
Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2010, Article ID 957916, 15 pages
doi:10.1155/2010/957916

Research Article

A Three-Dimensional RangeMigration Algorithm for
Downward-Looking 3D-SAR with Single-Transmitting and
Multiple-Receiving Linear Array Antennas

Lei Du,1, 2, 3 YanpingWang,1, 2 Wen Hong,1, 2 Weixian Tan,1, 2 and YirongWu1, 2

1The National Key Laboratory of Microwave Imaging Technology (MITL), P.O. Box 2702, Beijing 100190, China
2 Institute of Electronics, Chinese Academy of Sciences (IECAS), P.O. Box 2702, Beijing 100190, China
3The Graduate University of Chinese Academy of Sciences (GUCAS), Beijing 100049, China

Correspondence should be addressed to Yanping Wang, ypwang@mail.ie.ac.cn

Received 14 June 2009; Revised 29 October 2009; Accepted 16 December 2009

Academic Editor: Andreas Reigber

Copyright © 2010 Lei Du et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper presents a three-dimensional (3D) range migration algorithm (RMA) suitable for downward-looking 3D-SAR with
single-transmitting and multiple-receiving linear array antennas (STMR-LAA). As the round-trip range equation in 3D-SAR with
STMR-LAA is a dual square root, the signal spectrum in 3D wavenumber domain contains nonlinear phase terms besides constant
and linear phase terms. In this paper, the approximate expression of the signal spectrum is derived by expanding the implicit
phase term to its Taylor series. Then the constant and nonlinear phase terms are calculated and compensated by multiplying the
wavenumber filters. Finally, a 3D wavenumber mapping is proposed to make the signal evenly sampled in 3D wavenumber domain.
Some simulating results are presented to validate the correctness of the analysis and the feasibility of the algorithm. In addition,
the required accuracy on the platform position is analyzed at the end of the paper.

1. Introduction

Synthetic aperture radar (SAR) is a well-developed technique
for remote sensing. It can provide two-dimensional (2D)
high-resolution radar images along azimuth and slant-range
directions. However, since 2D radar images are obtained
by projecting the three-dimensional (3D) distributed targets
onto the 2D plane, they usually suffer from geometric
distortions, such as foreshortening, layover, and so forth.
Furthermore, conventional SAR system generally works at
the side-looking mode and exhibits strong shadowing caused
by buildings, hills, and valleys, which may result in the
information loss of the explored area [1].

To overcome the disadvantages mentioned above, the
concept of 3D-SAR imaging with linear array antennas
(LAA) was proposed [1–3]. 3D-SAR with LAA combines
the theories of real and synthetic aperture and can provide

high-resolution radar images in three dimensions: azimuth,
ground-range, and elevation. In addition, 3D-SAR with LAA
can alleviate shadowing effects by looking downwards.

Due to its advanced performance, 3D-SAR with LAA
has attracted wide attention. Two airborne downward-
looking 3D-SAR with LAA systems, DRIVE [4–7] and
ARTINO [8–16], are being developed at ONERA and FGAN-
FHR, respectively. The LAA used in these two systems
are bistatic configuration [3, 10], which means that some
antenna elements (or single antenna element) are used
for transmitting and the others are used for receiving. As
the round-trip range equation in bistatic configuration is
composed of dual square roots, the imaging turns out to
be more difficult than that in monostatic configuration.
Giret et al. [3] made some simplifications to the dual square
roots with Fresnel approximation and proposed an algorithm
derived from monostatic imaging algorithm. A shortcoming
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of the algorithm is the range error caused by Fresnel
approximation. Klare et al. [8, 9] introduced the concept of
virtual antenna elements formed by the mean positions of
every single transmitting and receiving antenna element to
transform bistatic configuration into monostatic configura-
tion and proposed a 3D imaging algorithm for ARTINO with
beamforming operation in cross-track direction. However,
the positions of virtual antenna elements depend on target
locations, especially for the near-field targets.

Meanwhile, Reigber [17] proposed a 3D range migration
algorithm (RMA) for SAR tomography imaging. Lopez-
Sanchez and Fortuny [18] and Fortuny [19] developed a
3D RMA for 2D planar scanning aperture in the near-field
zone of the target. Tan et al. [20] proposed a 3D RMA
for SAR tomography imaging with digital spotlight in the
elevation direction. All of these 3D RMAs are suitable for
the monostatic configuration, where the signal spectrum
in 3D wavenumber domain only contains constant and
linear phase terms. However, due to the dual square root
in the bistatic configuration, the signal spectrum in 3D
wavenumber domain contains nonlinear phase terms besides
constant and linear phase terms. Therefore, the 3D RMAs
[17–20] mentioned above cannot be applied to the bistatic
configuration directly.

In this paper, we propose a 3D RMA which can
be applied to downward-looking 3D-SAR with single-
transmitting and multiple-receiving linear array antennas
(STMR-LAA). Firstly, we derive the approximate expression
of the signal spectrum by expanding the implicit phase
term to its Taylor series, where quartic and higher-order
phase terms are neglected because the phase error caused by
these phase terms contributes little to the analysis. Secondly,
after the removal of constant phase term, quadratic and
cubic phase terms caused by the bistatic configuration are
calculated and compensated by multiplying a wavenum-
ber filter, where some approximations are considered to
improve computational efficiency. Finally, a 3D wavenumber
mapping is proposed according to the expression of the
residual phase terms, and an interpolation is performed
to make the signal evenly sampled in 3D wavenumber
domain.

The paper is organized as follows. The imaging geometry
is described in Section 2. The signal properties are analyzed,
and a 3D RMA for downward-looking 3D-SAR with STMR-
LAA is derived in Section 3, where the removal of constant
phase term, the compensation of nonlinear phase terms, and
the mapping and interpolation in 3D wavenumber domain
are highlighted. Simulation results are shown in Section 4.
The required accuracy on the platform position to generate
the 3D images is discussed in Section 5, and Section 6 gives
conclusions of this paper.

2. Imaging Geometry

We consider the simplified imaging scenario in a 3D spatial
domain OXYZ, and the coordinate axes are defined in
Figure 1. The platform is supposed to fly at the altitude H

v0
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Figure 1: Imaging geometry of downward-looking 3D-SAR with
STMR-LAA, where x-axis, y-axis and z-axis denote the azimuth
(along-track), ground-range (cross-track), and elevation directions
respectively, and O indicates the origin of the Cartesian coordinates.

along the x-axis with the constant velocity v0. The illumi-
nated scenario is located at the nadir area of the platform,
and the origin of the coordinate system is located at the nadir
point.

The STMR-LAAs of the 3D-SAR are composed of a
transmitting antenna element (Tx) and N receiving antenna
elements (Rx) and distributed along the cross-track direc-
tion. Tx is located at the center of the LAA (i.e., Q in
Figure 1), and its position is {u, 0,H}, where u = v0tm, and
tm indicates the slow time. The entire Rxs are evenly spaced
with distance d. Therefore, the length of LAA L equals to
(N − 1)d, and the position of the nth Rx is {u, v,H}, where
v = −L/2 + (n− 1)d and n = 1, 2, 3, . . . ,N .

Let a point target P locate at {xT , yT , zT} with reflectivity
σ(xT , yT , zT). The distance from Tx to the target P is given by

RT(u) =
√

(u− xT)2 + y2
T + (H − zT)2 (1)

shown in Figure 1, and the distance from P to the nth Rx is

RR(u, v) =
√

(u− xT)2 +
(
v − yT

)2 + (H − zT)2. (2)

Therefore, the round-trip range equation can be written as

R(u, v) = RT(u) + RR(u, v). (3)
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3. Formulation of the 3D RMA

Here, we use the geometric relations and symbols illustrated
in Figure 1 and assume that the transmitted signal p(t) is a
chirp with the bandwidth B:

p(t) = rect
(
t

T

)
exp
{
j2π
(
fct +

1
2
μt2
)}

, (4)

where t denotes the fast time; T indicates the pulse duration;
fc is the carrier frequency; μ is the chirp rate; the transmitted
signal bandwidth B = μT ; rect(·) is a rectangular window
function, which means rect(t/T) = 1 for |t| ≤ T/2, and zero
otherwise.

3.1. Signal Spectrum in 3D Wavenumber Domain. After
coherent demodulation, the received signal can be written as

s0(t,u, v) =
∫∫∫

σ
(
xT , yT , zT

)
rect
{[

t − R(u, v)
c

]
/T
}

× exp

{
jπμ
(
t − R(u, v)

c

)2
}

× exp
{
− j2π fc

R(u, v)
c

}
dxTdyTdzT ,

(5)

where c is the speed of light. The antenna pattern and its type
are not considered here since they contribute nothing to the
essence of the analyzed themes.

The Fourier transform of the received signal s0(t,u, v)
with respect to the fast-time t is

S0
(
ft,u, v

) =
∫∫∫

σ
(
xT , yT , zT

)
rect

(
ft
μT

)
exp

{
− jπ

f 2
t

μ

}

× exp
{
− j2π ft

R(u, v)
c

}

× exp
{
− j2π fc

R(u, v)
c

}
dxTdyTdzT ,

(6)

where ft is the slant-range frequency domain for t, and | ft| ≤
B/2.

The slant-range compression is performed via the slant-
range frequency domain matched filter:

H1
(
ft
) = rect

(
ft
μT

)
exp

{
jπ

f 2
t

μ

}
. (7)

After slant-range compression, the signal can be written as

S1
(
ft,u, v

) = S0
(
ft,u, v

)×H1
(
ft
)

=
∫∫∫

σ
(
xT , yT , zT

)

× exp

{
− j2π

ft + fc
c

R(u, v)

}
dxTdyTdzT .

(8)

Let k = 2π( ft + fc)/c denote the wavenumber domain of
the transmitted signal, and k ∈ [kmin, kmax], where kmin =
2π( fc − B/2)/c, kmax = 2π( fc + B/2)/c and kc = 2π fc/c; then
(8) can be rewritten as

S1(k,u, v) =
∫∫∫

σ
(
xT , yT , zT

)
exp
{− jkR(u, v)

}
dxTdyTdzT

(9)

in the slant-range wavenumber domain.
The 2D Fourier transform of the signal S1(k,u, v) with

respect to (u, v) is

S2(k, ku, kv)

=
∫∫

S1(k,u, v) exp
{− j(kuu + kvv)

}
dudv

=
∫∫∫

σ
(
xT , yT , zT

)

×
{∫∫

exp
{− j[kR(u, v)+kuu+kvv]

}
dudv

}
dxTdyTdzT ,

(10)

where ku is the azimuth wavenumber domain for u, and kv is
the cross-track wavenumber domain for v. Let U = u − xT
and V = v − yT , then (10) can be rewritten as

S3(k, ku, kv)

=
∫∫∫

σ
(
xT , yT , zT

)
exp
{− j
(
kuxT + kv yT

)}

×
{∫∫

exp
{− j[kR(U ,V)+kuU+kvV]

}
dUdV

}
dxTdyTdzT ,

(11)

where R(U ,V)=
√
U2 +y2

T +(H−zT)2 +
√
U2 +V 2 +(H−zT)2.

The principle of stationary phase (POSP) can be applied
to solve the inner integral of (11). Here, we use Φ(U ,V) to
denote the negative phase term in (11), that is,

Φ(U ,V) = kR(U ,V) + kuU + kvV. (12)

Based on the POSP, the stationary points U0 and V0 should
satisfy the equations set:

∂Φ(U ,V)
∂U

∣∣∣∣
U=U0, V=V0

= 0,

∂Φ(U ,V)
∂V

∣∣∣∣
U=U0, V=V0

= 0.

(13)
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According to the definition of Φ(U ,V) in (12), (13) can be
written as

k

⎡
⎣ U0√

U2
0 + y2

T + (H − zT)2
+

U0√
U2

0 + V 2
0 + (H − zT)2

⎤
⎦

+ ku = 0,

k
V0√

U2
0 + V 2

0 + (H − zT)2
+ kv = 0.

(14)

It is too complicated to obtain the analytic solutions of
equations set (14), and so we cannot have the explicit
expressions of the stationary points U0 and V0. However,
both U0 and V0 are the function of k, ku, kv, yT , and zT , that
is, U0 = U0(k, ku, kv; yT , zT) and V0 = V0(k, ku, kv; yT , zT).
Therefore, the implicit expression of the signal spectrum in
3D wavenumber domain can be written as

S3(k, ku, kv)

=
∫∫∫

σ
(
xT , yT , zT

)

×exp
{− j
(
kuxT + kv yT + Φ(U0,V0)

)}
dxTdyTdzT ,

(15)

where unessential multiplicative complex constants are not
represented in the formula, and

Φ(U0,V0) = kR(U0,V0) + kuU0 + kvV0. (16)

Φ(U0,V0) is written as Φ0 for notational simplicity hereafter.
From (16), we can see that Φ0 is the function of k, ku, kv,

yT , and zT . If Φ0 can be factorized to a combination of linear
phase terms with respect to yT and zT , that is,

Φ0 = k1(k, ku, kv)yT + k2(k, ku, kv)zT , (17)

then (15) can be written as

S4

(
kx, ky , kz

)

=
∫∫∫

σ
(
xT , yT , zT

)

× exp
{
− j
(
kxxT + ky yT + kzzT

)}
dxTdyTdzT ,

(18)

where

kx = ku,

ky = kv + k1(k, ku, kv),

kz = k2(k, ku, kv).

(19)

After the wavenumber interpolation and 3D IFFT operation,
the 3D image in the spatial domain OXYZ can be generated.
However, unlike the monostatic case [17–20], the Φ0 in (16)
contains nonlinear phase terms besides constant and linear

phase ones. Since precise 3D RMA does not exist in 3D-
SAR with STMR-LAA, only an approximate solution can be
found.

In this paper, we expand Φ0 to its Taylor series and
compensate the phase terms except for the linear phase
ones. The terms left in Φ0 can be expressed as (17), and
the following steps are the same as the monostatic case.
Expanding Φ0 to its Taylor series at yT = 0, zT = 0 and
neglecting the quartic and higher-order terms, we have

Φ0 ≈ Φconst +

(
yT

∂

∂yT
+ zT

∂

∂zT

)
Φ0

∣∣∣∣∣
yT=0, zT=0

+
1
2

(
yT

∂

∂yT
+ zT

∂

∂zT

)2

Φ0

∣∣∣∣∣∣
yT=0, zT=0

+
1
6

(
yT

∂

∂yT
+ zT

∂

∂zT

)3

Φ0

∣∣∣∣∣∣
yT=0, zT=0,

(20)

where the first term is constant and independent of the target
location; the second term is the linear phase term, which
contributes to focusing; the third and forth terms are the
main nonlinear phase terms, which will cause defocusing
without compensation. The effect of every term in (20) will
be analyzed in detail as follows.

3.2. Analysis and Removal of Constant Phase Term. The
constant phase term Φconst in (20) can be written as

Φconst = Φ0
(
k, ku, kv; yT = 0, zT = 0

)

= kR(U00,V00) + kuU00 + kvV00,
(21)

where U00 = U0(k, ku, kv; yT = 0, zT = 0), V00 = V0(k, ku,
kv; yT = 0, zT = 0), and

R(U00,V00) =
√
U2

00 + H2 +
√
U2

00 + V 2
00 + H2. (22)

Since U00 and V00 are the special cases of U0 and V0 at
yT = 0, zT = 0, they can be considered as the particular
solutions of equations set (14). Thus, we have

k

⎛
⎝ U00√

U2
00 + H2

+
U00√

U2
00 + V 2

00 + H2

⎞
⎠ + ku = 0,

k
V00√

U2
00 + V 2

00 + H2
+ kv = 0.

(23)

The analytic solutions of equations set (23) are

U00 = − kuH√(
k +
√
k2 − k2

v

)2
− k2

u

,

V00 = − kv√
k2 − k2

v

(
k +
√
k2 − k2

v

)
H

√(
k +
√
k2 − k2

v

)2
− k2

u

.

(24)
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Thus Φconst is equal to

Φconst = H

√(
k +
√
k2 − k2

v

)2

− k2
u. (25)

The removal of constant phase term can be performed by
multiplying the following filter in 3D wavenumber domain:

H2(k, ku, kv) = exp

⎧⎨
⎩ jH

√(
k +
√
k2 − k2

v

)2

− k2
u

⎫⎬
⎭. (26)

3.3. Analysis and Compensation of Nonlinear Phase Terms.
The nonlinear phase terms do not exist in the monostatic
case but emerge here due to the bistatic configuration of
LAA. Thus, the compensation of nonlinear phase terms is the
key point of the 3D RMA proposed in this paper. According
to (20), the nonlinear phase terms Φnonline in Φ0 mainly
include two parts, that is,

Φnonline = Φquad + Φcubic, (27)

where Φquad denotes the quadratic phase term,

Φquad = 1
2

(
yT

∂

∂yT
+ zT

∂

∂zT

)2

Φ0

∣∣∣∣∣∣
yT=0, zT=0

= 1
2

⎡
⎣ ∂2Φ0

∂y2
T

∣∣∣∣∣
yT=0, zT=0

y2
T

+ 2
∂2Φ0

∂yT∂zT

∣∣∣∣∣
yT=0, zT=0

yTzT+
∂2Φ0

∂z2
T

∣∣∣∣∣
yT=0, zT=0

z2
T

⎤
⎦,

(28)

and Φcubic denotes the cubic phase term,

Φcubic = 1
6

(
yT

∂

∂yT
+ zT

∂

∂zT

)3

Φ0

∣∣∣∣∣∣
yT=0, zT=0

= 1
6

⎡
⎣ ∂3Φ0

∂y3
T

∣∣∣∣∣
yT=0, zT=0

y3
T + 3

∂3Φ0

∂y2
T∂zT

∣∣∣∣∣
yT=0, zT=0

y2
TzT

+3
∂3Φ0

∂yT∂z
2
T

∣∣∣∣∣
yT=0, zT=0

yTz
2
T +

∂3Φ0

∂z3
T

∣∣∣∣∣
yT=0, zT=0

z3
T

⎤
⎦.

(29)

From (A.7) and (A.8) in Appendix A, the coefficients
of Φquad associated with y2

T , yTzT , and z2
T in (28) can be,

respectively, calculated as follows:

∂2Φ0

∂y2
T

∣∣∣∣∣
yT=0,zT=0

= k

⎧⎪⎨
⎪⎩

1√
U2

0 + y2
T + (H − zT)2

− y2
T[

U2
0 + y2

T + (H − zT)2
]3/2

− U0yT[
U2

0 + y2
T + (H − zT)2

]3/2

∂U0

∂yT

⎫⎪⎬
⎪⎭

∣∣∣∣∣∣∣
yT=0,zT=0

=
k

√(
k +
√
k2 − k2

v

)2
− k2

u

H
(
k +
√
k2 − k2

v

) ,

(30)

∂2Φ0

∂yT∂zT

∣∣∣∣∣
yT=0, zT=0

= kyT

⎧⎪⎨
⎪⎩

H − zT[
U2

0 + y2
T + (H − zT)2

]3/2

− U0[
U2

0 + y2
T + (H − zT)2

]3/2

∂U0

∂zT

⎫⎪⎬
⎪⎭

∣∣∣∣∣∣∣
yT=0, zT=0

= 0,
(31)

∂2Φ0

∂z2
T

∣∣∣∣∣
yT=0, zT=0

=
{
− ku
U0
− ku(H − zT)

U2
0

∂U0

∂zT

}∣∣∣∣∣
yT=0, zT=0

= − ku
U00

− kuH

U2
00
× ∂U0

∂zT

∣∣∣∣
yT=0, zT=0

= 0,

(32)

where ∂U0/∂zT |yT=0, zT=0 = −U00/H in (32) (see
Appendix B). According to (30)–(32), there is only one
term left in the quadratic phase term Φquad, that is,

Φquad =
k
√

1− q

2H
y2
T , (33)

where

q = k2
u(

k +
√
k2 − k2

v

)2 . (34)

We can conclude that only the ground-range phase error
term is included in Φquad, which will cause defocusing in the
ground-range direction without compensation.
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From (30)–(32), the coefficients of Φcubic associated with
y3
T , z3

T , yTz2
T , and y2

TzT in (29) can be, respectively, calculated
as follows:

∂3Φ0

∂y3
T

∣∣∣∣∣
yT=0, zT=0

= − 2U00(√
U2

00 + H2

)3 ×
∂U0

∂yT

∣∣∣∣∣
yT=0, zT=0

= 0,

(35)

∂3Φ0

∂z3
T

∣∣∣∣∣
yT=0, zT=0

= −kuH

U2
00
× ∂2U0

∂z2
T

∣∣∣∣∣
yT=0, zT=0

= 0, (36)

∂3Φ0

∂yT∂z
2
T

∣∣∣∣∣
yT=0, zT=0

= 0, (37)

∂3Φ0

∂y2
T∂zT

∣∣∣∣∣
yT=0, zT=0

= k

H
√
U2

00 + H2
= k

H2

√√√√√1− k2
u(

k +
√
k2 − k2

v

)2 , (38)

where ∂U0/∂yT |yT=0, zT=0 = 0 in (35) (see Appendix B), and

∂2U0/∂z
2
T |yT=0, zT=0 = 0 in (36) (see Appendix C). According

to (35)–(38), there is only one term left in Φcubic, that is,

Φcubic =
k
√

1− q

2H2
y2
TzT . (39)

Thus, the nonlinear phase terms Φnonline in Φ0 can be
written as

Φnonline =
k
√

1− q

2H2
y2
T(H + zT). (40)

The compensation of Φnonline can be performed by multi-
plying the following filter in 3D wavenumber domain (i.e.,
(k, ku, kv) domain):

H3
(
k, ku, kv; yT , zT

) = exp
{
jΦnonline

}
. (41)

From (34), (40), and (41), we know that the compensa-
tion of Φnonline needs to take 5 variables into account, which
are the slant-range wavenumber k, azimuth wavenumber
ku, cross-track wavenumber kv, the location of target in
the ground-range direction yT , and elevation direction zT .
For the compensation of the nonlinear phase terms will
require high computation time, some approximations will be
considered to improve computational efficiency.

According to (9), the azimuth instantaneous wavenum-
ber ku is equal to

ku = ∂

∂u
[−kR(u, v)]

= −k[sin θT
(
xT , yT , zT

)
+ sin θRn

(
xT , yT , zT

)]
.

(42)

In (42), θT(xT , yT , zT) = arcsin{(u − xT)/RT(u)}, which
is the azimuth instantaneous aspect angle of the Tx to the

point target P, and |θT(xT , yT , zT)| ≤ ΘT/2, where ΘT is the
azimuth beamwidth of the Tx. θRn(xT , yT , zT) = arcsin{(u−
xT)/RR(u, v)}, which is the azimuth instantaneous aspect
angle of the nth Rx to P, and |θRn(xT , yT , zT)| ≤ ΘR/2, where
ΘR is the azimuth beamwidth of the Rx. Here, it is assumed
that every Rx has the same azimuth beamwidth. Therefore,
the maximum of ku for a fixed slant-range wavenumber k is

kumax = k
[

sin
(
ΘT

2

)
+ sin

(
ΘR

2

)]
. (43)

Similarly, the cross-track instantaneous wavenumber kv
is equal to

kv = ∂

∂v
[−kR(u, v)] = −k sinφRn

(
xT , yT , zT

)
. (44)

In (44), φRn(xT , yT , zT) = arcsin{(v − yT)/RR(u, v)}, which
is the cross-track instantaneous aspect angle of the nth Rx to
P, and |φRn(xT , yT , zT)| ≤ ΦR/2, where ΦR is the cross-track
beamwidth of the Rx and every Rx is assumed to have the
same cross-track beamwidth. The maximum of kv for a fixed
slant-range wavenumber k is

kvmax = k sin
(
ΦR

2

)
. (45)

According to (43) and (45), the maximum of q is

qmax = k2
umax(

k +
√
k2 − k2

vmax

)2 =
[

sin(ΘT/2) + sin(ΘR/2)
1 + cos(ΦR/2)

]2

.

(46)

If the parameters of 3D-SAR with STMR-LAA are chosen
to satisfy qmax � 1, then the wavenumber filter shown in (41)
can be approximated as

H3
(
k; yT , zT

) ≈ exp
{
j

k

2H2
y2
T(H + zT)

}
. (47)

After approximation, the wavenumber filter only depends on
k, yT , and zT , and the computational efficiency is improved.
The nonlinear phase compensation can be performed by
multiplying (47) in the slant-range wavenumber domain
before the 2D Fourier transform with respect to (u, v) (i.e.,
(k,u, v) domain). The phase error between (41) and (47) will
be discussed in Section 4.

3.4. Mapping and Interpolation in 3D Wavenumber Domain.
After the removal of constant phase term Φconst and compen-
sation of nonlinear phase terms Φnonline, the residual phase
term in Φ0 can be written as

Φline =
(
yT

∂

∂yT
+ zT

∂

∂zT

)
Φ0

∣∣∣∣∣
yT=0, zT=0

= ∂Φ0

∂yT

∣∣∣∣∣
yT=0, zT=0

yT +
∂Φ0

∂zT

∣∣∣∣
yT=0, zT=0

zT

= −zT
√(

k +
√
k2 − k2

v

)2

− k2
u,

(48)
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where the coefficients of the phase terms with respect to yT
and zT are derived in Appendix A. According to (48), the
residual phase term in Φ0 is composed of the linear phase
terms with respect to yT and zT , and we can obtain that

k1(k, ku, kv) = 0 and k2(k, ku, kv) = −
√

(k +
√
k2 − k2

v)
2
− k2

u

by comparing (48) with (17). Thus we can define a 3D
wavenumber mapping:

kx = ku, (49a)

ky = kv, (49b)

kz = −
√(

k +
√
k2 − k2

v

)2

− k2
u
, (49c)

which is used to transform the signal in the (k, ku, kv)
domain into the one in the (kx, ky , kz) domain. The 3D
wavenumber mapping used here is distinguished from the
one used in the monostatic case [17–20]. It essentially
replaces wavenumber in the direction of wave propagation
by wavenumber observed in the azimuth, ground-range, and
elevation directions. The reason for the negative sign in (49c)
is that the defined direction between wave propagation and
the elevation is opposite in this paper.

After the 3D wavenumber mapping shown in ((49a),
(49b), (49c)), the available discrete evenly spaced samples
of (t,u, v) are transformed into evenly spaced samples
of (kx, ky) and unevenly spaced samples of the elevation
wavenumber kz. Thus an interpolation shown in (49c) is
performed to transform these unevenly spaced samples into
evenly spaced ones in the kz domain.

Once the interpolation is done, we will obtain the expres-
sion shown in (18). After the 3D inverse Fourier transform
of the signal S4(kx, ky , kz) with respect to (kx, ky , kz), the
reconstructed target image in a 3D spatial domain OXYZ can
be expressed as

s4
(
x, y, z

) =
∫∫∫

σ
(
xT , yT , zT

)
sinc
{
BxT (x − xT)

2π

}

× sinc

{
ByT

(
y − yT

)

2π

}

× sinc
{
BzT (z − zT)

2π

}
dxTdyTdzT ,

(50)

where the sinc function is defined as sinc(a) = sin(πa)/(πa);
BxT is the bandwidth of the target P spectral support in the
kx domain, which determines the azimuth resolution; ByT

is the bandwidth of the target P spectral support in the ky
domain, which determines the ground-range resolution; BzT

is the bandwidth of the target P spectral support in the kz
domain, which determines the elevation resolution.

3.5. Summary of 3D RMA. So far, the 3D RMA for 3D-
SAR with STMR-LAA has been deduced in 3D wavenumber
domain. The block scheme of this algorithm is shown in
Figure 2. The execution steps and some implementation
details are explained as follows.

Received signal

Slant-range FFT

Azimuth and
corss-track

2D FFT

Interpolation

(k, ku, kv) (kx , ky , kz)

3D IFFT

Output 3D image

H1( ft)

H3

(k; yT , zT )

H2

(k, ku, kv)

Figure 2: Block scheme of 3D RMA for 3D-SAR with STMR-LAA.

(a) Fourier transform along the slant-range direction is
firstly applied to the received signal, and the slant-
range compression is performed with the frequency
domain matched filter H1( ft).

(b) The nonlinear phase terms are compensated by mul-
tiplying the wavenumber domain filter H3(k; yT , zT),
where some approximations are adopted in this step
to improve the computational efficiency.

(c) After the 2D Fourier transform along the azimuth
and cross-track directions, constant phase term
is removed by multiplying H2(k, ku, kv) in 3D
wavenumber domain.

(d) A 3D wavenumber mapping is proposed to transform
the signal in the (k, ku, kv) domain into the one in
the (kx, ky , kz) domain, and an interpolation is done
to make the signal evenly sampled in the (kx, ky , kz)
domain. The interpolation can be separated into two

steps, where the first step is k3 = k+
√
k2 − k2

v and the

following one is kz = −
√
k2

3 − k2
u.

(e) 3D inverse Fourier transform is performed to gener-
ate the final 3D image in the spatial domain OXYZ.

4. Simulation Results

For evaluating the proposed algorithm, we carry out some
simulations for 3D-SAR with STMR-LAA in the downward-
looking mode. Simulation parameters are given in Table 1.
The values of the platform parameters correspond to the
characteristics of a small UAV.

Consider a 50 m × 50 m × 50 m (azimuth × ground −
range×elevation) target region composed of 28 point targets
that are located at the nadir area under the platform in 3D
spatial domain OXYZ. The distribution of point targets is
shown in Figure 3.
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Figure 3: Point targets distribution. (a) the point targets in the 3D spatial domain OXYZ; (b) projections onto the 2D OXY plane; (c)
projections onto the 2D OYZ plane; (d) projections onto the 2D OXZ plane.

According to (46) and simulation parameters in Table 1,
we can obtain that qmax = 1.9 × 10−5. Figure 4 shows the
nonlinear phase terms shown in (47) and the nonlinear phase
error between H3(k, ku, kv; yT , zT) in (41) and H3(k; yT , zT)
in (47), where yT and zT are chosen at the borders of
the illuminated scenario. It can be seen that nonlinear
phase errors are all smaller than π/4 radian at the three
wavenumber points kmin, kc, and kmax and can be negligible
compared with the corresponding nonlinear phase terms.
Therefore, it will not deteriorate the focusing quality by the
use of the approximate expression (47) to compensate the
nonlinear phase terms.

With the 3D RMA proposed in this paper, the 3D
imaging results of the 28 point targets are shown in Figure 5,
where an oversampling factor of 8 has been used in 5(b)–
5(d) to enhance the intensity of the image display and
no windowing is used in the processing. The 3D image is
displayed at the threshold of −3 dB as shown in Figure 5(a),
and the positions of the 28 point targets are consistent with
the real situations in Figure 3(a). Figures 5(b) and 5(c) show

Table 1: Simulation parameters.

Altitude (H) 1 km

Velocity (v0) 40 m/s

Carrier frequency ( fc) 37.5 GHz

Bandwidth (B) 300 MHz

Pulse repetition frequency 200 Hz

Length of LAA (L) 16 m

Number of Rx (N) 256

Azimuth beamwidth of Tx and
Rx (ΘT and ΘR)

0.5◦

Cross-track beamwidth of Rx
(ΦR)

3◦

Theoretical resolution (azimuth
× ground − range × elevation)

0.5 m × 0.5 m × 0.5 m

the 2D image at different sections, which agree with the
theoretical values shown in Figures 3(b) and 3(c).
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Figure 4: The nonlinear phase terms shown in (41) and nonlinear phase error between (41) and (47). (a) nonlinear phase terms calculated
at k = kmin; (b) nonlinear phase error calculated at k = kmin; (c) nonlinear phase terms calculated at k = kc; (d) nonlinear phase error
calculated at k = kc; (e) nonlinear phase terms calculated at k = kmax; (f) nonlinear phase error calculated at k = kmax.

Table 2: Image quality parameters.

Point target Resolution (m) PSLR (dB) ISLR (dB)

X Y Z X Y Z X Y Z

A 0.51 0.52 0.53 −13.23 −13.15 −13.18 −10.40 −10.34 −10.33

B 0.52 0.51 0.53 −13.20 −13.17 −13.21 −10.41 −10.20 −10.51

C 0.51 0.51 0.52 −13.24 −13.23 −13.26 −10.25 −10.35 −10.30

Three point targets A, B and C shown in Figure 3(a) are
chosen to verify the performance and focusing quality of
the proposed 3D RMA, and the image quality parameters,
including the resolution, the peak sidelobe ratio (PSLR) and
the integrated sidelobe ratio (ISLR), are shown in Table 2.
From the above simulation results, we can see that the point
targets are all well focused after the removal of constant phase
term and compensation of nonlinear phase terms, and the

expansion of Φ0 in (20) is effective without taking the quartic
and higher-order terms into account.

5. Influence of PlatformDeviations

During the analysis mentioned above, the platform which
carries the 3D-SAR system is assumed to fly along a straight
line with the constant velocity at the invariable altitude. Our



10 EURASIP Journal on Advances in Signal Processing

25

20

15

10

5

0

−5−8 −6 −4 −2 0 2 4 6 8 2 4 6 8 10 12 14 16

A

B

C

E
le

va
ti

on
(m

)

Ground range (m) Azimuth (m)

(a)

−8 −6 −4 −2 0 2 4 6 8
16

14

12

10

8

6

4

2

Ground range (m)

A
zi

m
u

th
(m

)

(b)

−8 −6 −4 −2 0 2 4 6 8
25

20

15

10

5

0

−5

Ground range (m)

E
le

va
ti

on
(m

)

(c)

2 4 6 8 10 12 14 16
25

20

15

10

5

0

−5

Azimuth (m)

E
le

va
ti

on
(m

)

(d)

Figure 5: The imaging results. (a) the 3D imaging results, where the surfaces of the data are plotted at −3 dB; (b) the 2D imaging results on
the 2D OXY plane, where Z = 0.5 m; (c) the 2D imaging results on the 2D OYZ plane, where X = 4.5 m; (d) the 2D imaging results on the
2D OXZ plane, where Y = 4.5 m.

present 3D-SAR with STMR-LAA system is based on the
ASTRO, which is a ground-based SAR platform developed
at MITL-IECAS. It works in the anechoic chamber and on
the ground, and positioning precision as well as control
accuracy is high enough to satisfy the above assumption.
However, when the system is mounted on the airplane or
helicopter platform, trajectory deviations from the straight
line, attitude disturbances and forward velocity variations
are unavoidable due to atmospheric turbulence. Moreover,
the wing oscillation during flying continuously changes the
position of every antenna element. These will introduce
motion errors to the received raw signal, and may severely
impair the final 3D image quality. The impact of platform
attitude disturbances on the 3D image quality is presented
in Reference [14], and the 3D image quality analysis of
the displacement of antenna elements caused by the wing
oscillation is given in [12]. In this paper, we analyze the
impact of platform trajectory deviations on the 3D image

quality, and present the required accuracy on the platform
position to generate the 3D images.

The imaging geometry in the presence of trajectory
deviations is shown in Figure 6, where the system axes
coincide with the ideal trajectory case shown in Figure 1.
The deviation vector b equals to bxi + byj + bzk in the
Cartesian coordinates, where bx, by and bz are the deviation
components in the x-axis, y-axis and z-axis, respectively. An
analysis on the effect of more complex motion deviation
trajectories (pitch-, yaw-, and roll-angle variations) is out
of the scope of the paper. The deviation component in the
x-axis is caused by the variable velocity which results in
unevenly spaced samples in the azimuth direction, and can
be compensated via a proper resampling of the received
raw signal. Thus it is assumed in the following analysis
that the platform trajectory deviation in the x-axis has been
compensated and bx is null. Then the simplified imaging
geometry on the zero Doppler plane is shown in Figure 7,
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Figure 6: Geometry in presence of trajectory deviations.

where r0 is the distance from the Tx to the target P in the
case of ideal trajectory; r0 + δr0 is the distance from the
Tx to the target P in the case of actual trajectory; rn is the
distance from the target P to the nth Rx in the case of ideal
trajectory; rn +δrn is the distance from the target P to the nth
Rx in the case of actual trajectory; β0 denotes the look angle
from the Tx to the target P; βn denotes the look angle from
the nth Rx to the target P. The deviation vector b equals to
b(cosαj + sinαk) in the polar coordinates.

According to the Cosine Theorem [21], we have

r0 + δr0 =
√
r2

0 + b2 − 2r0b sin
(
β0 − α

)
. (51)

When the value of the deviation is small compared with the
slant range of the target, the range error δr0 in (51) can be
approximately expressed as δr0 ≈ b sin(α − β0). Likewise,
the range error δrn can be calculated as δrn ≈ b sin(α −
βn). According to (16), the phase error caused by trajectory
deviations can be expressed as

δΦ = k(δr0 + δrn) ≈ 2kcb sin

(
α− β0 + βn

2

)
cos

(
β0 − βn

2

)
.

(52)

The phase error δΦ varies with the polar angle α when
the polar radius b is constant. The absolute maximum of
δΦ is obtained at α = ±π/2 + (β0 + βn)/2, and the absolute
minimum, which equals to zero, is obtained at α = (β0+βn)/2
and α = π + (β0 + βn)/2. Therefore, the whole trajectory
deviations can be separate into the deviation component
along the equivalent target look direction (i.e., α = ±π/2 +
(β0 + βn)/2) and the deviation component perpendicular
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Figure 7: Geometry on zero Doppler plane.

to the equivalent target look direction (i.e., α = (β0 +
βn)/2 and α = π + (β0 + βn)/2). The second deviation
component contributes nothing to the phase error, and the
compensation of platform trajectory deviations only needs
to take the first component into account.

The impact of platform trajectory deviations on the 3D
image quality can be ignored when the magnitude of phase
error caused by trajectory deviations is smaller than π/4 [22].
According to this principle, the range of required accuracy on
the platform position should satisfy the following inequation
to generate the 3D image:

∣∣∣∣∣bz cos

(
β0 +βn

2

)
−by sin

(
β0 +βn

2

)∣∣∣∣∣≤
λc

16 cos
[(
β0−βn

)
/2
] ,

(53)

where by = b cosα and bz = b sinα. It can be calculated with
the parameters given in Table 1 that the platform position
should be known with accuracy up to the magnitude of
millimeter. For platform deviations larger than that, the
PSLR and ISLR will be increased drastically. It demonstrates
that the platform position has to be measured or estimated
very precisely in order to form high quality 3D images.

6. Conclusions

This paper presents a 3D RMA suitable for downward-
looking 3D-SAR with STMR-LAA. The precise implicit
expression of the signal spectrum in 3D wavenumber domain
is firstly described. Then the approximate explicit expression
of the signal spectrum is derived by expanding the implicit
phase term to its Taylor series. After the removal of constant
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phase term and compensation of nonlinear phase terms,
a 3D wavenumber mapping is proposed to replace the
wavenumber in the direction of wave propagation by the
wavenumber observed in 3D spatial domain OXYZ, and
an interpolation is performed to transform these unevenly
spaced samples into evenly spaced ones in 3D wavenumber
domain. The simulation results about the imaging quality
and the phase error analysis validate the feasibility of the
imaging algorithm. Furthermore, the impact of platform
trajectory deviations on the 3D image quality is discussed,
and it concludes that the platform position has to be known
precisely to form high quality 3D images.

Future work will extend the proposed 3D RMA to
more complex bistatic configurations of downward-looking
3D-SAR with LAA, such as multi-transmitting and multi-
receiving case. In addition, this paper contains neither
technological aspects about the realization of airborne 3D-
SAR with LAA system nor the key techniques, including
the motion compensation, wings oscillation compensation
and relevant problems. These special problems have to be
treated separately when the 3D-SAR with LAA system will be
mounted on the airplane or helicopter platform in the future.

Appendices

A. Derivation of the First Partial Derivatives of
Φ0 with Respect To yT and zT

According to (16), the first partial derivative of Φ0 with
respect to yT can be written as

∂Φ0

∂yT
= k

∂R(U0,V0)
∂yT

+ ku
∂U0

∂yT
+ kv

∂V0

∂yT
, (A.1)

where

R(U0,V0) = RT(U0) + RR(U0,V0), (A.2)

RT(U0) =
√
U2

0 + y2
T + (H − zT)2, (A.3)

RR(U0,V0) =
√
U2

0 + V 2
0 + (H − zT)2. (A.4)

We can see from (A.2) that R(U0,V0) are the function of U0,
V0, yT and zT , and the stationary phase points U0 and V0 are
the function of yT and zT . Therefore,

∂R(U0,V0)
∂yT

= RyT (U0,V0) + RU0 (U0,V0)
∂U0

∂yT

+ RV0 (U0,V0)
∂V0

∂yT

= yT
RT(U0)

+
[

U0

RT(U0)
+

U0

RR(U0,V0)

]
∂U0

∂yT

+
V0

RR(U0,V0)
∂V0

∂yT
,

(A.5)

where RyT (U0,V0), RU0 (U0,V0) and RV0 (U0,V0) denote the
first derivatives of R(U0,V0) with respect to yT , U0 and V0.
Inserting (A.5) into (A.1) yields

∂Φ0

∂yT
= k

yT√
U2

0 + y2
T + (H − zT)2

+

⎡
⎣k V0√

U2
0 + V 2

0 + (H − zT)2
+ kv

⎤
⎦∂V0

∂yT

+

⎡
⎣k U0√

U2
0 + y2

T + (H − zT)2

+ k
U0√

U2
0 + V 2

0 + (H − zT)2
+ ku

⎤
⎦∂U0

∂yT
.

(A.6)

According to equations set (14), the terms in the two
square brackets of (A.6) are equal to zero. Therefore, (A.6)
can be simplified to be

∂Φ0

∂yT
= k

yT√
U2

0 + y2
T + (H − zT)2

. (A.7)

Likewise, the first partial derivative of Φ0 with respect to
zT can be calculated.

∂Φ0

∂zT

= k
∂R(U0,V0)

∂zT
+ ku

∂U0

∂zT
+ kv

∂V0

∂zT

= k

⎧⎪⎨
⎪⎩

zT −H√
U2

0 + y2
T + (H − zT)2

+
zT −H√

U2
0 + V 2

0 + (H − zT)2

⎫⎪⎬
⎪⎭

+

⎡
⎣k V0√

U2
0 + V 2

0 + (H − zT)2
+ kv

⎤
⎦∂V0

∂zT

+

⎡
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U2
0 + y2

T + (H − zT)2
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U2
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⎦∂U0
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H − zT
U0

.

(A.8)
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B. Derivation of the First Partial Derivatives of
U0 andV0 with Respect to yT and zT
Evaluated at yT = 0, zT = 0

The first partial derivatives of equations set (14) with respect
to yT can be written as

k
∂

∂yT

⎡
⎣ U0√

U2
0 +y2

T +(H−zT)2
+

U0√
U2

0 +V 2
0 +(H−zT)2

⎤
⎦=0,

k
∂

∂yT

⎡
⎣ V0√

U2
0 + V 2

0 + (H − zT)2

⎤
⎦ = 0.

(B.1)

Expanding (B.1), we have

− yTU0

R3
T(U0)

+

[
y2
T + (H − zT)2

R3
T(U0)

+
V 2

0 + (H − zT)2

R3
R(U0,V0)

]
∂U0

∂yT

− U0V0

R3
R(U0,V0)

∂V0

∂yT
= 0,

− U0V0

R3
R(U0,V0)

∂U0

∂yT
+
U2

0 + (H − zT)2

R3
R(U0,V0)

∂V0

∂yT
= 0.

(B.2)

Therefore, the first partial derivates of U0 and V0 with respect
to yT evaluated at yT = 0, zT = 0 can be calculated as follows:

⎡
⎣ H2

(
U2

00 + H2
)3/2 +

V 2
00 + H2

(
U2

00 + V 2
00 + H2

)3/2

⎤
⎦ ∂U0

∂yT

∣∣∣∣∣
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− U00V00(
U2

00 + V 2
00 + H2

)3/2
∂V0

∂yT

∣∣∣∣∣
yT=0, zT=0

= 0,

−U00V00
∂U0

∂yT

∣∣∣∣∣
yT=0, zT=0

+
(
U2

00 + H2) ∂V0

∂yT

∣∣∣∣∣
yT=0, zT=0

= 0.

(B.3)

For the determinant of coefficient matrix in equations set
(B.3) is unequal to zero, that is,

∣∣∣∣∣∣∣∣

H2

(
U2
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V 2
00 + H2

(
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−U00V00 U2
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∣∣∣∣∣∣∣∣

= H2
√
U2

00 + H2
+

H2
√
U2

00 + V 2
00 + H2

/= 0,

(B.4)

the solution of equations set (B.3) is

∂U0

∂yT

∣∣∣∣∣
yT=0, zT=0

= 0,

∂V0

∂yT

∣∣∣∣∣
yT=0, zT=0

= 0.

(B.5)

Likewise, the first partial derivatives of equations set (14)
with respect to zT can be written as

k
∂

∂zT

⎡
⎣ U0√

U2
0 +y2

T +(H−zT)2
+

U0√
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⎤
⎦=0,

k
∂

∂zT

⎡
⎣ V0√

U2
0 + V 2

0 + (H − zT)2

⎤
⎦ = 0.

(B.6)

Expanding (B.6), we have
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∂U0
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U2
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∂V0

∂zT
= 0.

(B.7)

Therefore, the first partial derivates of U0 and V0 with respect
to zT evaluated at yT = 0, zT = 0 can be calculated as follows:

U00H(
U2

00 + H2
)3/2 +

U00H(
U2

00 + V 2
00 + H2

)3/2

+

⎡
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(
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⎤
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− U00V00(
U2
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)3/2
∂V0
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(
U2
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yT=0, zT=0

= 0.

(B.8)

Solving the equations set (B.8), we obtain

∂U0

∂zT

∣∣∣∣
yT=0, zT=0

= −U00

H
,

∂V0

∂zT
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yT=0, zT=0

= −V00

H
.

(B.9)
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C. Derivation of the Second Partial Derivatives
of U0 and V0 with Respect to zT Evaluated at
yT = 0, zT = 0

The first partial derivatives of equations set (B.7) with respect
to zT can be written as

∂

∂zT

{
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R3
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∂

∂zT

{
V0(H − zT)
R3
R(U0,V0)

− U0V0

R3
R(U0,V0)

∂U0

∂zT

+
U2

0 + (H − zT)2

R3
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∂V0

∂zT

}
= 0.

(C.1)

Expanding (C.1) and inserting (B.9) into it, we can
obtain that the second partial derivatives of U0 and V0 with
respect to zT evaluated at yT = 0, zT = 0 satisfy the following
equations set, that is,

⎡
⎣ H2

(
U2

00 + H2
)3/2 +

V 2
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= 0.

(C.2)

For equations set (C.2) have the same coefficient matrix with
equations set (B.3), we can obtain the solution of equations
set (C.2) as follows.

∂2U0

∂z2
T

∣∣∣∣∣
yT=0, zT=0

= 0,

∂2V0

∂z2
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= 0.

(C.3)
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