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The parallel and serial concatenation of codes is well established as a practical means of achieving excellent performance. In this
paper, we introduce the parallel and serial concatenation of single parity check (SPC) product codes. The weight distribution of
these codes is analyzed and the performance is bounded. Simulation results confirm these bounds at high signal-to-noise ratios.
The performance of these codes (and some variants) is shown to be quite good given the low decoding complexity and reasonably

short blocklengths.
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1. INTRODUCTION

The parallel and serial concatenation of codes is well es-
tablished as a practical means of achieving excellent per-
formance. Interest in code concatenation has been renewed
with the introduction of turbo codes [1], otherwise known as
parallel concatenated convolutional codes (PCCCs) [2], and
the closely related serially concatenated convolutional codes
(SCCCs) [3]. In this paper, we introduce the parallel and
serial concatenation of single parity check (SPC) product
codes. These codes perform well and yet have a low overall
decoding complexity. Similar work involving parallel con-
catenation of SPC codes (not SPC product codes) has been
considered in [4], while serially concatenated SPC codes are
investigated in [5].

It should be noted that the component codes are not
recursive and therefore both the parallel concatenated code
(PCC) and the serially concatenated code (SCC) should not
exhibit any “interleaver gain” [2, 3]. However, in practice, the
parallel and serial concatenation of nonrecursive codes can
still perform very well, for example, the “turbo block code”
[6]. It will be shown that parallel and serially concatenated

SPC product codes also perform well, especially consider-
ing the very low decoding complexity. The main reason for
this good performance is the relatively small number of low-
weight codewords. The weight distribution and performance
bounds will be investigated in Section 5.

2. ENCODING THE PCC AND SCC

In general, a parallel concatenated code involves encoding a
set of common data bits between multiple component codes,
typically the data bits are interleaved between the component
encoders. The component codes used throughout this paper
are {n,d} SPC product codes, where d is the number of di-
mensions and 7 is the length of the SPC codes in every di-
mension [7, 8]. The encoder for a parallel concatenated SPC
product code is shown in Figure 1a. In this case, the data bits
are encoded using an {n, d} SPC product code in one branch
of the code while the interleaved data bits are encoded us-
ing another {#,d} SPC product code in the second branch.
Because the SPC product codes are systematic, it is not nec-
essary to transmit the data bits from the second code as that
information is already contained in the first codeword, and
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FiGgure 1: PCC and SCC SPC product encoders. (a) Two-branch PCC SPC product encoder. (b) Encoder for a serially concatenated two-stage

SPC product code.

consequently the code rate is increased. This paper will only
consider PCC SPC product codes with two branches or com-
ponent codes, although the concept can easily be extended.
Therefore, the length of each codeword is N = 214 — (n—1)4,
while the number of data bits is K = (n — 1)“.

The encoder for a serially concatenated SPC product code
is shown in Figure 1b. In this case, the data is encoded using
an {n — 1,d} SPC product code. The resulting codeword is
then interleaved and re-encoded using an {n,d} SPC prod-
uct code. This can also be extended to more than a single se-
rial concatenation; however, the decrease in code rate can be
prohibitive. The blocklength for this simple two-stage SCC
SPC product code is N = n9, while the number of data bits
is K = (n — 2)4. Both the SCC and PCC have the same inter-
leaver size, (n — 1)%, using these encoder definitions.

It is possible, although very unlikely, that both the PCC
and SCC have a minimum distance given by the minimum
distance of the SPC product code, dpin = 24, This is possi-
ble because some of the minimum-distance codewords in the
SPC product code have a zero-output parity weight. Con-
sequently, the interleaver may map one of these minimum-
distance codewords to another minimum-distance codeword
in the second code. This event is very unlikely but will be in-
vestigated in Section 5 as part of the evaluation of the weight
enumerator and associated performance bounds.

3. ITERATIVE DECODING OF
CONCATENATED CODES

In order to iteratively decode the SCC or PCC, it is nec-
essary to soft decode the component SPC product codes.
This is described in [7, 8] where the log-likelihood-based
decoder will MAP decode the individual SPC codes, within
each SPC product code, and pass the extrinsic information
between each dimension. Specifically, the a posteriori proba-
bilities (APPs) of the coded bits, in terms of a log-likelihood
ratio (LLR), is given by [7]

= +1ly}
i) o

= Lcyk ""Lq(xk) + [I_q(xk),

where the extrinsic information of the kth bit in the SPC
component code, IL4(xx) is given by

. Ly(xj) +Lcy;
L4 (xx) = 2atanh ntanh<w) , (2)

j=1
j#k

and atanh is defined as the inverse hyperbolic tangent func-
tion. On the additive white Gaussian noise (AWGN) channel
Lc = 2/0%, while Ly(xx) is the a priori information of the
kth bit in the qth dimension. The a priori information is ini-
tially zero; however, in subsequent decodings, it is the sum of
the extrinsic information from the other dimensions of the
product code:

d
Ly(xe) = > Li(x). (3)

A slightly modified version of this algorithm will be used here
to decode the component SPC product codes. The only dif-
ference is that the a priori information, which is the sum of
the extrinsic information in other dimensions (3), will in-
clude an extra term, L.(x}). This extra extrinsic information
comes from the other component code in either the PCC or
SCC. The next two subsections consider iterative decoding of
these codes in more detail.

3.1. Decoding the PCC

The iterative decoder for a two-branch PCC SPC product
code is shown in Figure 2a. The aim of the decoder is to in-
corporate the extrinsic information from the other code in
order to improve performance. Specifically, the extra extrin-
sic information, L.(x;), is the average extrinsic information
over all the dimensions of the other code for a particular bit,
xy.. Hence the a priori information for the decoding of the
current SPC product code is given by

d
L) = 3 Lilxe) + T+, ()

i=1
i#q
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FIGURE 2: Iterative decoders for both the PCC and SCC. (a) PCC SPC product decoder. (b) SCC SPC product decoder.

where L.(x;) has been interleaved/deinterleaved so that xi
and x;, refer to the same bit. Note that because the PCC has
only the data bits common to both codes, the extrinsic infor-
mation that passed between the decoders can only apply to
those bits.

This approach implicitly assumes that the extra extrinsic
information from the other SPC product code is indepen-
dent. Due to the interleaving, this is a good assumption for
the first decoding iteration. However, as more iterations are
completed, the extrinsic information becomes more corre-
lated (hence the improvement in performance with each de-
coding iteration will decrease).

A single decoding iteration of the PCC decoder (shown
in Figure 2a) consists of one decoding cycle for both com-
ponent SPC product codes using the modified version of the
decoding algorithm. In each decoding cycle, the appropri-
ately interleaved average extrinsic information on the data
bits from the other code (generated in the previous decod-
ing iteration) is used to adjust the a priori LLRs, as defined
by (4). Note that the decoding cycle is defined by calculating
the extrinsic information for all bits in the SPC product code
after decoding in only one dimension. Initially all extrinsic
information is zero. Typically the PCC decoder performs at
least 2d decoding iterations, or 4d decoding cycles, where d
is the number of dimensions in the component SPC product
codes. It was found that these many iterations were required
for the decoder to converge.

3.2. Decoding the SCC

The iterative decoder for a serially concatenated SPC product
code is shown in Figure 2b. Initially the inner SPC product
code (SPC product code 2 in Figure 1b) is soft decoded for a
single decoding cycle. Once again the extrinsic information
is calculated for all bits in every dimension using a modified
version of the LLR decoding algorithm. Note that the code-
word from the outer code (SPC product code 1 in Figure 1b)
is completely contained within the inner codeword, although
in an interleaved form. Hence the average extrinsic informa-
tion from the inner code is available for all bits in the outer
code after deinterleaving. The second half of the decoding
iteration calculates the extrinsic information on all bits in
every dimension for the outer code (again using a modified
version of the decoding algorithm). The average extrinsic in-
formation is then interleaved and passed back to the inner
code for use in the next decoding iteration.

In both PCC and SCC, the binary decision on the data
bits, di, is determined by the soft output, Loy, where

d
Lout(xk) = Lcyk + E(X];) + Z |]~i(xk)' (5)

i=1

Specifically,

1, Lout(xk) <0. (©6)

"k _ {03 Lout(xk) = 0)
Typically the decision is made on the data bits from the
outer code in the SCC, or the last code to be decoded in the
PCC. Note that the extrinsic information needs to be inter-

leaved/deinterleaved so that xi and x}, correspond to the same
bit.

4. PERFORMANCE RESULTS

In all simulations, randomly generated interleavers were em-
ployed. No attempt was made to optimize them, so further
gains may be possible in specific applications where an ap-
propriate interleaver can be specially designed.

4.1. PCCperformance

The performance of an (8,7) three-dimensional PCC SPC
product code is shown in Figure 3. This code has rate R =
0.5037 and blocklength N = 681, and can achieve a BER
of 107 at E;/Ny = 3.37dB. This is 3.25dB away from the
binary input AWGN capacity of the system. The perfor-
mance of a number of PCC SPC product codes is shown
in Figure 4, with the code rate plotted against the E;/Ny re-
quired to achieve a BER of 107°. Note that the binary in-
put AWGN capacity is defined by the signal-to-noise ratio
such that the probability of error can be driven to zero as the
blocklength tends to infinity. These PCC SPC product codes
have quite short blocklengths (especially the two- and three-
dimensional examples), and consequently they cannot force
the probability of error, P,, to zero at such a low signal-to-
noise ratio. Therefore these codes will be compared to the
sphere-packing bound [9, 10, 11] which lower bounds the
best possible probability of codeword error for any code of
a given blocklength and code rate. The three-dimensional
(8,7) PCC SPC product code can achieve P, = 107* at
Ey/Ny = 4.02dB (see Figure 3). The sphere-packing bound
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FIGURE 3: BER performance and P,, the probability of codeword
error over the entire concatenated codeword, for a 3D (8,7) PCC
SPC product code with 1 to 8 decoding iterations.

requires Ep/Np = 1.33 dB to achieve this probability of code-
word error, hence the PCC is only 2.69 dB away from the
best possible code. Furthermore, it should be noted that a 2—
3 dB performance improvement is obtained by using a three-
dimensional SPC PC component code instead of a two di-
mensional SPC PC component code, with a relatively small
change in code rate.

Finally, note that the four-dimensional PCC SPC product
codes have a larger minimum distance, and so have a lower
error floor and a steeper roll-off than the three-dimensional
codes. Therefore, even though the performance of the four-
dimensional codes seems only slightly better than the three-
dimensional codes in Figure 4, at a lower BER, the difference
is greater.

4.2. SCCperformance

A performance comparison between various serially con-
catenated SPC product codes is given in Figure 5, with the
code rate plotted against the signal-to-noise ratio (SNR) re-
quired to achieve a BER of 107, The performance of the
SCC codes is very similar to that of the PCC codes, but
the SCC codes have a slightly lower code rate and shorter
blocklength (for the same size interleaver). For example,
the three-dimensional, n = 8, SCC SPC product code has
R = 0.4219 and N = 512. This SCC code achieves a BER
of 1073 at E,/Ny = 3.67 dB, which is somewhat worse than
the corresponding PCC code. However, as the size of the
component codes increases, the performance converges to
that of the PCC codes. Also note that the SCCs with three-
dimensional SPC PC component codes also give a 2-3 dB
advantage in performance over the two-dimensional SPC PC
component codes, as with the corresponding PCC codes. Al-
though the performance of the four-dimensional SCC codes
appears quite poor in comparison to the three-dimensional

FIGURE 4: A comparison between various PCC SPC product codes,
n=3_8,...,18, for the 3D codes and n = 8,10, 12, 14 for the 4D and
2D codes, at a BER of 107°.

codes, the larger minimum distance will result in better per-
formance, comparatively, at a lower BER.

5. BOUNDS ON PERFORMANCE

The results given in the previous section show that PCC and
SCC codes have quite good performance given their decod-
ing simplicity and short blocklengths. The reason for the per-
formance improvement over the component SPC product
codes [7] is the reduction in the number of low-weight code-
words. This will be investigated by considering the input-
output weight enumerator function (IOWEF) of the concate-
nated code (both serial and parallel), under the uniform in-
terleaver assumption [2].
In the case of a PCC, it is well known [2] that

K
A (X, Y) =D

x=0

A (x, Y)(;)ACZ (x,Y) , %

X

where A% (X, Y) is the IOWEF of the parallel concatenated
code while A (x,Y) and A% (x,Y) are the conditional
IOWEFs (CIOWEF)! of the component codes. In this case,
AC(x,Y) = A%(x,Y) since the component SPC product
codes are identical. In a similar way, the IOWEEF of the SCC,
A% (X,Y), can be written as [3]

AC(X.Y) - % ACR) X ATKY)
R Y

'An IOWEF can be conditioned on either the input or output weight,
hence 4(x, Y) is the CIOWEEF for a fixed input weight x while A(X, y) is the
CIOWEEF for an output weight y.
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F1GUrE 5: Performance comparison of SCC SPC product codes, n =
8,10,..., 16, for the 3D codes and n = 8,10, 12, 14 for the 4D and
2D codes, at a BER of 107°.

where A% (X, k) and AC (k, Y) are the CIOWEFs of the outer
and inner codes, respectively, and N; is the length of the outer
code.

Unfortunately, it is very difficult to directly calculate the
IOWEF of an SPC product code with more than two dimen-
sions. Consequently, we will introduce a lower bound on the
IOWEEF of the SPC product code with three or more dimen-
sions. This bound will underestimate the weight of all but the
minimum distance codewords (which are known exactly),
hence we can upper bound the probability of codeword er-
ror. This lower bound on the IOWEEF is given in the following
theorem.

Theorem 1. A lower bound on the IOWEF for an {n,d} SPC
product code, A4(X,Y), is given by

n—1 .
AIX,Y) = D> [(": 1) (A 1(X,Y) - 1)’}

i3<n ; 1
[

" 1) (Y = 1) (a1 (X3 Y2) — 1)

+ )(Adl(x, Y)-1)°v*"

9)

+(n—1D (A1 (X, Y?) = 1) + 1.

Proof. By construction, a d-dimensional SPC product code
consists of n— 1 independent (d — 1)-dimensional SPC prod-
uct codes which are encoded in the dth dimension using SPC
component codes. The parity checks in the dth dimension
also form a (d — 1)-dimensional codeword due to the struc-
ture of the product code. Let 0 < i < n — 1 be the number
of (d — 1)-dimensional product codewords with a nonzero
weight. If i = 1, then the encoding of the last dimension

will result in a copy of the codeword in the parity check bits,
hence the codeword weight doubles (resulting in the term
(n — 1)(Ag-1(X, Y?) = 1)). For i = 2, the weight of the two
nonzero (d — 1)-dimensional product codes is the product
of two IOWEFs, resulting in (/A4-1(X,Y) — 1)%. However if
the two codewords are the same (which occurs exactly once
for every codeword), then the checks in the dth dimension
will have zero weight. Otherwise, the resulting checks form
a (d — 1)-dimensional codeword with weight at least 29!
Thus in the case i = 2, we will multiply the IOWEF by Y2*"
to increase the codeword weight. However we must also take
into account the codewords, for i = 2, which have zero parity
weight in the dth dimension. Since these patterns only occur
when both (d — 1)-dimensional codewords are the same, we
know that the combined IOWEEF of these codewords must be
Ad-1(X?,Y?). The final case is 3 < i < n—1. While it is possi-
ble to do better than the proposed bound, (A4-1(X,Y) — 1)/
will always lower bound the codeword weight since it does
not take into account any extra weight due to the encoding
of the last dimension. O

This bound consistently underestimates the true weight
of every codeword except those at minimum distance. This
is because all minimum-distance codewords are determined
by the cases i = 1 and i = 2 (since i > 3 combines three
or more (d — 1)-dimensional SPC product codes, each of
which has minimum weight 24-1). Furthermore, the case
i = 1 produces the exact IOWEF while i = 2 generates
the correct number of weight 2¢ codewords. In the case of
a three-dimensional SPC product code, the bound is rea-
sonably good since the IOWEF of the two-dimensional SPC
product code is known exactly (see the appendix). Note that
the bound becomes less accurate as the number of dimen-
sions increases since the IOWEF from the previous dimen-
sion, +44_1(X,Y), must also be bounded.

The bound on the IOWEEF of the SPC product codes can
be used to calculate the average IOWEF of the PCC and SCC
codes. This average IOWEF (over the ensemble of possible
interleavers) can then be used to bound the performance of
the concatenated code. Specifically, the union bound may be
used:

P, <

_MZ
1M~

L _ @)
K.A,Jexp< ]RNO, (10)

j=0
where s;; is the weight distribution. The main disadvantage
of the union bound is that it diverges, that is, the bound
on probability of error becomes greater than one at the
cutoff rate. This is the motivation for employing the im-
proved bounds of Duman and Salehi [12]. These bounds
are based upon the parameterized bounds of Gallager [13]
which, for random codes, are useful at all rates up to ca-
pacity. The improved bound is shown in Figure 6 together
with the union bound and the simulation results for an (8, 7)
three-dimensional PCC. The “combined bound” in Figure 6
is the improved bound from [12] which is always better than
both the original bound of Duman and Salehi and the union
bound.
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Clearly the simulation results converge to the bounds at
high SNR, indicating that the number of minimum-distance
codewords is correct, and that the suboptimal iterative de-
coding approaches that of maximum-likelihood (ML) de-
coding.

6. VARIANTS OF PCC AND SCC CODES

A number of variations on the standard SCC and PCC codes
have been investigated. One variant involves using a ran-
domly interleaved SPC product code [7, 8] as the component
code in both PCC and SCC codes. This “better” component
code will improve the overall performance of the PCC or
SCC at higher SNRs. Another variant involves not transmit-
ting the checks on checks for the inner code of an SCC SPC
product code. The motivation for considering this code is the
good performance of an SPC product code without checks
on checks at very low SNR [7]. The poor minimum distance
of these codes can be alleviated by serial concatenation with
a standard SPC product code.

6.1. RISPC product code component codes

Performance comparisons between the standard and ran-
domly interleaved (RI) SPC product codes [7] show that RI
SPC product codes are significantly better at higher SNRs.
Specifically a four-dimensional (8,7) RI SPC product code
outperforms the equivalent SPC product code by 1.25dB at
a BER of 107>, This would indicate that the performance of
the PCC (or SCC) can be improved by using a randomly
interleaved SPC product code. This is confirmed by simu-
lation results at high SNR; however, at low SNR the per-
formance is somewhat worse than the noninterleaved SPC
product code PCC (see Figure 7). This behavior can be at-
tributed to the reduction in the overall code rate of the con-

Eu/Nyp (dB)

— 4D (8,7) PCC SPC PC
---4D (8,7) PCCRI SPC PC

FIGURE 7: Performance of a PCC with component 4D (8,7) RI SPC
product codes compared to the PCC simulation results with com-
ponent 4D (8,7) SPC product codes, for 1 to 12 decoding iterations.

catenated code and the consequent increase in the noise vari-
ance. For instance, the four-dimensional (8,7) PCC has code
rate R = 0.4146, hence at E;/Ny = 2 dB, the noise variance is
a2 = 0.76. However, both the standard and randomly inter-
leaved 4D (8,7) SPC product codes have rate R = 0.5862, so
a noise variance of 0> = 0.76 corresponds to E;/Np = 0.5 dB.
The results in [7] indicate that at this signal-to-noise ratio,
the performance of the standard and randomly interleaved
SPC product codes is almost identical (in fact, the standard
SPC product code performs marginally better). Therefore,
it can be expected that at E,/Ny = 2dB, the performance
of the PCC using either component code will be very simi-
lar. However, this does not take into account the availability
of the extrinsic information to the bits in each component
code.

The parity bits in the RI SPC product code are not de-
coded in all dimensions of the product code [7], hence ex-
trinsic information from all dimensions is not available to
the RI SPC product code (unlike the standard SPC product
code). Therefore, the extra extrinsic information available on
the data bits, due to the other code in the PCC, can be used
indirectly by all bits in the standard SPC product code, but
not by all bits in every dimension for the RI SPC product
code. This is a disadvantage of the RI SPC product code at
low SNR. However, at a slightly higher SNR, E;/Ny = 2.3 dB,
the inherently better performance of the RI SPC product
code allows the PCC to perform better than the original code
(see Figure 7).

6.2. SCCs with modified component codes

Another simple variation on the original SCC SPC prod-
uct code involves not transmitting the checks on checks for
the inner code. The motivation for this construction is to
use the improved performance of the SPC product codes
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without checks on checks at very low SNR [7] in the in-
ner code, while maintaining a relatively large minimum dis-
tance (and hence good asymptotic performance) by using the
standard SPC product code as the outer code. Figure 8 com-
pares the performance of this modified SCC to the regular
SCC SPC product code for twelve decoding iterations. As ex-
pected, the performance at low SNR is somewhat better, but
the minimum distance of the code is less than the original
SCC SPC product code, hence the performance at high SNR
is slightly worse. The blocklength is slightly less than that of
the original SCC SPC code, N = (n — 1)? + d(n — 1)41,
and the code rate is slightly higher at R = K/N, where
K=(n-2).

7. CONCLUSIONS

Parallel and serial concatenated SPC product codes are very
simple to encode and decode. Furthermore, their perfor-
mance is reasonably good when compared to the sphere-
packing bound. Three-dimensional PCCs, in particular, have
an advantageous tradeoff between blocklength, code rate,
and performance. An interesting characteristic of the PCC
and SCC codes is the reduction in the number of low-weight
codewords, compared to the original product codes. This is
confirmed by bounds on the average IOWEF of the PCC and
SCC. The performance results converge to the union bound
for an (8,7) three-dimensional PCC, indicating that itera-
tive decoding approaches ML decoding at high SNR. Variants
of PCC and SCC codes show that performance can be im-
proved at low SNR by not transmitting the checks on checks
for the inner code. Furthermore, improved performance at
high SNR can be achieved by using randomly interleaved
SPC product codes as the component codes.

APPENDIX
IOWEF OF A 2D SPC PRODUCT CODE

The IOWEEF of a two-dimensional SPC product code can be
calculated directly by enumerating all the possible codewords
if n < 6, which corresponds to M < 22° codewords. Unfortu-
nately, as the number of information bits, K = (n — 1)?, in-
creases, this calculation becomes impractical. The solution to
this problem is to calculate the IOWEEF of the dual of the SPC
code, and then apply a dual identity to obtain the IOWEF of
the code.

The WEEF of the two-dimensional dual SPC product code
is given in [14] by

n n-1
BY(X) =2 > (”) (” . 1)X"f+"f2ff. (A1)
i=0 j=0 \! J
The summation in (A.1) is equivalent to generating the WEF
from a nonsystematic construction of the dual code. Specif-
ically, the nonsystematic parity check matrix, H, is defined

by

r11---11 00---00 --- 00---00T7

00---00 11---11 --- 00---00
H=1/0...00 10---00 --- 10.--00| (A2

01---00 Ol---00 --- OL---00

100---10 00---10 -+ 00---10]

Note that the outer sum of (A.1) is equivalent to generating
all possible combinations of the top n rows of (A.2), while the
inner sum considers all combinations of the remaining n — 1
rows at the bottom of the matrix. Unfortunately, the IOWEF
cannot be generated from this form of the parity check ma-
trix, but a minor modification gives a systematic matrix, Hyys,
which can be used to find the IOWEFE. The matrices H and
Hyy, are related by

H = PH,,, (A.3)

where

[10---00 00---007
01---00 00---00

00---01 11---11
P=100...01 00---00]" (A4)

00---00 10---00

L00---00 00---10]

Recall that the dual codewords are generated by ¢ = mH =
mPH,, so we can assert that (A.1) produces the codeword
weight corresponding to an input weight of i + j provided
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the nth bit of the message vector is not used (since P is an
identity matrix except for the nth row). Furthermore, if the
nth bit is used, the input weight of the last n— 1 bits is inverted
(to produce the same codeword weight as given by (A.1)).
Therefore, the two-dimensional dual SPC product code has
an IOWEEF (in codeword form) given by

1 Sl LR Vet A P
AHX,Y) =D i ) xitiyintin=2ij
i=0 j=0

P j

N n—1\[(n—-1 xitn-1-jyintjn-2ij |
i—1 j

(A.5)

Writing the IOWEF (in parity form) as a homogeneous func-
tion [15] gives

AN X, Y, W,2Z)

£

« X WK=i=jyintjn-2ij-i-jzN-K—in—jn+2ijtit]

L 1\ /n—-1 Xin—1=j K —i-nt14]
i—1 j

yintjn=2ij—i—n+1+j yN-K—in-jn+2ij+itn—1-j \
X mn+jn 1j—i—n ] m—jn 1jrit+n ] s
(A-6)

where K = n> — (n— 1), N - K = (n — 1)? (for the dual
code), and the exponents of X and Y represent the data and
parity weights, respectively.

Now we need to find a MacWilliams-type identity relat-
ing the IOWEF of the dual to that of the code. Note that
the IOWEF of a code C is defined, in a homogeneous par-
ity form, as

K N-K
AG(X) Y, W,Z) = Z Z AiniWk_inZN_K_j
i=0 j=0
= Z X wi@) Y K-wt(a) ywt(b) 7N-K-wi(b)
cel

(A7)

where the vectors a and b represent the data and parity bits,
respectively, of the codeword ¢ € C. Now using the coor-
dinate partition which splits the data and parity bits of the
code and applying the result in [16], we obtain, after some
algebraic manipulation, the following dual identity:

A®(W,Z,X,Y)
1
e

. (A.8)
A X+Y,X-Y W+Z, W -2).

In many cases, the coefficients A;; are desired, so it may be
more convenient to expand (A.6) to find the dual coefficients,

Aj,,, and use the method

m>

K K
Ajj = > AfLPi(LN - K)Pj(m;K),  (A.9)
0 m=0

1 N
e

where Py (a; c) are the Krawtchouk polynomials:
b a\fc—a
Py(a;c) = (1)j< ) ( )
jgo J)\b=j
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