results for star patterned fabrics: (a) defective
samples, (b) detection results of the proposed algorithm, and (c)
detection results of the method of [27].

stain, and broken end, the proposed method generates more
accurate defect pattern. So, the proposed method and the
method in [26] have almost the same accuracy. The method
of [26] requires a large amount of computations and it is
not suitable for online implementation. However, the pro-
posed method due to its simplicity can be used for online
defect detection. It should be noted that the resolution of
the defect pattern generated by our proposed algorithm can
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Table 4: Detection rate (%) of proposed algorithm and algorithm of [27] tested on star patterned fabrics: (a) thin bar (dirty yarn), (b) hole,
(c) thick bar (oil stain), (d) broken end, and (e) netting multiple.

Algorithm
Defect type

Average detection rate
(a) (b) (c) (d) (e)

Reference [27] 95 95 94 93 96 94.6

Proposed1 97 97 96 98 96 96.8

Proposed2 98 97 99 98 95 97.4
1
Overlapping step 12 pixels.

2
Overlapping step 24 pixels.

Table 5: Detection rate (%) of proposed algorithm and algorithm of [27] tested on box patterned fabrics: (a) thin bar (dirty yarn), (b) hole,
(c) thick bar (oil stain), (d) broken end, and (e) netting multiple.

Algorithm
Defect type

Average detection rate
(a) (b) (c) (d) (e)

Reference [27] 95 97 94 94 94 94.8

Proposed1 97 96 98 98 95 96.8

Proposed2 98 96 98 98 98 97.6
1
Overlapping step 12 pixels.

2
Overlapping step 24 pixels.

be increased by increasing the overlapping of the detection
windows. Moving windows pixel by pixel on the image will
generate a defect pattern like those in [26]. It is shown in
the fourth column of Figure 7. However, increasing the over-
lapping between detection windows will increase the com-
plexity of the algorithm. Table 3 illustrates the detection rate
computed for our proposed algorithm and algorithm of [26].
The method of [27] uses Bollinger bands for detecting defects
in patterned fabrics. Bollinger bands consist of three bands:
upper, middle, and lower. In this method, patterned fabrics
can be considered as comprising many rows (columns), with
a pattern designed on each row (column). The principle of
this method is that the patterned rows (columns) will gen-
erate periodic upper and lower bands. Any defect region in
patterned fabric means that there would be a break of pe-
riodicity in the pattern. For better evaluation performance
of the proposed algorithm, it has been tested on two other
types of patterned fabrics named as star patterned and box
patterned. Detection results of the proposed algorithm and
method of [27] are compared in Figures 8 and 9. The size of
a repetitive unit for both fabrics is 25×25. Therefore, the size
of 25×25 is selected for detection windows. The overlapping
step is 12 pixels. Tables 4 and 5 illustrate the detection rate
of the proposed algorithm and algorithm of [27] tested on
star patterned and box patterned fabrics. In the method of
[26] if the size of repetitive unit of fabric texture is 16 × 16
and the size of test sample is 256× 256 pixel, moving the de-
tection windows on test sample pixel by pixel yields 58 081
different positions. For each position of detection window in
this method, 256 subtractions, 255 additions, 256 compar-
isons, and one division are required. Therefore, processing a
test sample of size 256 × 256 pixel by this method requires
14 868 736 subtractions, 14 810 655 additions, 14 868 736
comparisons, and 58 081 divisions.

In the proposed method if overlapping step between
detection windows is 8 pixels, total number of detection

windows will be 961. In each detection window, for ap-
plying LBP8,3, 1568 comparisons, 10 multiplications, and
10 divisions are required. For applying LBP16,5, 2304 com-
parisons, 18 multiplications, and 18 divisions are required.
Therefore, to process a test sample by the proposed method
(LBP16,5+8,3), 3 720 992 comparisons, 26 098 multiplications,
and 26 098 divisions are required.

It should be noted that for computing log-likelihood
ratio, the log(·) operation can be omitted and approxi-
mated log-likelihood ratio can be used. In approximated log-
likelihood ratio, log(x) is approximated as x − 1 so approxi-
mated log-likelihood ratio (L̂) can be computed by

L(S,K) =
P+1∑

i=0

Si log
(

Si
MiK

)
≈

P+1∑

i=0

Si

(
Si
MiK

− 1
)

=
P+1∑

i=0

S2
i

MiK
−

P+1∑

i=0

Si =
P+1∑

i=0

(
S2
i

MiK

)
− 1

L̂(S,K) =
P+1∑

i=0

S2
i

MiK
.

(11)

Simulation results show that using approximated log-
likelihood ratio does not change the detection rate of the pro-
pose algorithm.

In the method of [27] if the size of repetitive unit of fab-
ric texture is 25× 25 in each row (column) of the test sample
of size 256 × 256, 232 segments of length 25 pixels can be
considered. In each segment, 48 additions, 25 subtractions,
25 multiplications, 2 divisions, and one square root are re-
quired. Table 6 illustrates the number of operations which
are required for processing a test sample of size 256 × 256,
using proposed method and methods of [26, 27].

As shown the computational complexity of the proposed
algorithm can be reduced by reducing the overlapping step
between detection windows and reducing the resolution of
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Table 6: Number of different operations which are required to process a test sample using different algorithms.

Algorithm Size of repetitive unit of fabric texture Addition subtraction Multiplication comparison division Square root

Proposed1 16× 16 23064 0 26098 3720992 26098 0

Proposed2 25× 25 8424 0 9072 3657312 9072 0

[26] 16× 16 14810655 14868736 0 14868736 58081 0

[26] 25× 25 33586176 33640000 0 33640000 53824 0

[27] 16× 16 3701760 1974272 1974272 0 123392 123392

[27] 25× 25 5701632 2969600 2969600 0 118784 118784
1
Overlapping step of 8 pixels between detection windows.

2
Overlapping step of 12 pixels between detection windows.

Broken end

Holes

Netting multiple

Thick bar

Thin bar

(a) (b) (c)

Figure 9: Detection results for box patterned fabrics: (a) defective
samples, (b) detection results of the proposed algorithm, and (c)
detection results of the method of [27].

the defect pattern, which cannot be done in similar algo-
rithms.

4.1.2. Unpatterned fabrics

For evaluating performance of the algorithm in detecting de-
fects of unpatterned fabrics, the detection results of the pro-

(a) (b) (c)

Figure 10: (a) Defective fabric images, (b) detection results using
our proposed algorithm, and (c) detection results using Gabor fil-
ters.

posed algorithm are compared with those of the defect de-
tection using Gabor filters [28]. Defect detection using Ga-
bor filters is one of the most accurate methods [29]. In this
method [28], an image of a defect free sample is passed
through a bank of Gabor filters. Transfer function of each
filter is obtained by changing scale and orientation of the Ga-
bor functions. In the method selected for comparison, there
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exist 16 filters in the filter bank, which are obtained by chang-
ing the orientation and scale of Gabor functions to four ori-
entations and four scales. Output of each filter is thresholded
and combined with the output of the other filters using an
image fusion technique. So, for each filter in the filter bank, a
set of suitable parameters are computed. Passing test sample
through these filters will generate a defect pattern that detects
and localizes the irregularities in fabric texture. Figure 10 il-
lustrates the detection results of the proposed algorithm and
the detection results using Gabor filters. Some of the images
of unpatterned fabrics were scanned from album of standard
defects in textile industry [30] and the others were collected
from textile mills around TamilNadu state of India. These
images are gray-scale images with 8 bits long and with the
size of 256× 256. If we use a procedure for computing detec-
tion rate like what was used for patterned fabrics, the aver-
age detection rate for proposed algorithm will be 97.1% and
for Gabor filters will be 98%. The methods that have been
based on Gabor filters use the idea of multichannel filtering
which takes a lot of time. Therefore, these methods have a
little chance for online implementation.

5. CONCLUSION

In this paper, a new method for detecting textural defects
in fabrics based on modified local binary patterns has been
presented. The proposed method has an acceptable detec-
tion rate (more than 95%) in all kinds of the defects which
is more than that of human experts in both unpatterned and
patterned fabrics. Furthermore, detecting all kinds of the de-
fects needs considering different windows which can be easily
done using the multiresolution property of this method.

This method is a useful tool for textile industries to in-
spect, identify, and localize local defects in textile products.
The proposed method is simple, gray-scale invariant, and
multiresolution. According to the performance comparison
and implementation results, it is evident that the proposed
method can detect and localize defects in patterned fabrics,
more accurately than similar algorithms. The computational
complexity of the proposed algorithm is less than similar al-
gorithms. Therefore, it can be used in online defect detection.

In spite of low-resolution defect pattern, the defect pat-
tern generated by the proposed method is suitable for a wide
range of the defects. It should be mentioned that, practically,
the detection rate and detection speed are of higher privilege
than the resolution of the defect pattern generated by the al-
gorithm.

The proposed method is implemented on three types
of patterned fabrics: dot patterned, box patterned, star pat-
terned and two types of unpatterned fabrics: twill and plain.
Six different types of patterned fabric defects and six different
types of unpatterned fabrics are considered in this research.
Implementation results show that the proposed method is
capable of detecting all kinds of the defects in both types of
the fabrics. It should be noted that this method can be used
for defect identification too. It can also be used for defect de-
tection in products which have regular and periodic textures
such as timber or plastic.
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