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We propose iterative, adaptive trellis-based blind sequence estimators, which can be interpreted as reduced-complexity receivers
derived from the joint ML data/channel estimation problem. The number of states in the trellis is considered as a design param-
eter, providing a trade-off between performance and complexity. For symmetrical signal constellations, differential encoding or
generalizations thereof are necessary to combat the phase ambiguity. At the receiver, the structure of the super-trellis (representing
differential encoding and intersymbol interference) is explicitly exploited rather than doing differential decoding just for resolving
the problem of phase ambiguity. In uncoded systems, it is shown that the data sequence can only be determined up to an unknown
shift index. This shift ambiguity can be resolved by taking an outer channel encoder into account. The average magnitude of the
soft outputs from the corresponding channel decoder is exploited to identify the shift index. For frequency-hopping systems over
fading channels, a double serially concatenated scheme is proposed, where the inner code is applied to combat the shift ambiguity
and the outer code provides time diversity in conjunction with an interburst interleaver.
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1. INTRODUCTION

In most digital communication systems, a training sequence
is inserted in each data burst for the purpose of channel esti-
mation or for the adjustment of the taps of linear or decision-
feedback equalizers. For an efficient usage of bandwidth,
however, blind equalization techniques attract considerable
attentions [1, 2]. Furthermore, blind detection schemes may
be embedded in existing systems as an add-on in order to
improve the system performance in difficult environments.

Blind linear and nonlinear equalization techniques have
been investigated since the pioneering work of Sato [3]. Con-
ventionally, blind linear equalizers exploit the higher-order
statistical relationship between the data signal and the equal-
izer output signal. On-line adaptive algorithms based on the
zero-forcing principle have been proposed in [3, 4, 5], for
example. For burst-wise transmission, an iterative batch im-
plementation of these algorithms is also possible [6], that is,
the equalizer coefficients obtained at the end of one itera-
tion are employed as the initial values in the next iteration.
Based on the minimum mean-square error (MMSE) crite-

rion, algorithms for blind identification and blind equaliza-
tion have been proposed in [7, 8] for multipath fading chan-
nels. Possible drawbacks of linear blind equalizers are, de-
pending on the algorithm, a slow convergence rate, a possible
convergence to local minima, and a lack of robustness against
Doppler spread, noise, and interference.

Given the equivalent discrete-time channel model, an
intersymbol interference (ISI) channel can be interpreted
as a nonlinear convolutional code, which can be described
by means of a trellis diagram or a tree diagram. Accord-
ingly, any trellis-based or tree-based [9] sequence estima-
tion technique can be used to perform data estimation. As
a counterpart to maximum-likelihood sequence estimation
(MLSE) with known coefficients of the equivalent discrete-
time channel model (which are referred to as channel coeffi-
cients in the sequel), nonlinear blind equalization techniques
by means of the expectation-maximization (EM) algorithm
were derived from themaximum-likelihood estimation prin-
ciple in [10, 11]. Moreover, adaptive channel estimators
may be combined with blind sequence estimation, as shown
in [12, 13, 14, 15]. Thereby adaptive channel estimators
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(e.g., based on least mean square (LMS), recursive least
squares (RLS) or the Kalman algorithm [16]) are imple-
mented in parallel to a blind trellis-based equalizer. Possible
equalizers may be based on the Viterbi algorithm (VA), on
per-survivor processing (PSP) [17], or on the list Viterbi al-
gorithm (LVA) [18]. For equalizers based on the VA, a single-
channel estimator is recursively updated by the locally best
survivor given a suitable tentative decision delay [19, Chapter
11]. With PSP, each survivor employs its own channel esti-
mator and no decision delay is afforded. In the LVA, for each
trellis state, more than one survivor is maintained. Differ-
ent from the case with known channel coefficients, the num-
ber of states in the trellis should be considered as a design
parameter, which provides a trade-off between complexity
and performance. In order to exploit statistical properties of
the multipath fading channel and to track the time varia-
tion of the channel, model-fitting algorithms were used in
[20, 21], for example. In this context, channel coefficients are
modeled as complex Gaussian-distributed random variables,
where the covariance matrix of channel coefficients are as-
sumed to be known at the receiver. All these techniques can
be applied straightforwardly to any tree-based sequential de-
coding algorithm, for example, by means of the breadth-first
sequential decoding algorithm as shown in [22]. In contrast
to blind linear equalizers, all these trellis-based or tree-based
approaches explicitly exploit the finite-alphabet property of
data sequences.

The focus of this paper is on trellis-based blind sequence
estimation for short burst sizes and noisy environments,
where the only available channel knowledge is an upper
bound on the channel order. Significant improvements with
respect to acquisition and bit error rate (BER) performance
are particularly obtained by incorporating on-line adaptive
channel estimation into the equalizer, by performing itera-
tive processing in the blind sequence estimator, and by us-
ing a priori information about data symbols, for example,
provided by an outer soft-output channel decoder or by ex-
ploiting the residual correlation in the data sequence af-
ter the source encoder [23]. As opposed to the optimal re-
ceiver in the sense of MLSE, the reduced-complexity trellis-
based blind sequence estimators considered here do not per-
form an exhaustive search over all possible data hypotheses.
Therefore, they may converge to local minima as observed in
[12, 13, 14]. In this paper, we propose different approaches
to combat phase ambiguity, shift ambiguity, and other local
minima of the cost function. If the channel order is overde-
termined, the data sequence can be only estimated up to
an unknown shift index for uncoded systems. On the other
hand, for coded schemes, this shift ambiguity can be resolved
by exploiting code constraints. As opposed to the common
understanding that differential encoding is used just to re-
solve the phase ambiguity of channel and data estimation,
we explicitly use the structure of the super-trellis. Besides in-
corporating a priori information, the proposed trellis-based
blind equalizer is also able to deliver soft outputs to subse-
quent processing stages. Consequently, a blind turbo proces-
sor can be obtained, which is composed of an inner blind
soft-input soft-output (SISO) equalizer and an outer SISO

channel decoder. For blind turbo equalization of frequency-
hopping systems over fading channels, we propose a novel
transmitter/receiver structure with double serial concatena-
tions. The inner concatenation is necessary to combat the
shift ambiguity, while the outer concatenation exploits time
diversity of channel codes in conjunction with an interburst
interleaver.

In Section 2, we present the system model under investi-
gation. Reduced-complexity trellis-based blind equalization
techniques are derived from the ML joint data/channel es-
timation problem in Section 3, which also shows the inher-
ent relationship between these techniques. The initialization
issue and techniques to combat local minima are discussed
in Section 4. A summary of the proposed adaptive blind
sequence estimator and simulation results for an uncoded
GSM-like system are also presented in Section 4. Taking the
outer channel decoder into consideration, we propose a blind
turbo equalizer in Section 5, where the effect of phase/shift
ambiguity on the coded system and corresponding solutions
are also investigated. After providing numerical results for
coded systems, some conclusions are drawn in Section 6.

2. SYSTEMMODEL

Throughout this paper we use the complex baseband nota-
tion. In the following, (·)T , (·)∗, (·)H , and (·)† stand for
transpose, complex conjugate, complex conjugate and trans-
pose, and Moore-Penrose pseudo left inverse, respectively.

2.1. Transmitter

Within this paper, the focus is on an M-ary DPSK system.
The task of the differential encoder is to resolve the phase am-
biguity. The output symbols of the differential encoder can
be written as

x[k] = x[k − 1]d[k], x[0] = +1, 1 ≤ k ≤ K , (1)

where d[k] are M-ary PSK data symbols with unit symbol
energy, x[0] = +1 serves as a reference symbol, and K is the
burst length (excluding the reference symbol). A generaliza-
tion to other symmetrical signal constellations with precod-
ing (e.g., CPM) is possible.

2.2. Channel model

The pulse shaping filter, the frequency-selective channel, the
receiving filter, and the sampling can be represented by a
tapped-delay-line baud-rate model. (We restrict ourselves to
baud-rate sampling. An extension to fractionally spaced sam-
pling is straightforward. The validity of the tapped-delay-
line model has been discussed for an unknown channel
in [24, 25].) The corresponding outputs of the equivalent
discrete-time channel model can be written as

y[k] =
L∑
l=0

hl[k]x[k − l] + n[k]

= xT[k]h[k] + n[k], 0 ≤ k ≤ K ,

(2)
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Figure 1: ISI channel model and ISI trellis for the binary case with L = 2.

where h[k] = [hL[k],hL−1[k], . . . ,h0[k]]T is the time-varying
channel coefficient vector with normalized power, L is the ef-
fective channel memory length after suitable truncation, and
{n[k]} is assumed to be an additive white Gaussian noise
(AWGN) sequence with variance σ2n per sample. Moreover,
x[k] = [x[k − L], . . . , x[k]]T denotes the state transitions of
the kth trellis segment.

For a burst-wise transmission, the channel model can be
represented in vector/matrix notation as

y = Xh + n, (3)

where y = [y[0], . . . , y[K]]T , X = [x[0], . . . , x[K]]T , and
n = [n[0], . . . ,n[K]]T . Moreover, h = [hL, . . . ,h0]T is as-
sumed to be constant within a burst. (If the data symbols are
not transmitted on a burst-by-burst basis, if the burst size is
large, or if the channel is fast time varying, K may denote the
length of a subburst.)

2.3. Receiver

The task of the receiver based on the maximum-likelihood
sequence estimation strategy is twofold. Primarily, we are
interested in an estimate of the data vector d = [d[1],
d[2], . . . ,d[K]]T . A pseudocoherent receiver (according to
the definition in [26]) must also obtain estimates of each el-
ement of h in amplitude and phase.

In a pseudocoherent receiver, joint data/channel estima-
tion may be based on the ISI trellis (followed by differential
decoding), or may be based on the DPSK/ISI super-trellis,
which combines the differential encoding and the ISI trel-
lis. When differential encoding is used, a receiver based on
the ISI trellis followed by differential encoding is equiva-
lent to the receiver based on the super-trellis if and only if
the transmitted symbols are independent and uniformly dis-
tributed. If this is not the case, only the latter receiver can be
optimal. In the following, only the latter receiver is investi-
gated.

Figure 1 shows the ISI channel model and the corre-
sponding ISI trellis for the case when L = 2 and M = 2.

Taking the differential encoder into account, the equivalent
DPSK/ISI superchannel and the corresponding DPSK/ISI
super-trellis are depicted in Figure 2. Note that the num-
ber of states is not increased by differential encoding. While
the data symbol after differential encoding, namely, x[k], la-
bels state transitions in the ISI trellis, the transition label
changes to d[k] in the DPSK/ISI super-trellis. As indicated
in Figure 2, the DPSK/ISI super channel can be interpreted
as a recursive encoder, which is preferable for serially con-
catenated turbo schemes [27]. In the following, our blind
sequence estimator operates on the DPSK/ISI super-trellis.
Furthermore, the differential encoder may be replaced by
other recursive rate-1 precoders, which are able to combat
the phase ambiguity, for example, any generalized differen-
tial encoder shown in [28]. Although only the differential en-
coder is considered within this paper, the proposed receiver
can easily be extended to other suitable recursive precoders
or modulation schemes with inherent differential encoding
like CPM.

3. REDUCED-COMPLEXITY RECEIVERS DERIVED
FROM THEML JOINT DATA/CHANNEL ESTIMATOR

In this Section, reduced-complexity receivers for blind
sequence estimation are derived from the ML joint
data/channel estimation problem, where both data sequence
and channel coefficients are unknown. Previously proposed
algorithms are shown to be special cases of the proposed re-
ceiver. In the following, φ̃ and φ̂ denote hypotheses and cor-
responding estimates of φ, respectively, where φ may be a
scalar, a vector, or a matrix.

The ML joint data/channel estimation problem in the
presence of AWGN can be formulated as

(
x̂, ĥ

) = argmax
x̃,h̃

{
p
(
y | x̃, h̃)} = argmin

X̃,h̃

{∥∥y − X̃h̃
∥∥2}, (4)

where p(y | x̃, h̃) denotes the probability density func-
tion of the received vector conditioned on data and channel
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Figure 2: DPSK/ISI channel model and DPSK/ISI super-trellis for the binary case with L = 2.

hypotheses. The ML sequence can be written as

x̂ = argmin
X̃

{
argmin

h̃

∥∥y − X̃h̃
∥∥2}

= argmin
X̃

{∥∥y − X̃X̃†y
∥∥2}, (5)

where X̃†y is the least-squares channel estimate (LS-CE)
based on the data matrix hypothesis X̃. From (5), the op-
timal solution for the joint estimation problem (4) necessi-
tates performing the LS channel estimation for all possible
data hypotheses. The complexity of this exhaustive search
approach inhibits its applications for practical burst lengths,
however.

The so-called projection matrix X̃p � X̃X̃† projects the
channel output vector y onto the subspace spanned by the
columns of X̃, and X̃p exhibits the following special proper-
ties:

X̃H
p =

(
X̃
(
X̃H X̃

)−1
X̃H
)H = X̃X̃† = X̃p, (6)(

X̃e jθ
)
p =

(
X̃e jθ

)(
X̃H X̃

)−1(
X̃e jθ

)H = X̃p, (7)

X̃pX̃p = X̃
(
X̃H X̃

)−1
X̃H X̃

(
X̃H X̃

)−1
X̃H = X̃p, (8)

where the matrix X̃H X̃ is assumed to be nonsingular. Conse-
quently, the ML joint data/channel estimator can be rewrit-
ten as

x̂ = argmin
X̃

{∥∥y − X̃py
∥∥2} = argmin

X̃

{− yH X̃py
}
, (9)

where −yH X̃py can be interpreted as the path metric associ-
ated with the data hypothesis x̃.

Equation (7) implies that there exists a phase ambiguity
for symmetrical signal constellations. For example, in the bi-
nary antipodal case, x̃ and −x̃ are indistinguishable for the
ML receiver. The phase ambiguity can be resolved by means
of differential encoding or generalizations thereof.

Because the only available channel knowledge at the re-
ceiver is an upper-bounded channel order, Lu ≥ L, the blind
sequence estimator presumes the following channel model:

y[k] =
Lu∑
l=0

hlx[k − l] + n[k] = xT[k]h + n[k], (10)

where we redefine x[k] � [x[k − Lu], . . . , x[k]]T and h �
[hLu , . . . ,h0]

T . The channel model (3) is correspondingly
changed with respect to X and h (with modified x[k] and
h) in the context of blind sequence estimation. Throughout
this paper, (10) is applied for the blind sequence estimation,
while (2) is suitable for equalizers with known channel coef-
ficients. For the case Lu = L, (10) reduces to (2). For the case
Lu > L, that is, the channel order is overdetermined, there
exists a shift ambiguity even for the ML receiver. For the ex-
ample that Lu = L + 1, two data sequences x̂1[k] = x[k] and
x̂2[k] = x[k + 1] are indistinguishable for the receiver due to

y[k] =
Lu∑
l=0

ĥ1l x[k − l] + n[k] =
Lu∑
l=0

ĥ2l x[k + 1− l] + n[k],

(11)

where ĥ1 = [h10, . . . ,h
1
Lu]

T = [h0, . . . ,hL, 0]T and ĥ2 =
[h20, . . . ,h

2
Lu]

T = [0,h0, . . . ,hL]T . Accordingly, the transmit-
ted data sequence can only be determined up to an unknown
shift index. For the case Lu < L, the channel order is under-
determined, which results in residual ISI and consequently
degrades the receiver performance.

A suboptimal solution of (4) can be obtained by explor-
ing 2Lt+1 paths in a trellis with 2Lt states (the subscript (·)t
abbreviates “trellis”) rather than performing an exhaustive
search, which takes 2K+1 paths into account. The memory
length of the expanded trellis Lt ≥ Lu is a design param-
eter, which provides a trade-off between performance and
complexity. A larger Lt results in a higher computational
complexity, which implies that more paths are retained for
the joint data/channel estimation. Therefore, a better perfor-
mance of the receiver with a larger Lt can be expected com-
pared to the receiver with a smaller Lt. We may define the
path metrics corresponding to Lt as follows:

K∑
k=0

∥∥y[k]− X̃[k] · ĥ(x̃t[k])∥∥2, (12)

where y[k] = [y[k + Lu − Lt], . . . , y[k]]T and X̃[k] = [x̃[k +
Lu−Lt], . . . , x̃[k]]T . The estimated channel coefficient vector
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for state transitions is denoted as ĥ(x̃t[k]), where state tran-
sitions x̃t[k] = [x̃[k − Lt], . . . , x̃[k]]T are determined by the
current state s̃t[k] = [x̃[k− Lt + 1], . . . , x̃[k]]T and its prede-
cessor s̃t[k − 1].

Depending on how to determine the channel coefficients

ĥ(x̃t[k]), different algorithms can be derived.

3.1. Two-step iterative alternating
data/channel estimation

If the estimated channel coefficient vector remains un-
changed over the whole burst, that is, if ĥ(x̃t[k]) = ĥ, (12)
is simplified as

K∑
k=0

∥∥y[k]− X̃[k]ĥ
∥∥2 = (Lt − Lu + 1

) K∑
k=0

∥∥y[k]− x̃T[k]ĥ
∥∥2.
(13)

Hence, a Viterbi equalizer with channel memory length Lt
will deliver the same result as another Viterbi equalizer with
channel memory length Lu, if the same estimated channel co-
efficients are used in both equalizers.

Given the data estimates obtained by the Viterbi equal-
izer, denoted as x̂, LS channel estimation can be performed
as

ĥ = argmin
h̃

{‖y − X̂h̃‖2} = (X̂H X̂
)−1

X̂Hy = X̂†y. (14)

If the data correlation matrix X̂H X̂ is rank deficient, channel
estimation may be carried out using the singular value de-
composition [16]. The channel estimate (14) is applied for
the sequence estimation in the next iteration. This two-step
alternating blind equalizer has been investigated in [29, 30]
for the case Lu = L. A sufficiently large burst length and a
priori information about the channel coefficients are neces-
sary in [29] to get a satisfying performance. In [30], a short
training sequence is afforded to get reasonable results.

If the Viterbi equalizer is replaced by a symbol-by-symbol
maximum a posteriori (MAP) equalizer, we obtain a blind
sequence estimator based on the EM algorithm. Applying
conditional a posteriori probabilities (APPs) of state transi-
tions x̃[k], denoted as P(x̃[k] | y, Θ̂(i)), the channel coeffi-
cients and the noise variance are estimated as follows [11]:

ĥ(i+1) =
(∑

k

∑
x̃[k]

P
(
x̃[k] | y, Θ̂(i))x̃∗[k]x̃T[k])−1

×
(∑

k

∑
x̃[k]

P
(
x̃[k] | y, Θ̂(i))x̃∗[k]y[k]),

(15)

σ̂2n
(i+1) =

∑
k

∑
x̃[k] P

(
x̃[k] | y, Θ̂(i)

)∣∣y[k]− x̃T[k]ĥ(i+1)
∣∣2∑

k

∑
x̃[k] P

(
x̃[k] | y, Θ̂(i)

) ,

(16)

where Θ̂(i) = [ĥ(i)T , σ̂2n
(i)
]T is the estimated channel parame-

ter vector at the end of the ith iteration. Θ̂(i) is considered as
constant within the (i+ 1)th iteration. The conditional APPs
P(x̃[k] | y, Θ̂(i)) can efficiently be evaluated using a forward

and backward recursion, which can be well approximated by
the max-log-APP algorithm [31] with a significantly reduced
complexity.

Equation (15) essentially approximates an MMSE chan-
nel estimator conditioned on Θ̂(i), that is,

ĥ(i+1) ≈ {E[x∗[k]xT[k] | y, Θ̂(i)]}−1E[x∗[k]y[k] | y, Θ̂(i)],
(17)

where the expectation is performed over the data sequence.
Using the approximations P(x̃ = x̂ | y, Θ̂(i)) ≈ 1 and

P(x̃ �= x̂ | y, Θ̂(i)) ≈ 0, (15) and (16) reduce to

ĥ(i+1) =
(∑

k

x̂∗[k]x̂T[k]

)−1(∑
k

x̂∗[k]y[k]

)
, (18)

σ̂2n
(i+1) = 1

K + 1

∑
k

∣∣y[k]− ĥ(i+1)T x̂[k]
∣∣2, (19)

where (18) coincides with (14) and x̂ is obtained by means

of the Viterbi algorithm using ĥ(i) as channel coefficients.
Therefore, the approaches proposed in [29, 30] can be re-
garded as simplified EM-based blind sequence estimators.
While (18) and (19) can be interpreted as channel estimation
based on hard decisions {x̂[k]}, (15) and (16) offer channel
estimates based on soft decisions P(x̃[k] | y, Θ̂(i)).

Through the iterative procedure, namely, (15) and (16),
the likelihood function p(y | Θ̂(i)) is verified to be a non-
decreasing function [32]. On the other hand, as pointed out
in [33], the EM solution only fulfills a necessary condition of
theML estimation, that is, the EM algorithmmay converge to
local maxima. Other drawbacks of the EM algorithm are its
sensitivity to the initialization of unknown parameters and a
possibly slow convergence. As a simplified EM algorithm, the
Viterbi equalizer in conjunction with LS-CE exhibits similar
drawbacks.

3.2. Trellis-based adaptive blind sequence
estimation (TABSE)

In order to improve the system performance with respect to
acquisition and to deal with time-varying channels, the chan-

nel coefficients ĥ(x̃t[k]) are recursively estimated during the
data estimation procedure.

If the estimated channel vector is independent of state
transitions in the trellis, that is, if ĥ(x̃t[k]) = ĥ[k], there
is a unique channel estimator in the blind sequence esti-
mator. The update of channel estimation is based on de-
layed tentative decisions of the locally best survivor. If the
estimated channel vector is solely determined by the prede-

cessor of state transitions, that is, ĥ(x̃t[k]) = ĥ(s̃t[k − 1]),
each state maintains a channel estimator corresponding to
the PSP principle. If the estimated channel vector is deter-
mined by state transitions, the update for channel estima-
tion is performed for each branch in the trellis, which is
termed per-branch processing (PBP) [34]. While in PSP the
add-compare-selection operation is done before the channel
adaptation, the order of these two operations is reversed in
PBP.
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Another important difference of the proposed adaptive
blind sequence estimator from the approaches presented in
Section 3.1 lies in the evaluation of branch metrics. In the
TABSE, branch metrics ‖y[k]− X̃[k] · ĥ(x̃t[k])‖2 are evalu-
ated based on the time-varying channel coefficients ĥ(x̃t[k]).
Moreover, branch metrics ‖y[k] − X̃[k] · ĥ(x̃t[k])‖2 are ac-
tually path metrics of short paths with length Lt − Lu + 1. At
each time index, the blind sequence estimator traces paths
in the trellis back to a certain depth for the evaluation of
short-path metrics based on updated channel coefficients,
which may be interpreted as extended PSP/PBP. (For the
case Lt = Lu, it coincides with original PSP/PBP; short-
path metrics are reduced to conventional branch metrics.)
Using short-path metrics as branch metrics makes, on aver-
age, the difference of considered path metrics larger than us-
ing conventional branch metrics. Therefore, on average the
proposed receiver delivers better data/channel estimates than
standard PSP/PBP-based approaches.

Blind acquisition performances of TABSEs based on the
LMS and the RLS algorithms have been explored in [12,
14, 15] for uncoded systems, respectively. For burst-wise
transmission, we have investigated iterative TABSEs and soft-
input soft-output counterparts thereof in [13, 35]. Details
will be discussed in the sequel.

4. ITERATIVE TRELLIS-BASED ADAPTIVE
BLIND SEQUENCE ESTIMATION

In this section, the initialization issue of TABSEs is firstly in-
vestigated. Afterward, we consider the problem of local min-
ima in the context of the blind sequence estimation and pro-
pose possible solutions. Finally, a concise description of the
proposed iterative adaptive blind sequence estimator will be
given, followed by numerical results for an uncoded GSM-
like system.

4.1. Initialization issue

Empirically, the central tap of linear blind equalizers is set to
one, where all other taps are set to zero [2]. For the TABSE,
the initial guess about the channel coefficients should be set
to all-zero, if there is no a priori information available about
channel coefficients. In order to obtain better initial values
compared to the all-zero initialization, several algorithms
have been proposed. One possibility stated in [19, Chapter
11] is to perform LS channel estimation over all possible data
sequences with a short length Ns (Lu + 1 ≤ Ns � K). After-
ward, blind trellis-based equalization using PSP or the LVA
can be performed. Due to the short length of subbursts, the
probability for a singularity, equivalence, or indistinguisha-
bility of data sequences is high [14].With increasing subburst
length, the initialization can be improved at the expense of
increased complexity. Another initialization strategy was in-
troduced in [36], where a successive refinement of channel
estimation is carried out over a quantized grid. For small
quantization steps and a relatively long burst length, a high
complexity can be expected. Therefore, we only consider the
all-zero initialization in this paper.

4.2. Local minima
Because only a constrained number of paths is retained to
perform joint data/channel estimation, the blind sequence
estimator may converge to a wrong set of channel coeffi-
cients, corresponding to a local minimum of the cost func-
tion. An example of local minima is the shift ambiguity
as observed in [12, 13, 14]. In the binary case, shift am-

biguity causes channel estimates ĥl = ±hl+κ, where κ ∈
{0,±1,±2, . . . ,±Lu}. In the absence of decision errors, the
corresponding data estimates are x̂[k] = ∓x[k − κ]. The
main problem related to the shift ambiguity is that κ chan-
nel coefficients are shifted out of the observation interval
Lu + 1. To resolve this shift ambiguity, we propose to per-
form LS channel estimation for estimated data sequence with
different shifts. Assuming X̂ is the estimated data matrix af-
ter convergence, matrices X̂(m) are constructed according to
x̂(m)[k] = x̂[k +m] for −Lu ≤ m ≤ Lu. Accordingly, the shift
index is estimated through the following equation (compare
(5) and (14)):

κ̂ = argmin
m

{∥∥y − X̂(m)X̂(m)†y
∥∥2}. (20)

A nice feature of trellis-based blind equalization is the pos-
sibility to make use of a priori information about the data
symbols and to deliver soft outputs to subsequent processing
stages. Incorporating a priori information of the data sym-
bols provides an efficient solution to combat other local min-
ima besides the shift ambiguity.

4.3. Summary of proposed iterative TABSE

A concise description of the proposed iterative TABSE is as
follows.

(1) Initialization: the channel coefficients are initialized to
be zero: ĥ(1)l [0] = 0, 0 ≤ l ≤ Lu.

(2) Recursive adaptive channel estimation: in case of PSP
equalization in conjunction with LMS channel estima-
tion, the adaptive channel estimator can be written as

e(i)
(
s̃t[k]

) = y[k]− X̂(i)(s̃t[k])ĥ(i)(s̃t[k − 1]
)
, (21)

ĥ(i)
(
s̃t[k]

) = ĥ(i)
(
s̃t[k − 1]

)
+
X̂H(i)(s̃t[k])e(i)(s̃t[k]),

(22)

where X̂(i)(s̃t[k]), ĥ(i)(s̃t[k]), e(i)(s̃t[k]), and
 are the
tentatively decided data matrix consistent with s̃t[k],
the estimated channel coefficient vector, the corre-
sponding a priori estimation error vector, and the LMS
step size, respectively. Moreover, 1 ≤ i ≤ Niter is the it-
eration index, and Niter denotes the given maximum
number of iterations.

(3) Shift ambiguity compensation: at the end of each itera-
tion, the shift ambiguity is compensated using the esti-
mated data sequence obtained in step (2) by means of
(20). Note that (20) tends to improve the channel esti-
mation obtained in the current iteration. The channel
estimate corresponding to the best shift index is used
as the initial channel estimate in the next iteration.
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Table 1: Shift ambiguity in estimated channel coefficients.

Actual channel coefficients �{h0} �{h1} �{h2} �{h3} �{h0} �{h1} �{h2} �{h3}
h1 −0.106 −0.410 −0.104 −0.001 0.083 0.429 0.228 −0.005
h2 −0.094 −0.809 −0.558 0.004 −0.094 −0.156 0.137 0.005

Estimated channel coefficients �{ĥ0} �{ĥ1} �{ĥ2} �{ĥ3} �{ĥ0} �{ĥ1} �{ĥ2} �{ĥ3}
ĥ1 −0.011 0.105 0.410 0.101 0.006 −0.084 −0.429 −0.225
ĥ2 0.000 0.101 0.808 0.551 −0.011 0.093 0.158 −0.136
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Figure 3: Raw BER versus SNR for RA channel model.

(4) Final data estimate: steps (2) and (3) are repeated until
i = Niter or until a convergence of the estimated data
sequence is observed, which gives the final data deci-
sion.

4.4. Numerical results for uncoded transmission

The performance of the proposed blind sequence estima-
tor was tested over a GSM-like system with burst length
K = 148. At the transmitter, binary DPSK symbols are passed
through a linearized Gaussian shaping filter, while a root-
raised cosine filter is used as a receiving filter. The GSM05.05
rural area (RA) and typical urban (TU) channel models were
taken into consideration. For the RA channel model, the
memory length of channel model was fixed to be Lu = 2,
while for the TU channel model Lu = 3 was selected.

The problem of shift ambiguity is illustrated in Table 1
for the TU channel model. The estimated channel coeffi-
cients are shifted to the right by one symbol (the phase
ambiguity is uncritical due to differential encoding). Con-
sequently, the estimated data sequences will be shifted by
one symbol to the left compared to the transmitted data se-
quences, that is, we have a BER of around 50% for such
bursts. To eliminate this effect due to shift ambiguity, for the
evaluation of the BER of uncoded systems we shift the esti-
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Figure 4: Average number of iterations of different algorithms to
convergence for RA channel model, Niter = 10.

mated data sequence by±Lu symbols and select the one with
the lowest number of errors.

For comparison, simulation results were also shown for
the case of known channel coefficients and a training-based
scheme (where a GSM training sequence of length 26 is
used for the LS channel estimation). The signal-to-noise ra-
tio (SNR) loss due to the training sequence was taken into
account. The final decision delay in all equalizers was se-
lected to be 2(Lu + 1). For the Viterbi equalizer in conjunc-
tion with an LMS adaptive channel estimator (abbreviated as
VA/LMS), the tentative decision delay is selected to be 5 sym-
bols. The step size of LMS channel estimation is selected to be

 = 0.1 in the first iteration for a fast convergence, while for
remaining iterations it is chosen to be 
 = 0.01 for refine-
ment of channel estimation. For SNRs < 20 dB, 104 quasi-
static bursts were generated, that is, channel coefficients re-
main constant within a burst and are statistically indepen-
dent from burst to burst. For SNRs ≥ 20 dB, the number of
bursts is 105.

Figure 3 shows the BER performance for the RA channel
model. Both VA/LMS and PSP/LMS blind sequence estima-
tors outperform the training-based scheme and show a sim-
ilar BER performance. As indicated in Figure 4, the VA/LMS
receiver exhibits a slower convergence rate than the PSP/LMS
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Figure 5: Raw BER versus SNR for TU channel model.

with a smaller complexity. For the TU channel model, as il-
lustrated in Figure 5, all blind equalizers under investigation
outperform the training-based system for SNRs ≤ 15 dB. For
PSP/LMS with Lt = 4, no error floor is visible. The gain of
the PSP/LMS receiver with Lt = 4 is about 1 dB with respect
to the training-based receiver, while the loss compared to the
perfect channel knowledge is around 1 dB at the BER of 10−4.
Similar to the RA channel model, a receiver with a higher
complexity shows a faster convergence rate, as illustrated in
Figure 6.

5. BLIND TURBO PROCESSOR

If a priori information about data symbols is available, we
may apply a MAP sequence estimator for data estimation,
that is, the branch metrics in the binary case are modified as
[23, 31]

γ̂
(
x̃[k]

)
= − 1

σ̂2n

∣∣∣∣∣y[k]−
Lu∑
l=0

ĥl[k − 1]x̃[k − l]

∣∣∣∣∣
2

+ logP
(
d̃[k]

)

= − 1
σ̂2n

∣∣∣∣∣y[k]−
Lu∑
l=0

ĥl[k − 1]x̃[k − l]

∣∣∣∣∣
2

+
1
2
d̃[k]La

(
d[k]

)
,

(23)

where La(d[k]) is the given or estimated log-likelihood ra-
tio value (abbreviated as L-value in the following) of d[k].
(Symbol-by-symbol MAP estimation is not recommendable
here due to the lack of survivors; surviving paths are neces-
sary for channel estimation.)
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Figure 6: Average number of iterations of different algorithms to
convergence for TU channel model, Niter = 10.

The significance of (23) is a generic receiver structure,
which is the same for the full range of blind equalization
without a priori information (where La(d[k]) = 0 for all
k) to a training-based equalizer (where |La(d[k])| → ∞ for
some k).

Besides incorporating a priori information, trellis-based
blind equalizers are capable of delivering soft outputs to sub-
sequent processing stages. Recently, blind turbo equalization
techniques have been proposed in [37, 38], where the chan-
nel coefficients and the noise variance were estimated iter-
atively using the off-line EM algorithm (compare (15) and
(16)), and in [39], where a blind channel estimator based
on higher-order statistics is used. The latter technique [39]
has been investigated for fading channels. Our approach is
suitable for short bursts, where the unknown channel co-
efficients and data sequence are jointly estimated on the
DPSK/ISI super-trellis. Moreover, the phase ambiguity and
shift ambiguity problems are taken into consideration and
solutions to combat such ambiguities are proposed, which
may make our approach much more robust than related al-
gorithms.

The overall system and the detailed turbo processor are
illustrated in Figures 7 and 8, respectively.

In Figure 7, u and d′ are the data vectors before and
after channel encoding, respectively. Note that the “inner
encoder” (represented by the DPSK/ISI super-trellis) is re-
cursive, which is missing in the other blind turbo schemes
[37, 38, 39], however.

Furthermore, La(·), LEe (·), and LDe (·) denote available a
priori information, extrinsic information delivered by the
SISO blind equalizer, and SISO channel decoder, respectively.
Only the extrinsic information is exchanged between two
SISO components.
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Figure 7: System model for blind turbo equalization.
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Figure 8: Blind turbo processor.

In the following, we discuss the impacts of phase/shift
ambiguity on the blind turbo processor, whileas novel ap-
proaches are proposed to solve these problems. Themax-log-
APP algorithm is used in both the blind SISO equalizer and
the SISO channel decoder. For convenience, we consider the
binary case with Lt = Lu and assume that the estimated noise
variance is equal to the true noise variance.

5.1. Estimated L-values under phase ambiguity

If ĥ = −h, branch metrics in SISO blind equalizer is formu-
lated as

γ̂
(
x̃[k]

) = − 1
σ2n

∣∣∣∣∣y(k) +
Lu∑
l=0

hlx̃[k − l]

∣∣∣∣∣
2

+
1
2
La
(
d[k]

)
d̃[k].

(24)

For the nonblind case with known channel coefficients,
branch metrics are evaluated as

γ
(
x̃[k]

) = − 1
σ2n

∣∣∣∣∣y(k)−
Lu∑
l=0

hlx̃[k − l]

∣∣∣∣∣
2

+
1
2
La
(
d[k]

)
d̃[k].

(25)

Comparing (24) with (25), we have

γ̂
(
x̃[k]

) = γ
(− x̃[k]

)
. (26)

Given a symmetrical initialization for the forward recur-
sion of the max-log-APP algorithm, that is, α̂(s̃[−1]) =
α(−s̃[−1]), it is easy to verify that

α̂
(
s̃[k]

) = α
(− s̃[k]

)
, 0 ≤ k ≤ K , (27)

where α̂(s̃[k]) = log p(y j≤k, s̃[k] | ĥ) and y j≤k = [y[0],
y[1], . . . , y[k]]T . Similarly, the backward recursion has the
same property:

β̂
(
s̃[k]

) = β
(− s̃[k]

)
, 0 ≤ k ≤ K , (28)

where β̂(s̃[k]) = log p(y j≥k+1 | s̃[k], ĥ) and y j≥k+1 = [y[k +
1], y[k + 2], . . . , y[K]]T . Therefore, the approximated a pos-

teriori L-value of d[k] can be obtained as

L̂
(
d[k]

) = max
s̃[k]:d̃[k]=+1

{
α̂
(
s̃[k]

)
+ β̂
(
s̃[k]

)}
− max

s̃[k]:d̃[k]=−1

{
α̂
(
s̃[k]

)
+ β̂
(
s̃[k]

)}
= max

s̃[k]:d̃[k]=+1

{
α
(
s̃[k]

)
+ β
(
s̃[k]

)}
− max

s̃[k]:d̃[k]=−1

{
α
(
s̃[k]

)
+ β
(
s̃[k]

)}
= L

(
d[k]

)
,

(29)

where s̃[k] : d̃[k] denotes all states consistent with d̃[k]. Note
that s̃[k] and −s̃[k] will result in the same d̃[k]. Hence, the
correct L-values of data symbols are obtained under the con-

dition ĥ = −h.
Moreover, the L-value about the reference symbol must

be estimated rather than assumed to be known. Otherwise,
the L-value about the first data symbol is evaluated as follows:

L̂
(
d[1] | x[0] = +1

)
= max

d̃[1]=x̃[1]=+1

{
α̂
(
s̃[1]

)
+ β̂
(
s̃[1]

)}
− max

d̃[1]=x̃[1]=−1

{
α̂
(
s̃[1]

)
+ β̂
(
s̃[1]

)}
= max

d̃[1]=x̃[1]=−1

{
α
(
s̃[1]

)
+ β
(
s̃[1]

)}
− max

d̃[1]=x̃[1]=+1

{
α
(
s̃[1]

)
+ β
(
s̃[1]

)}
= −L(d[1]).

(30)

If L̂(d[1]) obtained in (30) is delivered to the channel de-
coder, it will cause error propagation during the iterative pro-
cessing.

5.2. Shift ambiguity compensation
For a possible shift to the right in the channel estimation, we
have

ĥl = hl−κ, κ ≤ l ≤ L + κ,

ĥl = 0, l < κ or L + κ < l ≤ Lu,
(31)

where 0 ≤ κ ≤ Lu−L is the unknown shift index to be deter-
mined.
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Figure 9: Proposed transmitter/receiver structure for fading channels.

We consider the very first iteration between the blind
SISO equalizer and the SISO channel decoder, where no a
priori information about d[k] is available. Branch metrics
under shifted channel coefficients are then formulated as

γ̂
(
x̃[k]

) = − 1
σ2n

∣∣∣∣∣y[k]−
Lu∑
l=0

ĥlx̃[k − l]

∣∣∣∣∣
2

= − 1
σ2n

∣∣∣∣∣y[k]−
L∑
l=0

hlx̃[k − κ− l]

∣∣∣∣∣
2

.

(32)

For the case with correct channel coefficients, branch
metrics are evaluated as follows:

γ
(
x̃[k]

) = − 1
σ2n

∣∣∣∣∣y[k]−
L∑
l=0

hlx̃[k − l]

∣∣∣∣∣
2

. (33)

By means of induction, the estimated L-values can be ob-
tained as

L̂
(
d[k]

) = max
x̃[k]:d̃[k]=+1

{
α̂
(
s̃[k]

)
+ β̂
(
s̃[k]

)}
− max

x̃[k]:d̃[k]=−1

{
α̂
(
s̃[k]

)
+ β̂
(
s̃[k]

)}
= L

(
d[k + κ]

)
,

(34)

that is, the estimated L-values of shifted channel coefficients
are shifted in the reverse direction, see (31). This argument is
verified in the appendix.

Because of the deinterleaver between the SISO equalizer
and the SISO channel decoder (cf. Figure 8), a valid code-
word is not valid any more after shifts, that is, only the L-
values corresponding to the correct shift index will give rea-
sonable soft outputs of the channel decoder. Based on this
fact and on (34), we propose to shift the estimated L-values
obtained from the SISO blind equalizer. Then the shift index
can be estimated as

κ̂ = argmax
m

{KR∑
n=1

1
KR

∣∣L̂D(m)(u[n])∣∣}, (35)

where L-values about uncoded symbols related to shifts m ∈
[−LM ,LM] are denoted as {|L̂D(m)(u[n])|} and LM ≤ Lu con-
trols the range of shift search. Moreover, R denotes the code
rate of the channel encoder and KR is assumed to be a pos-
itive integer. In the following, (35) is referred to as a shift
compensation module (SC module).

5.3. Double serial concatenation for fading channels

Conventionally, for frequency-hopping systems over fading
channels, an interburst interleaver is used in conjunction
with a channel encoder in order to explore the time diversity
of the channel code. On average, within severely faded bursts
the L-values of the coded symbols have significantly smaller
magnitudes than in nonfaded bursts. After deinterleaving,
the L-values with small magnitudes are spread over the whole
coded block. Therefore, it is easy to compensate these small
L-values with the help of their “neighbors” with relatively
large magnitudes. For blind turbo equalizers, a direct ap-
plication of interburst interleaving is not straightforward be-
cause of the shift ambiguity problem. In order to combat the
shift ambiguity associated with individual bursts, the shift
ambiguity compensation should be carried out for individ-
ual bursts rather than for the whole coded block. Therefore,
channel encoding is applied for individual bursts as shown in
Figure 7, while the shift compensation is performed as pre-
sented in Section 5.2 for individual bursts. Moreover, a fur-
ther outer channel encoder is introduced to exploit time di-
versity in conjunction with inter burst interleaving, similarly
as in the conventional case with known channel coefficients.
This new scheme, which has a double serially concatenated
structure, is illustrated in Figure 9.

After the outer interleaver, denoted asΠo, the coded data
symbols from the outer channel encoder ENCo (with a code
rate of Ro) are divided into N parallel substreams c′o,l, 1 ≤
l ≤ N by means of a serial-to-parallel converter (abbreviated
as S/P). For the lth stream, we use the inner channel encoder
ENCi,l (with a code rate of Ri,l). After the lth inner interleaver
Πi,l, we get the data symbols before the differential encoding,
which are transmitted over a DPSK/ISI super channel CHAl.
In Figure 9, the additive noise is dropped for convenience. At
the receiver, the shift compensation procedure is performed
for each channel through an SC module. After determining
the correct shift indices for individual bursts, the actual iter-
ative processing between two SISO channel decoders and the
SISO equalizers can be performed as usual. From individual
SISO equalizers, the extrinsic information L̂e(dl) is delivered
to corresponding SISO inner channel decoder, which deliv-
ers extrinsic information L̂e(c′o,l) to the subsequent process-
ing stage and also offers estimated a priori information for
the SISO equalizer in the next iteration. The extrinsic infor-
mation from N inner channel decoders is passed to the outer
SISO channel decoder after the parallel-to-serial converter
(denoted as P/S). Similarly, the outer channel decoder offers



838 EURASIP Journal on Applied Signal Processing

the estimated L-values about its infobits L̂(u) and also deliv-
ers the estimated a priori information for the inner channel
decoders in the next iteration.

Because it is difficult to optimize the double serially con-
catenated system, the whole system is intuitively designed to
get a compromise between the complexity and performance.
Both inner and outer channel codes should be strong codes
for a large time diversity and a reliable shift compensation,
respectively. Within this paper, we consider rate 1/2 convolu-
tional codes, where “strong code” means a sufficiently large
memory length. On the other hand, to avoid a low bandwidth
efficiency, we need a punctured code [40]. Therefore, a rea-
sonable choice is to select an unpunctured code with a short
memory length for the outer concatenation and a punctured
code with a long memory length for the inner concatenation.

5.4. Overall receiver

Two scheduling strategies are possible: iterative processing
between the SISO modules may be performed after a con-
vergence of the TABSE (the receiver based on this scheduling
strategy is referred to as Scheme 1), or the iterative process-
ing is carried out directly after the all-zero initialization (the
corresponding receiver is referred to as Scheme 2). Scheme 2
requires more iterations than Scheme 1 to achieve a similar
performance, because in Scheme 1 the quality of soft out-
puts from the SISO blind equalizer are more reliable than in
Scheme 2 at least at the initial phase of iterative processing.
Therefore, within this paper, we only consider Scheme 1.

The overall receiver for coded systems in the jth iteration
is described as follows.

(1) Soft-output equalization: the forward recursion is per-
formed by means of adaptive joint data/channel es-
timation, where the branch metrics are evaluated as
in (23). The backward recursion is carried out using
the transition probabilities obtained in the forward re-
cursion. Afterward, the L-values about data symbols
before the differential encoding are evaluated to get
{L̂Ee (d[k])}.

(2) Noise variance estimation: after the evaluation of L-
values of coded data symbols, the noise variance can
be estimated based on hard or soft decisions from the
SISO equalizer, refer to (16) and (19), respectively. The
estimated noise variance is used in the next iteration to
evaluate the branch metrics (cf. (23)).

(3) SISO channel decoding of inner codes: the branch met-
rics in lth (1 ≤ l ≤ N) SISO inner channel decoder are
calculated as (0 ≤ n ≤ KRi,l − 1)

γ̂( j)
(
c̃′i,l[n]

) = (n+1)/Ri,l−1∑
k=n/Ri,l

L̂
( j)
e
(
c′i,l[k]

)
c̃′i,l[k]

+ L̂
( j−1)
a

(
c′o,l[n]

)
c̃′o,l[n],

(36)

where c̃′i,l[n] = [c̃′i,l[n/Ri,l], . . . , c̃′i,l[(n + 1)/Ri,l − 1]]T

is the inner coded data symbol vector at index n

and {L̂( j)e (c′i,l[k])} are extrinsic information obtained

from the lth SISO equalizer. Moreover, L̂
( j−1)
a (c′o,l[n])

denotes the estimated a priori information about
coded bits c′o,l[n] of outer code (i.e., info-bits of inner
codes) from the outer channel decoder in the ( j−1)th
iteration. The extrinsic information about coded bits
{c′i,l[k]} obtained by the max-log-APP channel de-
coder is fed back to the lth SISO equalizer and used
as estimated a priori information in the next iteration.
The extrinsic information about info-bits {c′o,l[k]} is
passed to the outer channel decoder after the parallel-
to-serial converter. Only in the very first iteration,
the possible shift ambiguity in the SISO equalizer is
compensated by means of the proposed approach (cf.
Section 5.2). L-values corresponding to the optimal
shift index are delivered to the inner SISO channel de-
coders.

(4) SISO channel decoding of outer code: the branch met-
rics in the SISO outer channel decoder are calculated
as (0 ≤ n ≤ K

∑N
l=1 Ri,l · R0 − 1)

γ̂( j)
(
c̃o[n]

) = (n+1)/Ro−1∑
k=n/Ro

L̂
( j)
e
(
co[k]

)
c̃o[k]

+ La
(
u[n]

)
ũ[n],

(37)

where c̃o[n] = [co[n/Ro], . . . , co[(n + 1)/Ro − 1]]T is
the outer coded data symbol vector and {L̂( j)e (co[k])}
are extrinsic information from the inner channel de-
coders. Moreover, La(u[n]) denotes the available a pri-
ori information about info-bits u[n] of outer code.

(5) Final data estimation: steps (1)–(4) are repeated until
the given number of iterations is reached. The L-values
from the outer channel decoder L̂(u) deliver the hard
decisions about info-bits and their corresponding reli-
abilities.

5.5. Numerical results for coded systems

Simulations were performed for the quasi-static TU and RA
channel models using the proposed double serially concate-
nated scheme. The outer channel encoder is a rate R0 = 1/2
convolutional code with generator polynomials (5, 7). The
inner codes (N = 10) are recursive systematic convolutional
codes with the same generator polynomials (23, 35), which
are punctured to get a code rate of Ri,l = 2/3, 1 ≤ l ≤ 10.
The puncturing table is [1111, 0101], where 0 stands for the
puncturing. Accordingly, the overall code rate is 1/3. No zero
tailing or tail biting is applied. The code length of the outer
code is 1000, while the inner codes have a code length of 150.
S-random interleavers [41] are applied for the interburst in-
terleaver (S = 15) and the intraburst interleavers (S = 8).
The data sequence of length K = 150 from each inner chan-
nel encoder is transmitted over independently generated fad-
ing channels. Themax-log-APP algorithm is applied for both
SISO equalization and SISO channel decoding. The SISO
equalizer is the modified TABSE based on VA/LMS, while pa-
rameters necessary for the LMS algorithm are the same as in
uncoded systems. The parameter LM in the SC modules is
selected to be 1 for both channel models.
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Figure 10: BER versus SNR of coded schemes for RA channel
model. Solid lines and dashed lines correspond to simulation results
of blind schemes and schemes with perfect channel knowledge, re-
spectively.
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Figure 11: BER versus SNR of coded schemes for TU channel
model. Solid lines and dashed lines correspond to simulation results
of blind schemes and schemes with perfect channel knowledge, re-
spectively.

As shown in Figures 10 and 11, for the systems with
perfect channel knowledge (known channel coefficients and
known average SNRs), the first iteration between the SISO
equalizer and SISO channel decoders provides the most sig-
nificant improvement. There is no further improvement af-
ter about 3 iterations for the considered SNR region. For
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Figure 12: MSE of estimated channel coefficients versus average
Eb/N0 for different iterations, for RA channel model.
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Figure 13: Decreased MSE of estimated channel coefficients
through the iterative processing, for TU channel model.

TABSE-based turbo schemes, the system performance is im-
proved gradually from iteration to iteration. The channel
estimates are improved gradually, as shown in Figures 12
and 13, which results in a gradually increased quality of soft
outputs in the SISO equalizer through the iterative process-
ing.
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6. CONCLUSIONS

Based on an approximation of a blind maximum-likelihood
sequence estimator, reduced-complexity iterative adaptive
trellis-based blind sequence estimators are proposed. Previ-
ously proposed blind sequence estimators can be interpreted
as special cases of our proposed receiver. Moreover, the ideas
of PSP/PBP are generalized by replacing conventional branch
metrics by short-path metrics. The differential encoder (or
generalizations thereof) is used to combat the phase ambi-
guity, where the resulting DPSK/ISI super-trellis is explicitly
applied for SISO equalization. By means of (de-)interleaver
and channel encoder, the problem of shift ambiguity due to
the overdetermined channel order can be resolved efficiently.
For frequency-hopping systems over frequency-selective fad-
ing channels, a double serially concatenated scheme is pro-
posed, which can combat the shift ambiguity and explore the
time diversity of channel codes in conjunction with inter-
burst interleaving. Our simulation results demonstrate the
potential of trellis-based adaptive blind sequence estimators
for short-burst data transmission over practical fading chan-
nels, particularly in the presence of channel coding.

APPENDIX

A. L-VALUES UNDER SHIFT AMBIGUITY

In this appendix, we consider the relationship between L-
values conditioned on shifted channel coefficients and cor-
rect L-values. The following conditions are presumed:

ĥl = hl−κ, κ ≤ l ≤ L + κ,

ĥl = 0, l < κ or L + κ < l ≤ Lu,

γ̂
(
x̃[k]

) = − 1
σ2n

∣∣∣∣∣y[k]−
L∑
l=0

hlx̃[k − κ− l]

∣∣∣∣∣
2

,

γ
(
x̃[k]

) = − 1
σ2n

∣∣∣∣∣y[k]−
L∑
l=0

hlx̃[k − l]

∣∣∣∣∣
2

,

(A.1)

and the max-log-APP algorithm is employed.

A.1. Definitions

Firstly, we introduce some relevant definitions.
(i) A state at the time index k, which merges into the

state s[k + κ] after κ steps in the forward recursion, is called
a forward-consistent state of s[k + κ]. The set of forward-
consistent states of s[k+κ] at time index k is termed forward-

consistent state set of s[k+κ] and abbreviated as
⇀
Mk(s[k+κ]).

Similarly, a state at time index k + κ, which merges
into the state s[k] after κ steps in the backward recursion,
is termed a backward-consistent state of s[k]. The set of
backward-consistent states of s[k] at time index k + κ is
termed backward-consistent state set of s[k] and abbreviated

as
↼
Mk+κ(s[k]).
(ii) A state transition at time index k, x[k], which con-

nects two forward-consistent states of s[k + κ], is called a
forward-consistent state transition of s[k + κ]. The forward-

consistent transition set of s[k + κ] at time index k is abbrevi-

ated as
⇀
Qk(s[k + κ]).

Similarly, a state transition at time index k + κ, which
connects two backward-consistent states of s[k], is called a
backward-consistent state transition of s[k]. The backward-
consistent transition set of s[k] at time index k + κ is referred

to as
↼
Qk+κ(s[k]).

(iii) A state s1[k] = [x1[k − Lu + 1], . . . , x1[k]]T is
κ-equivalent to another state s2[k] = [x2[k − Lu + 1],
. . . , x2[k]]T , if x1[k−κ− l] = x2[k−κ− l], 0 ≤ l ≤ L (for the
case Lu > κ+L), or if x1[k−κ−l] = x2[k−κ−l], 0 ≤ l ≤ L−1
(for the case Lu = κ + L). A state s1[k] is κ-shift equivalent to
another state s2[k], if x1[k− κ− l] = x2[k− l], 0 ≤ l ≤ L (for
the case Lu > κ+L), or if x1[k−κ−l] = x2[k−l], 0 ≤ l ≤ L−1
(for the case Lu = κ + L).

A state transition x1[k] = [x1[k − Lu], . . . , x1[k]]T is κ-
equivalent to another state transition x2[k] = [x2[k − Lu],
. . . , x2[k]]T , if x1[k − κ − l] = x2[k − κ − l], 0 ≤ l ≤ L.
A state transition x1[k] is κ-shift equivalent to another state
transition x2[k], if x1[k − κ− l] = x2[k − l], 0 ≤ l ≤ L.

(iv) For the forward recursion, we define

⇀
s [k] �

[− x
[
k − Lu + 1

]
, x
[
k − Lu + 2

]
, . . . , x[k]

]T
,

if s[k] = [x[k − Lu + 1
]
, x
[
k − Lu + 2

]
, . . . , x[k]

]T
,

⇀
x[k] �

[− x
[
k − Lu

]
, x
[
k − Lu + 1

]
, . . . , x[k]

]T
,

if x[k] = [x[k − Lu
]
, x
[
k − Lu + 1

]
, . . . , x[k]

]T
.
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Correspondingly, for the backward recursion, we define

↼
s [k] �

[
x
[
k − Lu + 1

]
, . . . , x[k − 1],−x[k]]T ,

if s[k] = [x[k − Lu + 1
]
, . . . , x[k − 1], x[k]

]T
,

↼
x[k] �

[
x
[
k − Lu

]
, . . . , x[k − 1],−x[k]]T ,

if x[k] = [x[k − Lu
]
, . . . , x[k − 1], x[k]

]T
.

(A.3)

(v) For the evaluation of L-values under correct chan-
nel coefficients, the relevant state transitions are defined as
xr[k] � [x[k− L], . . . , x[k]]T . Accordingly,

⇀
x r[k] � [−x[k−

L], . . . , x[k]]T . The relevant states are defined as sr[k] �
[x[k − L + 1], . . . , x[k]]T (for the case Lu = L + κ) or defined
as sr[k] � [x[k − L], . . . , x[k]]T (for the case Lu > L + κ).
Accordingly,

⇀
s r[k] � [−x[k−L+1], . . . , x[k]]T (for the case

Lu = L+ κ) and
⇀
s r[k] � [−x[k− L], . . . , x[k]]T (for the case

Lu > L + κ).
A state s1[k] = [x1[k − Lu + 1], . . . , x1[k]]T is relevant-

equivalent to another state s2[k] = [x2[k − Lu + 1],
. . . , x2[k]]T , if x1[k − l] = x2[k − l], 0 ≤ l ≤ L.

A.2. L-values under shifted channel coefficients

In the following, only the case Lu = L+κ is considered, while
the extension to Lu > L + κ is straightforward.

Theorem 1. If s′1[k] and s′2[k] are κ-equivalent states, then
α̂(s′1[k]) = α̂(s′2[k]).
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Proof. This statement is verified bymeans of induction as fol-
lows.

(1) k = 0. For two arbitrary κ-equivalent states s′1[0] and
s′2[0], we have

α̂
(
s′1[0]

) = max
{
γ̂
(
x′1[0]

)
, γ̂
(⇀
x
′
1[0]

)}
,

α̂
(
s′2[0]

) = max
{
γ̂
(
x′2[0]

)
, γ̂
(⇀
x
′
2[0]

)}
.

(A.4)

Due to the definition of κ-equivalent states, γ̂(x′2[0]) =
γ̂(x′1[0]) or γ̂(

⇀
x
′
2[0]) = γ̂(x′1[0]), which indicates

α̂
(
s′1[0]

) = α̂
(
s′2[0]

)
. (A.5)

(2) Assuming the following equation is fulfilled for all k >
0:

α̂
(
s′1[k]

) = α̂
(
s′2[k]

)
, (A.6)

if s′1[k] and s′2[k] are κ-equivalent states.
(3) For two κ-equivalent states at the time index k + 1,

s′1[k + 1], and s′2[k + 1], we obtain

α̂
(
s′1[k + 1]

) = max
{
α̂
(
s′1[k]

)
+ γ̂
(
x′1[k + 1]

)
,

α̂
(⇀
s
′
1[k]

)
+ γ̂
(⇀
x
′
1[k + 1]

)}
,

α̂
(
s′2[k + 1]

) = max
{
α̂
(
s′2[k]

)
+ γ̂
(
x′2[k + 1]

)
,

α̂
(⇀
s
′
2[k]

)
+ γ̂
(⇀
x
′
2[k + 1]

)}
.

(A.7)

Note that s′1[k] and s′2[k] are κ-equivalent, which im-

plies that
⇀
s
′
1[k] and

⇀
s
′
2[k] are also κ-equivalent and

that α̂(
⇀
s
′
1[k]) = α̂(

⇀
s
′
2[k]). Moreover, γ̂(x′2[k + 1]) =

γ̂(x′1[k + 1]) and γ̂(
⇀
x
′
2[k + 1]) = γ̂(

⇀
x
′
1[k + 1]) are satis-

fied. Therefore,

α̂
(
s′1[k + 1]

) = α̂
(
s′2[k + 1]

)
. (A.8)

Theorem 2. If s′[k] is κ-shift equivalent to s[k] ∈
⇀
Mk(s[k +

κ]),

α̂
(
s′[k]

) = max
{
α
(
s[k]

) | s[k] ∈ ⇀
Mk

(
s[k + κ]

)}
. (A.9)

Proof. The method of induction is employed again.

(1) k = 0:

α̂
(
s′[0]

) = max
{
γ̂
(
x′[0]

)
, γ̂
(⇀
x
′
[0]
)}

= max
{
γ
(
xr[0]

)
, γ
(⇀
x r[0]

)}
,

(A.10)

where x′[0] and
⇀
x
′
[0] are κ-shift equivalent to xr[0]

and
⇀
x r[0], respectively. On the other hand, we have

max
{
α
(
s[0]

) | s[0] ∈ ⇀
M0

(
s[κ]

)}
= max

{
γ
(
xr[0]

)
, γ
(⇀
x r[0]

)}
,

(A.11)

where s′[0] is κ-shift equivalent to s[0]. Note that for

two forward-consistent states s1[0], s2[0] ∈
⇀
M0(s[κ]),

we have x1[−l] = x2[−l], 0 ≤ l ≤ L − 1, while x[−l],
0 ≤ l ≤ L, are relevant for the evaluation of α(s[0]).
Therefore,

α̂
(
s′[0]

) = max
{
α
(
s[0]

) | s[0] ∈ ⇀
M0

(
s[κ]

)}
. (A.12)

(2) Assuming that for all k > 0 the following equation is
satisfied:

α̂
(
s′[k]

) = max
{
α
(
s[k]

) | s[k] ∈ ⇀
Mk

(
s[k + κ]

)}
, (A.13)

if s′[k] is κ-shift equivalent to s[k].
(3) For k + 1, the α̂-term is evaluated as

α̂
(
s′[k + 1]

)
= max

{
α̂
(
s′[k]

)
+ γ̂
(
x′[k + 1]

)
,
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{
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α
(
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+ γ
(
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,
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{
α
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)
+ γ
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)}}
= max

{
α
(
s[k + 1]

) | s[k + 1] ∈
⇀
Mk+1

(
s[k + κ + 1]

)}
,
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where x′[k + 1] and
⇀
x
′
[k + 1] are κ-shift equivalent to

xr[k + 1] and
⇀
x r[k + 1], respectively.

From (A.9), the forward recursion with correct channel
coefficients can be evaluated as

α
(
s[k + κ]

)
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α
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)
+ γ
(
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(
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,

(A.15)

where all forward-consistent transitions in
⇀
Qk+i(s[k+κ]) will

result in the same branch metrics, because the relevant data
symbols x[k + i − l], 0 ≤ l ≤ L, are the same for x[k + i] ∈
⇀
Qk+i(s[k + κ]). Moreover, s′[k] is κ-shift equivalent to s[k].

Similarly, for the backward recursion, the following the-
orems can be verified by means of induction.
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Theorem 3. If s1[k] and s2[k] are relevant-equivalent states,
then β(s1[k]) = β(s2[k]).

Theorem 4. If s′[k] is κ-shift equivalent to s[k],

β
(
s[k]

) = max
{
β̂
(
s′[k]

) | s′[k] ∈ ↼
Mk

(
s′[k − κ]

)}
. (A.16)

Theorem 5. If s′[k + κ] is κ-shift equivalent to s[k + κ],

β
(
s[k + κ]

) = β̂
(
s′[k]

)
−

κ∑
i=1

γ̂
(
x′[k + i] | x′[k + i] ∈

↼
Qk+i

(
s′[k]

))
.
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Finally, the estimated L-values under shifted channel co-
efficients are obtained as

L̂
(
d′[k]

) = max
s′[k]:d′[k]=+1

{
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(
s′[k]

)
+ β̂
(
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)}
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(
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)
+ β̂
(
s′[k]

)}
= max
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{
α
(
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)
+ β
(
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)}
− max

s[k+κ]:d[k+κ]=−1
{
α
(
s[k + κ]

)
+ β
(
s[k + κ]

)}
= L

(
d[k + κ]

)
.

(A.18)
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