
EURASIP Journal on Applied Signal Processing 2005:6, 762–774
c© 2005 Phillip A. Regalia

Iterative Decoding of Concatenated Codes: A Tutorial

Phillip A. Regalia
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The turbo decoding algorithm of a decade ago constituted a milestone in error-correction coding for digital communications, and
has inspired extensions to generalized receiver topologies, including turbo equalization, turbo synchronization, and turbo CDMA,
among others. Despite an accrued understanding of iterative decoding over the years, the “turbo principle” remains elusive to
master analytically, thereby inciting interest from researchers outside the communications domain. In this spirit, we develop a
tutorial presentation of iterative decoding for parallel and serial concatenated codes, in terms hopefully accessible to a broader
audience. We motivate iterative decoding as a computationally tractable attempt to approach maximum-likelihood decoding, and
characterize fixed points in terms of a “consensus” property between constituent decoders. We review how the decoding algorithm
for both parallel and serial concatenated codes coincides with an alternating projection algorithm, which allows one to identify
conditions under which the algorithm indeed converges to a maximum-likelihood solution, in terms of particular likelihood
functions factoring into the product of their marginals. The presentation emphasizes a common framework applicable to both
parallel and serial concatenated codes.
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1. INTRODUCTION

The advent of the turbo decoding algorithm for parallel con-
catenated codes a decade ago [1] ranks among the most sig-
nificant breakthroughs in modern communications in the
past half century: a coding and decoding procedure of rea-
sonable computational complexity was finally at hand offer-
ing performance approaching the previously elusive Shan-
non limit, which predicts reliable communications for all
channel capacity rates slightly in excess of the source entropy
rate. The practical success of the iterative turbo decoding al-
gorithm has inspired its adaptation to other code classes, no-
tably serially concatenated codes [2, 3], and has rekindled in-
terest [4, 5] in low-density parity-check codes [6], which give
the definitive historical precedent in iterative decoding.

The serial concatenated configuration holds particular
interest for communication systems, since the “inner en-
coder” of such a configuration can be given more general
interpretations, such as a “parasitic” encoder induced by a
convolutional channel or by the spreading codes used in
CDMA. The corresponding iterative decoding algorithm can
then be extended into new arenas, giving rise to turbo equal-
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ization [7, 8, 9] or turbo CDMA [10, 11], among doubt-
less other possibilities. Such applications demonstrate the
power of iterative techniques which aim to jointly opti-
mize receiver components, compared to the traditional ap-
proach of adapting such components independently of one
another.

The turbo decoding algorithm for error-correction codes
is known not to converge, in general, to a maximum-
likelihood solution, although in practice it is usually ob-
served to give comparable performance [12, 13, 14]. The
quest to understand the convergence behavior has spawned
numerous inroads, including extrinsic information trans-
fer (or EXIT) charts [15], density evolution of intermediate
quantities [16, 17], phase trajectory techniques [18], Gaus-
sian approximations which simplify the analysis [19], and
cross-entropy minimization [20], to name a few. Some of
these analysis techniques have been applied with success to
other configurations, such as turbo equalization [21, 22].
Connections to the belief propagation algorithm [23] have
also been identified [24], which approach in turn is closely
linked to earlier work on graph theoretic methods [25, 26,
27, 28]. In this context, the turbo decoding algorithm gives
rise to a directed graph having cycles; the belief propagation
algorithm is known to converge provided no cycles appear in
the directed graph, although less can be said in general once
cycles appear.
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Interest in turbo decoding and related topics now ex-
tends beyond the communications community, and has been
met with useful insights from other fields; some references
in this direction include [29] which draws on nonlinear sys-
tem analysis, [30] which draws on computer science, in ad-
dition to [31] (predating turbo codes) and [32] (more re-
cent) which inject ideas from statistical physics, which in turn
can be rephrased in terms of information geometry [33, 34].
Despite this impressive pedigree of analysis techniques, the
“turbo principle” remains difficult tomaster analytically and,
given its fair share of specialized terminology if not a certain
degree of mystique, is often perceived as difficult to grasp to
the nonspecialist. In this spirit, the aim of this paper is to pro-
vide a reasonably self-contained and tutorial development of
iterative decoding for parallel and serial concatenated codes,
in terms hopefully accessible to a broader audience. The pa-
per does not aim at a comprehensive survey of available anal-
ysis techniques and implementation tricks surrounding it-
erative decoding (for which the texts [12, 13, 14] would be
more appropriate), but rather chooses a particular vantage
point which steers clear of unnecessary sophistication and
avoids approximations.

We begin in Section 2 by reviewing optimum (maximum
a posteriori and maximum-likelihood) decoding of parallel
concatenated codes. We motivate the turbo decoding algo-
rithm as a computationally tractable attempt to approach
maximum-likelihood decoding. A characterization of fixed
points is obtained in terms of a “consensus” property be-
tween the two constituent decoders, and a simple proof of
the existence of fixed points is obtained as an application of
the Brouwer fixed point theorem.

Section 3 then reexamines the calculation of marginal
distributions in terms of a projection operator, leading to a
compact formulation of the turbo decoding algorithm as an
alternating projection algorithm. The material of the section
aims at a concrete transcription of ideas originally developed
by Richardson [29]; we include in addition a minimum-
distance property of the projector in terms of the Kullback-
Leibler divergence, and review how the turbo decoding algo-
rithm indeed converges to a maximum-likelihood solution
whenever specific likelihood functions factor into the prod-
uct of its marginals. The factorization is known [18] to hold
in extreme signal-to-noise ratios.

Section 4 shows that the iterative decoding algorithm for
serial concatenated codes also admits an alternating pro-
jection interpretation, allowing us to transcribe all results
for parallel concatenated codes to their serial concatenated
counterparts. This should also facilitate unified studies of
both code classes. Concluding remarks are summarized in
Section 5.

2. TURBODECODINGOF PARALLEL
CONCATENATED CODES

Webegin by reviewing the classical turbo decoding algorithm
for parallel concatenated codes. For simplicity, we restrict our
development to the binary signaling case; them-ary case can
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Figure 1: Parallel concatenated encoder structure.
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Permu-
tation
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Figure 2: Particular realization of the second encoder by using the
first encoder with an interleaver.

be handled by direct extension (see, e.g., [24] for a particu-
larly clear treatment) or by mapping the m-ary constellation
back to its binary origins.

To begin, a binary (0 or 1) information block ξ =
(ξ1, . . . , ξk) is passed through two constituent encoders, as in
Figure 1, to create two codewords:(

ξ1, . . . , ξk,η1, . . . ,ηn−k
)
,

(
ξ1, . . . , ξk, ζ1, . . . ,ζn−k

)
. (1)

Both encoders are systematic and of rate k/n, so that the in-
formation bits ξ1, . . . , ξk are directly available in either code-
word. Note also that the two encoders need not share a com-
mon rate, although we will adhere to this case for ease of no-
tation.

In practice, an expedient method of realizing the second
systematic encoder is to permute (or interleave) the infor-
mation bits ξi and duplicate the first encoder, as in Figure 2.
Since this is a particular instance of Figure 1, we will simply
consider two separate encodings of ξ = (ξ1, . . . , ξk) in what
follows and avoid explicit reference to the interleaving op-
eration, despite its importance in the study of the distance
properties of concatenated codes [35].

The encoder outputs are converted to antipodal signal-
ing (±1) and transmitted over a channel containing additive
noise, giving the received signals xi, yi, and zi:

xi =
(
2ξi − 1

)
+ bx,i, i = 1, 2, . . . , k;

yi =
(
2ηi − 1

)
+ by,i, i = 1, 2, . . . ,n−k;

zi =
(
2ζi − 1

)
+ bz,i, i = 1, 2, . . . ,n−k.

(2)

We assume that the noise samples bx,i, by,i, and bz,i are Gaus-
sian and mutually independent, sharing a common vari-
ance σ2. For notational convenience, we arrange the received
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signals into the vectors

x =


x1
...
xk

 , y =


y1
...

yn−k

 , z =


z1
...

zn−k

 . (3)

2.1. Optimumdecoding

The maximum a posteriori decoding rule aims to calculate
the a posteriori probability ratios

Pr
(
ξi = 1|x, y, z)

Pr
(
ξi = 0|x, y, z) , i = 1, 2, . . . , k, (4)

with the decision rule favoring a 1 for the ith bit if this ratio
is greater than one, and 0 if the ratio is less than one. By using
Bayes’s rule, each ratio can be developed as

Pr
(
ξi = 1|x, y, z)

Pr
(
ξi = 0|x, y, z) =

∑
ξ:ξi=1 Pr(ξ|x, y, z)∑
ξ:ξi=0 Pr(ξ|x, y, z)

=
∑

ξ:ξi=1 p(x, y, z|ξ) Pr(ξ)∑
ξ:ξi=0 p(x, y, z|ξ) Pr(ξ)

,

(5)

involving the a priori probability mass function Pr(ξ) and the
likelihood function p(x, y, z|ξ), which is evaluated for the re-
ceived x, y, and z as a function of the candidate information
bits ξ = (ξ1, . . . , ξk); the sum in the numerator (resp., de-
nominator) is over all the configurations of the vector ξ for
which the ith bit is a “1” (resp., “0”). Since the noise samples
are assumed independent, the likelihood function naturally
factors as

p(x, y, z|ξ) = p(x|ξ)p(y|ξ)p(z|ξ). (6)

For the Gaussian noise case considered here, the three likeli-
hood evaluations appear as

p(x|ξ) ∼ exp

−∥∥x− cx(ξ)
∥∥2

2σ2

,
p(y|ξ) ∼ exp

−∥∥y − cy(ξ)
∥∥2

2σ2

,
p(z|ξ) ∼ exp

−∥∥z− cz(ξ)
∥∥2

2σ2

,
(7)

where cx(ξ), cy(ξ), and cz(ξ) contain the antipodal symbols
±1 which would be received as a function of the candidate in-
formation bits ξ, in the absence of noise. For non-Gaussian
noise, the likelihood functions would, of course, assume dif-
ferent forms.

The a posteriori probability ratios may therefore be writ-
ten as

Pr
(
ξi=1|x, y, z)

Pr
(
ξi=0|x, y, z) =

∑
ξ:ξi=1 p(x|ξ)p(y|ξ)p(z|ξ) Pr(ξ)∑
ξ:ξi=0 p(x|ξ)p(y|ξ)p(z|ξ) Pr(ξ)

,

i = 1, 2, . . . , k.

(8)

If the a priori probabilitymass function Pr(ξ) is uniform (i.e.,
Pr(ξ) = 1/2k for all ξ), then this reduces to the maximum-
likelihood decision metric:

Pr
(
ξi = 1|x, y, z)

Pr
(
ξi = 0|x, y, z)
=
∑

ξ:ξi=1 p(x|ξ)p(y|ξ)p(z|ξ)∑
ξ:ξi=0 p(x|ξ)p(y|ξ)p(z|ξ)

if Pr(ξ) is uniform.

(9)

If this expression were evaluated as written, the complexity of
an optimum decision rule would beO(2k), since there are 2k

configurations of the k information bits comprising ξ, lead-
ing to as many likelihood function evaluations. This clearly
becomes impractical for sizable k.

Observe now that if we instead consider an optimum de-
coding rule using only one of the constituent encoders, we
may write, by a development parallel to that above,

Pr
(
ξi = 1|x, y)

Pr
(
ξi = 0|x, y) =

∑
ξ:ξi=1 p(x|ξ)p(y|ξ)Pr(ξ)∑
ξ:ξi=0 p(x|ξ)p(y|ξ)Pr(ξ)

, (10)

Pr(ξi = 1|x, z)
Pr(ξi = 0|x, z) =

∑
ξ:ξi=1 p(x|ξ)p(z|ξ)Pr(ξ)∑
ξ:ξi=0 p(x|ξ)p(z|ξ)Pr(ξ)

. (11)

If each constituent encoder implements a trellis code, then x
and y form a Markov chain, as do x and z; the complexity of
either decoding expression can then be reduced to O(k) by
using the forward-backward algorithm from [36] (which, in
turn, is a particular case of the sum-product algorithm [27]).

If the a priori probability function Pr(ξ) is indeed uni-
form, then it weighs all terms in the numerator and de-
nominator equally and, as such, is effectively relegated to an
unused variable in either decoding expression (10) or (11).
Rather than accepting this status, one can imagine replacing
the a priori probability function Pr(ξ), or “usurping” its po-
sition, by some other function in an attempt to “bias” either
decoding rule (10) or (11) towards the maximum-likelihood
decoding rule in (9). In particular, if Pr(ξ) were replaced by
p(z|ξ) in (10), or by p(y|ξ) in (11), then either expression
would agree formally with (9).

In order to retain the O(k) complexity of the forward-
backward algorithm from [36], however, the a priori proba-
bility function Pr(ξ) is assumed to factor into the product of
its bitwise marginals:

Pr(ξ) = Pr
(
ξ1
)
Pr
(
ξ2
) · · ·Pr (ξk). (12)

The likelihood function p(y|ξ) or p(z|ξ) does not, on the
other hand, generally factor into its bitwise marginals, that
is,

p(y|ξ) �= p
(
y|ξ1

)
p
(
y|ξ2

) · · · p(y|ξk). (13)

As such, a direct usurpation of the a priori probability by the
likelihood function of the parity-check bits of the other con-
stituent coder is not feasible. Rather, one must approximate
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the likelihood function p(y|ξ) or p(z|ξ) by a function that
does factor into the product of its marginals. Many candidate
approximations may be envisaged; that which has proved the
most useful relies on extrinsic information values, which are
reviewed next.

2.2. Extrinsic information values

We reexamine the likelihood function for the systematic bits:

p(x|ξ) = 1(√
2πσ

)k exp
(
−

k∑
i=1

[
xi −

(
2ξi − 1

)]2
2σ2

)

=
k∏
i=1

exp
(
− [xi − (2ξi − 1

)]2
/2σ2

)
√
2πσ

= p
(
x1|ξ1

)
p
(
x2|ξ2

) · · · p(xk|ξk).
(14)

This shows that the likelihood function p(x|ξ) for the sys-
tematic bits factors into the product of its marginals,1 just
like the a priori probability mass function:

Pr(ξ) = Pr
(
ξ1
)
Pr
(
ξ2
) · · ·Pr (ξk). (15)

Owing to these factorizations, each term from the numer-
ator of (10) contains a factor p(xi|ξi = 1) Pr(ξi = 1), and
each term from the denominator contains a factor p(xi|ξi =
0) Pr(ξi = 0). By isolating these common factors, we may
rewrite the ratio from (10) as

Pr
(
ξi = 1|x, y)

Pr
(
ξi = 0|x, y)
= p

(
xi|ξi = 1

)
p
(
xi|ξi = 0

)︸ ︷︷ ︸
intrinsic

information

Pr
(
ξi = 1

)
Pr
(
ξi = 0

)︸ ︷︷ ︸
a priori

information

×
∑

ξ:ξi=1 p(y|ξ)
∏

j �=i p
(
xj|ξj

)
Pr
(
ξj
)∑

ξ:ξi=0 p(y|ξ)
∏

j �=i p
(
xj|ξj) Pr

(
ξj
)︸ ︷︷ ︸

extrinsic information

.

(16)

The three terms on the right-hand side may be interpreted as
follows:

(i) the first term indicates what the ith received bit xi con-
tributes to the determination of the ith transmitted bit
ξi; hence the name “intrinsic information.” It coincides
with the maximum-likelihood metric for determining
the ith bit when no coding is used,

(ii) the second term expresses the a priori probability ratio
for the ith bit, and will be usurped shortly,

(iii) the third term expresses what the remaining bits in the
packet (i.e., of index j �= i) contribute to the determi-
nation of the ith bit; hence the name “extrinsic infor-
mation.”

1Although we show this factorization here for a Gaussian channel, the
factorization holds, of course, for any memoryless channel model.

Let T(ξ) = T1(ξ1)T2(ξ2) · · ·Tk(ξk) be a factorable prob-
ability mass function whose bitwise ratios are chosen to
match the extrinsic information values above:

Ti
(
ξi = 1

)
Ti
(
ξi = 0

)
=
∑

ξ:ξi=1 p(y|ξ)
∏

j �=i p
(
xj|ξj

)
Pr
(
ξj
)∑

ξ:ξi=0 p(y|ξ)
∏

j �=i p
(
xj|ξj

)
Pr
(
ξj
) , i = 1, 2, . . . , k.

(17)

Since these values depend on the likelihood function p(y|ξ)
(in addition to the systematic bits save for xi), we may
consider T(ξ) a factorable function which approximates, in
some sense, the likelihood function p(y|ξ). (We will see in
Theorem 2 a condition under which this approximation be-
comes exact). We now let T(ξ) usurp the place reserved for
the a priori probability function Pr(ξ) (denoted Pr(ξ) ←
T(ξ)) in the evaluation of the second decoder (11); since both
p(x|ξ) and T(ξ) factor into the product of their respective
marginals, we have

∑
ξ:ξi=1 p(x|ξ)p(z|ξ) Pr(ξ)∑
ξ:ξi=0 p(x|ξ)p(z|ξ) Pr(ξ)

←−
∑

ξ:ξi=1 p(x|ξ)p(z|ξ)T(ξ)∑
ξ:ξi=0 p(x|ξ)p(z|ξ)T(ξ)

= p
(
xi|ξi = 1

)
p
(
xi|ξi = 0

)︸ ︷︷ ︸
intrinsic

information

Ti
(
ξi = 1

)
Ti
(
ξi = 0

)︸ ︷︷ ︸
pseudoprior

×
∑

ξ:ξi=1 p(z|ξ)
∏

j �=i p
(
xj|ξj

)
Tj
(
ξj
)∑

ξ:ξi=0 p(z|ξ)
∏

j �=i p
(
xj|ξj

)
Tj
(
ξj
)︸ ︷︷ ︸

extrinsic information

.

(18)

Here we adopt the term “pseudoprior” for T(ξ) since it
usurps the a priori probability function; similarly, the re-
sult of this substitution may be termed a “pseudoposterior”
which usurps the true a posteriori probability ratio.

Let now U(ξ) = U1(ξ1)U2(ξ2) · · ·Uk(ξk) denote another
factorable probability function whose bitwise ratios match
the extrinsic information values furnished by this second de-
coder:

Ui
(
ξi = 1

)
Ui
(
ξi = 0

)
=
∑

ξ:ξi=1 p(z|ξ)
∏

j �=i p
(
xj|ξj

)
Tj
(
ξj
)∑

ξ:ξi=0 p(z|ξ)
∏

j �=i p
(
xj|ξj

)
Tj
(
ξj
) , i = 1, 2, . . . , k.

(19)

This function may then usurp the a priori probability values
used in the first decoder, and the process iterates. If we let
a superscript (m) denote an iteration index, the coupling of
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Figure 3: Flow graph of the turbo decoding algorithm.

the two decoders admits an external description as

p
(
xi|ξi = 1

)
p
(
xi|ξi = 0

) U (m)
i (1)

U (m)
i (0)

T(m)
i (1)

T(m)
i (0)

=
∑

ξ:ξi=1 p(y|ξ)p(x|ξ)U (m)(ξ)∑
ξ:ξi=0 p(y|ξ)p(x|ξ)U (m)(ξ)

,

(20)

p
(
xi|ξi = 1

)
p
(
xi|ξi = 0

) T(m)
i (1)

T(m)
i (0)

U (m+1)
i (1)

U (m+1)
i (0)

=
∑

ξ:ξi=1 p(z|ξ)p(x|ξ)T(m)(ξ)∑
ξ:ξi=0 p(z|ξ)p(x|ξ)T(m)(ξ)

,

(21)

in which (20) furnishes T(m)(ξ) and (21) furnishesU (m+1)(ξ).
This is depicted in Figure 3. A fixed point corresponds to
U (m+1)(ξ) = U (m)(ξ) which, by inspection of the pseudopos-
teriors above, yields the following property.

Property 1. A fixed point is attained if and only if the two de-
coders yields the same pseudoposteriors (the left-hand sides
of (20) and (21)) for i = 1, 2, . . . , k.

A fixed point is therefore reflected by a state of “consen-
sus” between the two decoders [15, 29, 37].

2.3. Existence of fixed points

A necessary (but not sufficient) condition for the algorithm
to converge is that a fixed point exist, reflected by a state of
consensus according to Property 1. A convenient tool in this
direction is the Brouwer fixed point theorem [38], which as-
serts that any continuous map from a closed, bounded, and
convex set into itself admits a fixed point; its application in
the present context gives the following result [18, 29].

Theorem 1. The turbo decoding algorithm from (20) and (21)
always admits a fixed point.

To verify, consider the pseudopriors U (m)(ξi) evaluated
for ξi = 1, which, at any iteration m, are (pseudo-) probabil-
ities lying between 0 and 1:

0 ≤ U (m)(1) ≤ 1, i = 1, 2, . . . , k. (22)

This clearly gives a closed, bounded, and convex set. Since the
updated pseudopriors U (m+1) also lie in this set, and since
the map from U (m)(ξ) to U (m+1)(ξ) is continuous [18, 29],
the conditions of the Brouwer theorem are satisfied, to show
existence of a fixed point.

3. PROJECTIONS AND PRODUCT DISTRIBUTIONS

A key element of the development thus far concerns the cal-
culation of bitwise marginal ratios which, according to [20],
provide the troublesome element which accounts for the dif-
ference between a provably convergent algorithm [20] which
is not practically implementable, and the implementable—
but difficult to grasp—turbo decoding algorithm. We de-
velop here an alternate viewpoint of the calculation of bitwise
marginals in terms of a certain projection operator, adapted
from the seminal work of Richardson [29].

Let q(ξ) be a distribution, for example, a probability mass
function, or a likelihood function, which assigns a nonnega-
tive number to each of the 2k evaluations of ξ = (ξ1, . . . , ξk).
We let q be the vector built from these 2k evaluations:

q =


q
[
ξ = (0, . . . , 0, 0)

]
q
[
ξ = (0, . . . , 0, 1)

]
...

q
[
ξ = (1, . . . , 1, 1)

]


 2k evaluations. (23)

We assume that q is scaled such that its entries sum to one.
The k marginal distributions determined from q(ξ), each
having two evaluations at ξi = 0 and ξi = 1 (1 ≤ i ≤ k),
are given by

q1
(
ξ1 = 0

) = ∑
ξ:ξ1=0

q(ξ), q1
(
ξ1 = 1

) = ∑
ξ:ξ1=1

q(ξ),

q2
(
ξ2 = 0

) = ∑
ξ:ξ2=0

q(ξ), q2
(
ξ2 = 1

) = ∑
ξ:ξ2=1

q(ξ),

...
...

qk
(
ξk = 0

) = ∑
ξ:ξk=0

q(ξ), qk
(
ξk = 1

) = ∑
ξ:ξk=1

q(ξ).

(24)

Definition 1. The distribution q(ξ) is a product distribution if
it coincides with the product of its marginals:

q(ξ) = q1
(
ξ1
)
q2
(
ξ2
) · · · qk(ξk). (25)

The set of all product distributions is denoted by P .

It is straightforward to check that q(ξ) ∈ P if and only if
its vector representation is Kronecker decomposable as

q = q1 ⊗ q2 ⊗ · · · ⊗ qk (26)

with

qi =
[
qi
(
ξi = 0

)
qi
(
ξi = 1

)] , i = 1, 2, . . . , k. (27)
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We note also that P is closed under multiplication: if q(ξ)
and r(ξ) belong to P , so does their product:

s(ξ) = αq(ξ)r(ξ) ∈ P , (28)

where the scalar α is chosen so that the evaluations of s(ξ)
sum to one. This operation can be expressed in vector nota-
tion using the Hadamard (or term-by-term) product:

s = αq� r. (29)

To simplify notations, the scalar α will not be explicitly indi-
cated, with the tacit understanding that the elements of the
vector must be scaled to sum to one; we will henceforth write
s = q� r, omitting explicit mention of the scale factor α.

Suppose now r(ξ) is not a product distribution. If
r1(ξ1), . . . , rk(ξk) denote its marginal distributions, then we
can set

q(ξ) = r1
(
ξ1
)
r2
(
ξ2
) · · · rk(ξk), (30)

to create a product distribution q(ξ) ∈ P which, by con-
struction, generates the same marginals as r(ξ):

qi
(
ξi
) = ri

(
ξi
)
, i = 1, 2, . . . , k. (31)

This operation will be denoted by

q = π(r). (32)

We can observe that q is a product distribution (q ∈ P ) if
and only if π(q) = q, and since π(r) ∈ P for any distribution
r, we must have π(π(r)) = π(r), so that π(·) is a projection
operator.

Definition 2. The distribution q is the projection of r into P
if (i) q ∈ P and (ii) qi(ξi) = ri(ξi).

The following section details some simple information-
theoretic properties which reinforce the interpretation as a
projection.

3.1. Information-theoretic properties of the projector

The results summarized in this section may be understood as
concrete transcriptions of ultimately deeper results from the
field of information geometry [33, 34]. To begin, we recall
that the entropy of a distribution r(ξ) is defined as [39]

H(r) = −
∑
ξ

r(ξ) log2 r(ξ), (33)

involving the sum over all 2k configurations of the vector ξ =
(ξ1, . . . , ξk). A basic result of information theory asserts that
the entropy of any joint distribution is upper bounded by the
sum of the entropies of its marginal distributions [39], that
is,

H(r) ≤
k∑
i=1

H
(
ri
) = k∑

i=1

(
−

1∑
ξi=0

ri
(
ξi
)
log2

(
ri
(
ξi
)))

, (34)

with equality if and only if r(ξ) factors into the product of its
marginals [r(ξ) ∈ P ]. Therefore, if r �∈ P , then by setting
q = π(r), we have

H(r) ≤
k∑
i=1

H
(
ri
) = k∑

i=1
H
(
qi
) = H(q), (35)

because qi(ξi) = ri(ξi) and q(ξ) ∈ P . This shows that the
projection q = π(r) maximizes the entropy over all distribu-
tions that generate the same marginals as r(ξ).

We recall next that the Kullback-Leibler distance (or rela-
tive entropy) between two distributions r(ξ) and s(ξ) is given
by [20, 39]

D(r‖s) =
∑
ξ

r(ξ) log2
r(ξ)
s(ξ)

≥ 0, (36)

withD(r‖s) = 0 if and only if r(ξ) = s(ξ) for all ξ. If s(ξ) ∈ P
and q = π(r), then we may verify (see the appendix) that

D(r‖s) = D(r‖q) +D(q‖s) ≥ D(r‖q), (37)

since D(q‖s) ≥ 0, with equality if and only if s(ξ) = q(ξ).
This shows that the projection q(ξ) is the closest product dis-
tribution to r(ξ) using the Kullback-Leibler distance.

3.2. Application to turbo decoding

The added complication of accounting for the calculation of
bitwise marginals noted in [20] can be offset by appealing
to the previous section, which interprets bitwise marginals
as resulting from a projection. Accordingly, we show in this
section how the turbo decoding algorithm of (20) and (21)
falls out as an alternating projection algorithm [29].

Let px, py , and pz denote the vectors which collect the 2k

evaluations of the likelihood functions p(x|ξ), p(y|ξ), and
p(z|ξ), respectively, that is,

px =


p
(
x|ξ = [0, . . . , 0, 0]

)
p
(
x|ξ = [0, . . . , 0, 1]

)
...

p
(
x|ξ = [1, . . . , 1, 1]

)


 2k evaluations, (38)

and similarly for py and pz. Likewise, let the vectors t(m) and
u(m) collect the 2k evaluations ofT(m)(ξ) andU (m)(ξ), respec-
tively, at a given iterationm.

We can observe that the right-hand side of (20) cal-
culates the bitwise marginal ratios of the distribution
p(y|ξ)p(x|ξ)U (m)(ξ); this distribution admits a vector rep-
resentation of the form py � px � u(m). The left-hand side of
(20) displays the bitwise marginal ratios of the product dis-
tribution px � u(m) � t(m) which generates, by construction,
the same bitwise marginals as py � px � u(m). This confirms
that px � u(m) � t(m) is the projection of py � px � u(m) in
P . By applying the same reasoning to (21), we establish the
following [29].
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Proposition 1. The turbo decoding algorithm of (20) and (21)
admits an exact description as the alternating projection algo-
rithm

px � u(m) � t(m) = π
(
py � px � u(m)), (39)

px � u(m+1) � t(m) = π
(
pz � px � t(m)). (40)

From this, a connection with maximum-likelihood de-
coding follows readily [18].

Theorem 2. If px�py and/or px�pz is a product distribution,
then

(1) the turbo decoding algorithm ((39) and (40)) converges
in a single iteration;

(2) the pseudoposteriors so obtained agree with the maxi-
mum-likelihood decision rule for the code.

For the proof, assume that px �py ∈ P . We already have
u(m) ∈ P , and sinceP is closed under multiplication, we see
that py � px � u(m) ∈ P . Since the projector behaves as the
identity operation for distributions in P , the first decoder
step of the turbo decoding algorithm from (39) becomes

px � u(m) � t(m) = π
(
py � px � u(m)) = py � px � u(m).

(41)

From this, we identify px � t(m) = px � py for all iterations
m to show that a fixed point is attained. The second decoder
from (40) then gives

π
(
pz � px � t(m)) = π

(
pz � px � py

)
, (42)

which furnishes the bitwise marginal ratios of
p(x|ξ)p(y|ξ)p(z|ξ). This agrees with the maximum-
likelihood decision rule seen previously in (9). The proof
when instead px � pz ∈ P follows by exchanging the role of
the two decoders.

Note that since px is already a product distribution (i.e.,
px ∈ P ), it is sufficient (but not necessary) that py ∈ P to
have px � py ∈ P . One may anticipate from this result that
if px � py and/or px � pz is “close” to a product distribution,
then the algorithm should converge “rapidly;” formal steps
confirming this notion are developed in [18]. Such proxim-
ity to a product distribution can be verified, in particular, in
extreme signal-to-noise ratios [18].

Example 1 (high signal-to-noise ratios). Let ξ∗ denote the
vector of true information bits. The joint likelihood evalu-
ation for x and y becomes

p(x, y|ξ) ∼ exp

(
−
∥∥cx(ξ∗)− cx(ξ) + bx

∥∥2
2σ2

−
∥∥cy(ξ∗)− cy(ξ) + by

∥∥2
2σ2

)
,

(43)

where cx(ξ) and cy(ξ) denote the antipodal (±1) representa-
tion of the coded information bits ξ, and where bx and by are
the vectors of channel noise samples. As the noise variance σ2

tends to zero, we have bx, by → 0, and

p(x, y|ξ) σ2→0−−−−→ δ
(
ξ − ξ∗

) =
1, ξ = ξ∗,
0, ξ �= ξ∗.

(44)

We note that the delta function can always be written as the
product of its marginals (which are themselves delta func-
tions of the individual bits of ξ∗). Experimental evidence
confirms that, in high signal-to-noise ratios, the algorithm
converges rapidly to decoded symbols of high reliability.

Example 2 (poor signal-to-noise ratios). As the noise vari-
ance σ2 increases, the likelihood evaluations are dominated
by the presence of the noise terms; ratios of candidate likeli-
hood evaluations then tend to 1, which is to say that p(x, y|ξ)
approaches a uniform distribution:

p(x, y|ξ) σ2→∞−−−−→ 1
2k

∀ξ. (45)

We note that a uniform distribution can always be written as
the product of its marginals (which are themselves uniform
distributions). Experimental evidence again confirms (e.g.,
[15, 18]) that, in poor signal-to-noise ratios, the algorithm
converges rapidly to a fixed point, but offers low confidence
in the decoded symbols.

Although the above examples assume a Gaussian channel
for simplicity, the basic reasoning can be extended to other
memoryless channel models. More interesting, of course, is
the convergence behavior for intermediate signal-to-noise
ratios, which still presents a challenging problem. A natural
question at this stage, however, is whether there exist con-
stituent encoders which would give px � py or px � pz as a
product distribution irrespective of the signal-to-noise ratio.
The answer is in the affirmative by considering, for example,
a repetition code for the second constituent encoder. The ar-
guments showing that px ∈ P can then be copied to show
that pz ∈ P as well (and therefore that px � py ∈ P ). But
the distance properties of the resulting concatenated code are
not very impressive, being basically the same as for the first
constituent encoder. This concurs with an observation from
[24], namely that “easily decodable” codes do not tend to be
good codes.

4. SERIAL CONCATENATED CODES

We turn our attention now to serial concatenated codes,
which have been studied extensively by Benedetto and his
coworkers [2, 3, 35], and which encompass an ultimately
richer structure. Our aim in this section is to show that the
alternating projection interpretation again carries through,
affording thus a unified study of serial and parallel concate-
nated codes.
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ψ

Figure 4: Flow graph for a serial concatenated code, with optional
interleaver.

The basic flow graph for serial concatenated codes is
depicted in Figure 4 in which the information bits ξ =
(ξ1, . . . , ξk) are first processed by an outer encoder, which
here is systematic, so that the first k bits of its output χ =
(χ1, . . . , χn) are the information bits:

χi = ξi, i = 1, 2, . . . , k. (46)

The remaining bits χk+1, . . . , χn furnish the n−k parity-check
bits. The cascaded inner encoder may admit different inter-
pretations.

(i) The inner encoder may be a second (block or convolu-
tional) encoder, perhaps endowed with an interleaver
to offer protection against burst errors, consistent with
conventional serial concatenated codes [2, 3]. Each in-
put configuration χ is mapped to an output configura-
tion ψ. With reference to Figure 4, the rate of the inner
encoder is n/l.

(ii) The inner encoder may be a differential encoder, in
order to endow the receiver with robustness against
phase ambiguity in the received signal. Since a differ-
ential encoder is a particular case of a rate 1 convolu-
tional encoder (with l = n or perhaps l = n+1), this
case is accommodated by the previous case.

(iii) The inner encoder may represent the convolutional ef-
fect induced by a channel whose memory is longer
than the symbol period. In this case, taking into ac-
count that the symbols {χi} will have been converted
to antipodal signaling (±1), the baseband channel out-
put appears as

vi =
∑
m

hm
(
2χm−i − 1

)
︸ ︷︷ ︸

ψi

+bi, (47)

where {hm} denotes the equivalent impulse response
of the basebandmodel, bi is the additive channel noise,
and where vi may be scalar-valued (for a single-input
single-output channel) or vector-valued (for a single-
input multiple-output channel).

Certainly other interpretations may be developed as well;
the above list may nonetheless be considered representative
of some common configurations.

4.1. Optimumdecoding

With v denoting the noisy received signal ψ (after conversion
to antipodal form, possibly corrupted by intersymbol inter-

ference), the optimum decoding metric is again based on the
a posteriori marginal probability ratios

Pr
(
ξi = 1|v)

Pr
(
ξi = 0|v) =

∑
ξ:ξi=1 Pr(ξ|v)∑
ξ:ξi=0 Pr(ξ|v)

=
∑

ξ:ξi=1 p(v|ξ) Pr(ξ)∑
ξ:ξi=0 p(v|ξ) Pr(ξ)

, i = 1, 2, . . . , k.

(48)

If all input configurations are equally probable, we have
Pr(ξ) = 1/2k and we recover the maximum-likelihood de-
coding rule.

If no interleaver is used between the two coders, then the
mapping from ξ to v is a noisy convolution, allowing a trel-
lis structure to perform optimum decoding at a reasonable
computational cost. In the presence of an interleaver, on the
other hand, the convolutional structure between ξ and v is
compromised, such that a direct evaluation of (48) leads to a
computational complexity that grows exponentially with the
block length. Iterative decoding, to be reviewed next, repre-
sents an attempt to reduce the decoding complexity to a rea-
sonable value.

4.2. Iterative decoding for serial concatenated codes

Iterative serial decoding [2] amounts to implementing locally
optimum decoders which infer χ from v, and then ξ from χ,
and subsequently exchanging information until consensus is
reached. Our development emphasizes the external descrip-
tions of the local decoding operations in order to better iden-
tify the form of consensus that is reached, as well as to justify
the seemingly heuristic coupling between the coders by way
of connections with maximum-likelihood decoding.

Consider first the inner decoding rule, which seeks to de-
termine the inner encoder’s input χ = (χ1, . . . , χn) from the
noisy received signal v:

Pr
(
χi = 1|v)

Pr
(
χi = 0|v) =

∑
χ:χi=1 Pr(χ|v)∑
χ:χi=0 Pr(χ|v)

=
∑

χ:χi=1 p(v|χ) Pr(χ)∑
χ:χi=0 p(v|χ) Pr(χ)

, i = 1, 2, . . . ,n.

(49)

The inner decoder assumes that the a priori probability mass
function Pr(χ) factors into the product of its marginals as

Pr(χ) = Pr
(
χ1
)
Pr
(
χ2
) · · ·Pr (χn). (50)

This assumption, strictly speaking, is incorrect, because the
bits {χi} are produced by the outer encoder, which imposes
dependencies between the bits for error control purposes.
The forward-backward algorithm from [36], however, can-
not exploit these dependencies without incurring a signif-
icant increase in computational complexity. By turning a
“blind eye” to this fact, and therefore admitting the fac-
torization of Pr(χ) into the product of its marginals, each
term from the numerator (resp., denominator) of (49) will



770 EURASIP Journal on Applied Signal Processing

contain a factor Pr(χi = 1) (resp., Pr(χi = 0)), which gives

Pr
(
χi=1|v)

Pr
(
χi=0|v)
= Pr

(
χi=1

)
Pr
(
χi=0

) ∑
χ:χi=1 p(v|χ)

∏
j �=i Pr

(
χj
)∑

χ:χi=0 p(v|χ)
∏

j �=i Pr
(
χj
)︸ ︷︷ ︸

extrinsic information

, i=1, 2, . . . ,n.

(51)

We now let T(χ) = T1(χ1) · · ·Tn(χn) denote a factorable
probability mass function whose marginal ratios match the
extrinsic information values above:

Ti
(
χi = 1

)
Ti
(
χi = 0

) = ∑
χ:χi=1 p(v|χ)

∏
j �=i Pr

(
χj
)∑

χ:χi=0 p(v|χ)
∏

j �=i Pr
(
χj
) . (52)

The outer decoder would normally aim to determine the
information bits ξ based on an estimate (denoted by χ̂) of the
outer encoder’s output, according to the a posteriori proba-
bility ratios

Pr
(
ξi = 1|χ̂)

Pr
(
ξi = 0|χ̂) =

∑
ξ:ξi=1 Pr(ξ|χ̂)∑
ξ:ξi=0 Pr(ξ|χ̂)

=
∑

ξ:ξi=1 p(χ̂|ξ) Pr(ξ)∑
ξ:ξi=0 p(χ̂|ξ) Pr(ξ)

.

(53)

The estimate χ̂, however, is not immediately available. If it
were, then each likelihood function evaluation would appear
as

p(χ̂|ξ) ∼ exp

(
−

n∑
j=1

[
χ̂ j −

(
2χj(ξ)− 1

)]2
2σ2

)
, (54)

assuming a Gaussian channel, in which χj(ξ) is either 0 or
1, depending on ξ = (ξ1, . . . , ξk). To each hypothetical bit
χ̂ j , therefore, we associate two evaluations as exp[−(χ̂ j ±
1)2/(2σ2)] (corresponding to χj(ξ) = 0 or 1), which are
usurped by the two evaluations of Tj(χj) from (52):

exp
[
− (χ̂ j − 1

)2
/
(
2σ2

)]
exp

[
− (χ̂ j + 1

)2
/
(
2σ2

)] ←− Tj(1)

Tj(0)
. (55)

The forward-backward algorithm [36] may then run, follow-
ing this systematic substitution.

To develop an external description of the decoding algo-
rithm which results, we note that this substitution amounts
to usurping the likelihood function p(χ̂|ξ) by

p(χ̂|ξ)←−
n∏
j=1

Tj
(
χj(ξ)

)
, (56)

in which the right-hand side notationally emphasizes that
only those bit combinations χ1, . . . , χn that lie in the outer
codebook make sense.

To arrive at a more convenient form, let φ(χ) denote the
indicator function for the outer codebook:

φ(χ) =
1 if χ lies in the outer codebook,

0 otherwise.
(57)

The 2n configurations of (χ1, . . . , χn) generate 2n evaluations
of
∏n

j=1 Tj(χj), but only 2k of these evaluations survive in

the product φ(χ)
∏

j Tj(χj), namely, the 2k evaluations from
the right-hand side of (56) which are generated as ξ varies
over its 2k configurations. We may then establish a one-to-
one correspondence between the 2k “surviving” evaluations
in φ(χ)

∏
j Tj(χj) and the 2k evaluations of the likelihood

function p(χ̂|ξ) which are usurped in (56). Assuming that
Pr(ξ) is a uniform distribution, the usurped pseudoposteri-
ors from (53) become

∑
ξ:ξi=1 p(χ̂|ξ)∑
ξ:ξi=0 p(χ̂|ξ)

←−
∑

χ:χi=1 φ(χ)
∏n

j=1 Tj
(
χj
)∑

χ:χi=0 φ(χ)
∏n

j=1 Tj
(
χj
)

= Ti(1)
Ti(0)

∑
χ:χi=1 φ(χ)

∏
j �=i Tj

(
χj
)∑

χ:χi=0 φ(χ)
∏

j �=i Tj
(
χj
)︸ ︷︷ ︸

extrinsic information

,
(58)

in which we note the following:

(i) since the outer code is systematic, the first k bits
χ1, . . . , χk coincide with the information bits ξ1, . . . , ξk,
allowing therefore a direct substitution for the vari-
ables of summation. In addition, the formula above
may be evaluated as written for the parity-check bits
χk+1, . . . , χn;

(ii) each term in the numerator (resp., denominator) con-
tains a factor Ti(χi = 1) (resp., Ti(χi = 0)), so that the
ratio Ti(1)/Ti(0) naturally factors out. Let

U(χ) = U1
(
χ1
) · · ·Un

(
χn
)

(59)

be a factorable probability function whose marginal
ratios match the extrinsic information values:

Ui(1)
Ui(0)

=
∑

χ:χi=1 φ(χ)
∏

j �=i Tj
(
χj
)∑

χ:χi=0 φ(χ)
∏

j �=i Tj
(
χj
) , i = 1, 2, . . . ,n. (60)

These values may then usurp the a priori probability
function Pr(χ) of the inner decoder: Pr(χ)← U(χ).

If we let a superscript (m) denote an iteration number,
then the coupling of the two decoders admits an external de-
scription of the form

T(m)
i (1)

T(m)
i (0)

U (m)
i (1)

U (m)
i (0)

=
∑

χ:χi=1 p(v|χ)
∏n

j=1U
(m)
j (χj)∑

χ:χi=0 p(v|χ)
∏n

j=1U
(m)
j

(
χj
) , i = 1, 2, . . . ,n,

(61)

T(m)
i (1)

T(m)
i (0)

U (m+1)
i (1)

U (m+1)
i (0)

=
∑

χ:χi=1 φ(χ)
∏n

j=1 T
(m)
j

(
χj
)

∑
χ:χi=0 φ(χ)

∏n
j=1 T

(m)
j

(
χj
) , i = 1, 2, . . . ,n,

(62)
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Figure 5: Flow graph for iterative decoding of serial concatenated
codes.

as depicted in Figure 5. A fixed point corresponds to
U (m+1)(χ) = U (m)(χ) which, in analogy with the parallel con-
catenated code case, can be characterized as the following
“consensus” property.

Property 2. A fixed point in the serial decoding algorithm
occurs if and only if the two decoders yield the same pseu-
doposteriors (left-hand sides of (61) and (62)) for i =
1, 2, . . . ,n.

Note that the consensus here covers the information bits
plus the parity-check bits furnished by the outer decoder.
As with the parallel concatenated code case, the existence of
fixed points follows by applying the Brouwer fixed point the-
orem (cf. Section 2.3).

4.3. Projection interpretation

The iterative decoding algorithm for serial concatenated
codes can also be rephrased as an alternating projection al-
gorithm, analogously to the parallel concatenated code case
of Section 3, as we develop presently.

We continue to denote by P the set of distributions q(ξ)
which factor into the product of their marginals:

q(χ) = q1
(
χ1
)
q2
(
χ2
) · · · qn(χn). (63)

The only modification here is that we now have n marginal
distributions to consider, to account for the k information
bits plus the n−k parity-check bits which intervene in the
consensus of Property 2. If r(χ) is an arbitrary distribution,
then q = π(r) yields a distribution q(χ) ∈ P which generates
the same nmarginal distributions as r(χ).

We let pv denote the vector containing the 2n likelihood
evaluations of p(v|χ):

pv =



p
[
v|χ = (0, . . . , 0, 0)

]
p
[
v|χ = (0, . . . , 0, 1)

]
...

p
[
v|χ = (1, . . . , 1, 1)

]




2n evaluations. (64)

Similarly, let the vectors t(m), u(m), and φ collect their respec-

tive 2n evaluations:

t(m) =


T(m)
1 (0) · · ·T(m)

n (0)

T(m)
1 (0) · · ·T(m)

n (1)
...

T(m)
1 (1) · · ·T(m)

n (1)

 ,

u(m) =


U (m)

1 (0) · · ·U (m)
n (0)

U (m)
1 (0) · · ·U (m)

n (1)
...

U (m)
1 (1) · · ·U (m)

n (1)

 ,

φ =


φ
[
χ = (0, . . . , 0, 0)

]
φ
[
χ = (0, . . . , 0, 1)

]
...

φ
[
χ = (1, . . . , 1, 1)

]

 .

(65)

With respect to the inner decoder, we see that the right-
hand side of (61) calculates the marginal ratios of the dis-
tribution p(v|χ)U (m)(χ), which distribution admits a vector
representation as pv � u(m). The left-hand side of (61) con-
tains the marginal ratios of t(m)�u(m) ∈ P , which agree with
those of pv � u(m), consistent with our projection operation.
By applying the same reasoning to (62), we obtain a natural
counterpart to Proposition 1.

Proposition 2. The iterative serial decoding algorithm of (61)
and (62) coincides with the alternating projection algorithm

t(m) � u(m) = π
(
pv � u(m)),

t(m) � u(m+1) = π
(
φ � t(m)). (66)

From this follows a natural analogue to Theorem 2 estab-
lishing a key link with maximum-likelihood decoding.

Theorem 3. If p(v|χ) factors into the product of its marginals,
then

(1) the iterative algorithm (61) and (62) converges in a sin-
gle iteration;

(2) the pseudoposteriors so obtained agree with the maxi-
mum-likelihood decision metric for the code.

The proof parallels that of Theorem 2, but displays its
own particularities which merit its inclusion here. If p(v|χ)
factors into the product of its marginals, then pv ∈ P , giv-
ing pv � u(m) ∈ P as well. Since the projector behaves as the
identity when applied to elements of P , the first displayed
equation of Proposition 2 becomes

t(m) � u(m) = π
(
pv � u(m)) = pv � u(m). (67)

From this we identify t(m) = pv for all iterations m, giving a
fixed point. Substituting t(m) = pv into the projector of the
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second displayed equation of Proposition 2 reveals

t(m) � u(m+1) = π
(
φ � t(m)) = π

(
φ � pv

)
. (68)

This calculates the marginal functions of φ(χ)p(v|χ), whose
surviving evaluations are the restriction of the likelihood
function p(v|χ) to the outer codebook:

φ(χ)p(v|χ) =
{
p
(
v|χ(ξ)) = p(v|ξ) if φ(χ) = 1,

0 otherwise.
(69)

Since the outer code is systematic, we have χi = ξi for
i = 1, . . . , k. Therefore, the first k marginal ratios from
φ(χ)p(v|χ) coincide with those from p(v|ξ); these in turn
agree with the maximum-likelihood decoding rule which re-
sults from (48) when the a priori probability function Pr(ξ)
is uniform.

As with the case of parallel concatenated codes, the like-
lihood function p(v|χ) will be “close” to a factorable distri-
bution when the signal-to-noise ratio is sufficiently high or
sufficiently low. The conclusions from [18, Section 3, Exam-
ples 1 and 2] therefore apply to serial concatenated codes as
well.

5. CONCLUDING REMARKS

We have developed a tutorial overview of iterative decod-
ing for parallel and serial concatenated codes, in the hopes
of rendering this material accessible to a wider audience.
Our development has emphasized descriptions and proper-
ties which are valid irrespective of the block length, which
may facilitate the analysis of such algorithms for short block
lengths. At the same time, the presentation emphasizes how
decoding algorithms for parallel and serial concatenated
codes may be addressed in a unified manner.

Although different properties have been exposed, the
critical question of convergence domains versus code choice
and signal-to-noise ratio remains less immediate to develop.
The natural extension of the projection viewpoint favored
here involves studying the stability properties of the dynamic
systemwhich results. This is pursued in [18, 29] (among oth-
ers) in which explicit expressions for the Jacobian of the sys-
tem feedback matrix are obtained; once a fixed point is iso-
lated, local stability properties can then be studied [18, 29],
but they depend in a complicated manner on the specific

code and channel properties (distance, block length, signal-
to-noise ratio, etc.).

One may observe that a fixed point occurs whenever
the pseudoposteriors assume uniform distributions, and that
this gives a convergent point in pessimistic signal-to-noise
ratios [18]. With some further code constraints [40], fixed
points are also shown to occur at codeword configurations
(i.e., where Ti(1) = ξi), consistent with the observed conver-
gence behavior for signal-to-noise ratios beyond the water-
fall region, and corresponding to an unequivocal fixed point
in the terminology of [18]. Interestingly, the convergence of
pseudoprobabilities to 0 or 1 was observed for low-density
parity-check codes as far back as [6]. Deducing the stability
properties of different fixed points versus the signal-to-noise
ratio and block length, however, remains a challenging prob-
lem.

By allowing the block length to become arbitrarily long,
large sample approximations may be invoked, which typi-
cally take the form of log-pseudoprobability ratios approach-
ing independent Gaussian random variables. Many insight-
ful analyses may then be developed (e.g., [15, 16, 17, 19],
among others). Such approximations, however, are known to
be less than faithful for shorter block lengths, of greater in-
terest in two-way communication systems, and analyses ex-
ploiting large sample approximations do not adequately pre-
dict the behavior of iterative decoding algorithms for shorter
block lengths.

Graphical methods (including [25, 26, 27, 28]) provide
another powerful analysis technique in this direction. Present
trends include studying how code design impacts the cycle
length of the decoding algorithm, based on the plausible con-
jecture that longer cycles should have a greater “stability mar-
gin” in an ultimately closed-loop system. Further study, how-
ever, is required to better understand the stability properties
of iterative decoding algorithms in the general case.

APPENDIX

VERIFICATION OF IDENTITY (37)

Let r(ξ) be an arbitrary distribution, and let q(ξ) be its
projection in P , giving a product distribution q(ξ) =
q1(ξ1) · · · qk(ξk) whose marginals match those of r(ξ) :
qi(ξi) = ri(ξi). Consider first

D(r‖q) =
1∑

ξ1=0
· · ·

1∑
ξk=0

r(ξ) log2
r(ξ)

q1
(
ξ1
) · · · qk(ξk)

=
1∑

ξ1=0
· · ·

1∑
ξk=0

r(ξ) log2 r(ξ)︸ ︷︷ ︸
−H(r)

−
1∑

ξ1=0
· · ·

1∑
ξk=0

r(ξ) log2
(
q1
(
ξ1
) · · · qk(ξk))

= −H(r) +

 1∑
ξ1=0

· · ·
1∑

ξk=0
r(ξ) log2 q1

(
ξ1
)
+ · · · +

1∑
ξ1=0

· · ·
1∑

ξk=0
r(ξ) log2 qk

(
ξk
)

︸ ︷︷ ︸
(a)

.
(A.1)
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The ith sum from the term (a) appears as

1∑
ξ1=0

· · ·
1∑

ξi=0
· · ·

1∑
ξk=0

r(ξ) log2 qi
(
ξi
)

=
1∑

ξi=0
log2 qi

(
ξi
)∑
j �=i

 1∑
ξj=0

r
(
ξ1, . . . , ξk

)
︸ ︷︷ ︸

ri(ξi)=qi(ξi)

=
1∑

ξi=0
ri
(
ξi
)
log2 qi

(
ξi
) = −H(ri) = −H(qi),

(A.2)

since the sums over bits other than i extract the ith marginal
function ri(ξi), which coincides with qi(ξi). Combining with
the previous expression, we see that

D(r‖q) =
k∑
i=1

H
(
ri
)−H(r). (A.3)

Now let s(ξ) = s1(ξi) · · · sk(ξk) be an arbitrary product
distribution. The same steps illustrated above give

D(r‖s) =
1∑

ξ1=0
· · ·

1∑
ξk=0

r(ξ) log2
r(ξ)

s1
(
ξ1
) · · · sk(ξk)

= −H(r)−
 1∑

ξ1=0
· · ·

1∑
ξk=0

r(ξ) log2 s1
(
ξ1
)
+ · · ·

+
1∑

ξ1=0
· · ·

1∑
ξk=0

r(ξ) log2 sk
(
ξk
)

= −H(r)−
 1∑

ξ1=0
r1
(
ξ1
)
log2 s1

(
ξ1
)
+ · · ·

+
1∑

ξk=0
rk
(
ξk
)
log2 sk

(
ξk
)

= −H(r)−
 1∑

ξ1=0
q1
(
ξ1
)
log2 s1

(
ξ1
)
+ · · ·

+
1∑

ξn=0
qk
(
ξk
)
log2 sk

(
ξk
).

(A.4)

Adding and subtracting the sums

1∑
ξ1=0

q1
(
ξ1
)
log2 q1

(
ξ1
)
+ · · · +

1∑
ξn=0

qk
(
ξk
)
log2 qk

(
ξk
)

= −
k∑
i=1

H
(
qi
)
,

(A.5)

and regrouping gives

D(r‖s)

= −H(r) +
k∑
i=1

H
(
qi
)

︸ ︷︷ ︸
D(r‖q)

+
1∑

ξ1=0
q1
(
ξ1
)
log2

q1
(
ξ1
)

s1
(
ξ1
) +· · ·+ 1∑

ξk=0
qk
(
ξk
)
log2

qk
(
ξn
)

sk
(
ξk
)

︸ ︷︷ ︸∑k
i=1 D(qi‖si)=D(q‖s)

,

(A.6)

which is the identity (37).
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