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INTRODUCTION

Multimedia transmission over time-varying wireless channels presents a number of challenges beyond existing capabilities con-
ceived so far for third-generation networks. Efficient quality-of-service (QoS) provisioning for multimedia on these channels may
in particular require a loosening and a rethinking of the layer separation principle. In that context, joint source-channel decod-
ing (JSCD) strategies have gained attention as viable alternatives to separate decoding of source and channel codes. A statistical
framework based on hidden Markov models (HMMs) capturing dependencies between the source and channel coding compo-
nents sets the foundation for optimal design of techniques of joint decoding of source and channel codes. The problem has been
largely addressed in the research community, by considering both fixed-length codes (FLC) and variable-length source codes
(VLC) widely used in compression standards. Joint source-channel decoding of VLC raises specific difficulties due to the fact that
the segmentation of the received bitstream into source symbols is random. This paper makes a survey of recent theoretical and
practical advances in the area of JSCD with soft information of VLC-encoded sources. It first describes the main paths followed
for designing efficient estimators for VLC-encoded sources, the key component of the JSCD iterative structure. It then presents
the main issues involved in the application of the turbo principle to JSCD of VLC-encoded sources as well as the main approaches
to source-controlled channel decoding. This survey terminates by performance illustrations with real image and video decoding
systems.
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The advent of wireless communications, ultimately in a
global mobility context with highly varying channel char-
acteristics, is creating challenging problems in the area of
coding. Design principles prevailing so far and stemming
from Shannon’s source and channel separation theorem are
being reconsidered. The separation theorem, stating that
source and channel optimum performance bounds can be
approached as close as desired by designing independently
source and channel coding strategies, holds only under
asymptotic conditions where both codes are allowed infinite
length and complexity, and under conditions of source sta-
tionarity. If the design of the system is heavily constrained
in terms of complexity or delay, source and channel coders
can be largely suboptimal, leading to residual channel error
rates, which can be large and lead to dramatic source symbol
error rates. The assumption prevailing so far was essentially
that the lower layers would offer a guaranteed delivery ser-

vice, with a null residual bit error rate: for example, the error
detection mechanism supported by the user datagram proto-
col (UDP) discards all UDP packets corrupted by bit errors,
even if those errors are occurring in the packet payload. The
specification of a version of UDP, called UDP-Lite [1], that
would allow to pass erroneous data to the application layer
(i.e., to the source decoder) to make the best use of error-
resilient decoding systems is under study within the Internet
Engineering Task Force (IETF).

These evolving trends have led to considering joint
source-channel coding (JSCC) and decoding (JSCD) strate-
gies as viable alternatives for reliable multimedia communi-
cation over noisy channels. Researchers have taken several
paths toward the design of efficient JSCC and JSCD strate-
gies, including the design of unequal error protection strate-
gies [2], of channel optimized quantizers [3, 4], and of re-
silient entropy codes [5, 6]. Here, we focus on the JSCD
problem in a classical communication chain based on stan-
dardized systems and making use of a source coder aiming
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at decorrelating the signal followed by a channel coder that
aims at reaugmenting the redundancy in the transmitted
stream in order to cope with transmission errors. The key
idea of JSCD is to exploit jointly the residual redundancy of
the source-coded stream (i.e., exploiting the sub-optimality
of the source coder) and the redundancy introduced by the
channel code in order to correct bit errors, and find the best
source-symbols estimates.

Early work reported in the literature assumed fixed-
length representations (FLC) for the quantized-source in-
dexes [7, 8, 9, 10]. Correlation between successive indexes
in a Markovian framework is exploited to find maximum a
posteriori (MAP) or minimum mean square error (MMSE)
estimates. The applications targeted by research on error-
resilient FLC decoding and JSCD of FLC are essentially
speech applications making use for instance of CELP codecs.
However, the wide use of VLC in data compression, in partic-
ular for compressing images and video signals, has motivated
more recent consideration of variable-length coded streams.
As in the case of FLC, VLC decoding with soft information
amounts to capitalize on source coder suboptimality, by ex-
ploiting residual source redundancy (the so-called “excess-
rate”) [11, 12, 13, 14, 15]. However, VLC decoding raises
extra difficulties resulting from the lack of synchronization
between the symbol and bit instants in presence of bit er-
rors. In other words, the position of the symbol boundaries
in the sequence of noisy bits (or measurements) is not known
with certainty. This position is indeed a random variable, the
value of which depends on the realization of all the previous
symbols in the sequence. Hence, the segmentation of the bit-
stream into codewords is random, which is not the case for
FLCs. The problem becomes a joint problem of segmentation
and estimation which is best solved by exploiting both inter-
symbol correlation (when the source is not white) as well as
inner-codeword redundancy resulting from the entropy code
suboptimality.

This problem has first been addressed by considering
tree-based codes such as Huffman codes [11, 16, 17]. In
this case, the entropy-coded bitstream can be modelled as
a semi-Markov process, that is, as a function of a hidden
Markov process. The resulting dependency structures are
well adapted for MAP (maximum a posteriori) and MPM
(maximum of posterior marginals) estimation, making use
of soft-input soft-output dynamic decoding algorithms such
as the soft-output Viterbi algorithm (SOVA) [18] or the
BCJR algorithm [19]. To solve this problem, various trel-
lis representations have been proposed, either assuming the
source to be i.i.d. as in [20, 21], or also taking into account
the intersymbol dependencies. In source coding, the mean
square error (MSE) being a privileged performance measure,
a conditional mean or MMSE criterion can also be used,
possibly with approximations to maintain the computational
complexity within a tractable range [22].

The introduction of arithmetic codes in practical systems
(e.g., JPEG-2000, H.264) has then moved the effort towards
the design of robust decoding techniques of arithmetic codes.
Sequential decoding of arithmetic codes is investigated in
[23] for supporting error correction capabilities. Sequential

decoding with soft output and different paths pruning tech-
niques are described in [24, 25]. Additional error detection
and correction capabilities are obtained in [26] by reintro-
ducing redundancy in the form of parity-check bits embed-
ded in the arithmetic coding procedure. A probability inter-
val not assigned to a symbol of the source alphabet or mark-
ers inserted at known positions in the sequence of symbols
to be encoded is exploited for error detection in [27, 28, 29].
The authors in [30] consider quasiarithmetic codes which,
in contrast with optimal arithmetic codes, can be modelled
as finite-state automata (FSA).

When an error-correcting code (ECC) is present in the
communication chain, optimum decoding can be achieved
by making joint use of both forms of redundancy: the source
“excess-rate” and the redundancy introduced by the ECC.
This is the key idea underlying all joint source-channel de-
coding strategies. Joint use of correlation between quantized
indexes (i.e., using fixed-length representations of the in-
dexes) and of redundancy introduced by a channel turbo
coder is proposed in [31]. The approach combines the
Markovian source model with a parallel turbo coder model
in a product model. In order to reduce the complexity, an it-
erative structure, in the spirit of serial turbo codes where the
source coder is separated from the channel coder by an in-
terleaver, is described in [32]. The convergence behavior of
iterative source-channel decoding with fixed-length source
codes and a serial structure is studied in [33] using EXIT
charts [34]. The gain brought by the iterations is obviously
very much dependent on the amount of correlation present
on both sides of the interleaver.

Models incorporating both VLC-encoded sources and
channel codes have been considered in [16, 17, 35, 36]. The
authors in [16] derive a global stochastic automaton model
of the transmitted bitstream by computing the product of the
separate models for the Markov source, the source coder, and
the channel coder. The resulting automaton is used to per-
form a MAP decoding with the Viterbi algorithm. The ap-
proach provides optimal joint decoding of the chain, but re-
mains untractable for realistic applications because of state
explosion. In [35, 36, 37], the authors remove the memory
assumption for the source. They propose a turbo-like itera-
tive decoder for estimating the transmitted symbol stream,
which alternates channel decoding and VLC decoding. This
solution has the advantage of using one model at a time, thus
avoiding the state explosion phenomenon. The authors in
[14] push further the above idea by designing an iterative es-
timation technique alternating the use of the three models
(Markov source, source coder, and channel coder). A parallel
iterative joint source-channel decoding structure is also pro-
posed in [38].

Alternatively, the a priori source statistic information can
be directly taken into account in the channel decoder by de-
signing source-controlled channel decoding approaches. Ini-
tially proposed in [39], the approach has been mostly inves-
tigated in the case where a source coder using FLC is used in
conjunction with a convolutional channel coder [39], or with
a turbo channel coder [40, 41]. This approach, introduced
at first with fixed-length codes (FLCs), has been extended to
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FIGURE 1: Overview of the source-channel coding chain.

cover the case of VLC used in conjunction with convolutional
and turbo codes [42, 43].

The rest of the paper is organized as follows. Section 2
describes part of the notations used and briefly revisits es-
timation criteria (MAP, MPM, MMSE) and algorithms on
which we rely in the sequel. Section 3 presents models of
dependencies and corresponding graph representations for
source coders which can be modelled as FSA. Estimation us-
ing trellis decoding algorithms can be run on the resulting
dependency graphs. When the coder cannot be modelled as
a finite-state automaton, sequential decoding with soft out-
put can be applied as explained in Section 3.5. The problem
of complexity resulting from large state-space dimensions for
realistic sources is addressed in Section 3.6 where the graph
of dependencies of the source coder is separated into two
separate graphs exchanging information along a dependency
tree-structure. Mechanisms to improve the decoder’s resyn-
chronization capability are described in Section 4. Section 5
presents joint source-channel decoding principles placing
the above material in an iterative decoding structure in the
spirit of serial and parallel turbo codes. Section 6 gives an
overview of channel decoding with the help of a priori source
information. In Section 7, we present the estimation prob-
lem of the source statistics from noisy information. Finally,
Section 8, in light of performance illustrations with real im-
age and video coding/decoding systems, discusses the poten-
tial of JSCD strategies.

2. BACKGROUND

In order to introduce the notations and the background of
estimation techniques, we first consider the simple coding
and transmission chain depicted in Figure 1. We reserve cap-
ital letters to random variables, and small letters to values of
these variables. Let CK = C, - - - Cx be a sequence of source
symbols to be quantized and coded and let Slf =8 ---S¢
be the corresponding sequence of quantized symbols tak-
ing their values in a finite alphabet A composed of Q = 24
symbols, A = {a;,as,...,4i,...,aq}. The sequence S is then
coded into a sequence of bits Uf\’ = U, - - - Uy, by means of
a coder, that can encompass a source or/and a channel coder
as we will see later.

The length N of the useful bitstream is a random variable,
a function of SX and of the coding processes involved in the
chain. However, in most transmission systems, the encoded
version of SX is delimited by a prefix and a suffix that allow
a reliable isolation of UY. Therefore, one can assume that
N is perfectly observed. A sequence of redundant bits R) =
R; - - - Ry may be added to U}" by means of a correcting code

(Figure 1 and the notation R} correspond to the case where
a systematic rate 1/2 code is used).

The bitstream U} is sent over a memoryless channel
and received as measurements Y1' (see Figure 1). Let Y{¥
Y, - - - Yy be pointwise (noisy) measurements on the se-
quence of bits UYN. The sequence Y{' models the output of
the discrete channel, the quantities y = y; - - - yy denot-
ing the particular values of Y}' observed at the output of the
channel. The decoding problem consists in finding an esti-
mate SX of the sequence SX, and ultimately reconstructing
CK, given the observed values yY on the useful bits and z)¥
on the redundant bits.

Assuming that CX and S¥ are standard Markov processes,
the problem becomes a classical hidden Markov inference
problem for which efficient algorithms, known under a va-
riety of names (e.g., Kalman smoother, Raugh-Tung-Striebel
algorithm, BCJR algorithm, belief propagation, sum-product
algorithm, etc.), exist. The problem is indeed to estimate the
sequence of hidden states of a Markovian source through
observations of the output of a memoryless channel. The
estimation algorithms often differ by the estimation crite-
ria (MAP, maximum likelihood (ML), MPM, and minimum
mean square error (MMSE)) and the way the computations
are organized. The decision rules can be either optimum with
respect to a sequence of symbols or with respect to individual
symbols.

2.1.

The MAP estimate of the whole process SX based on all avail-
able measurements Y} can be expressed as'

MAP estimates (or “sequence” MAP decoding)

(1)

K=8 . -8 = arg max P(si---sklyr- - yn)-
The optimization is thus made over all possible sequences
realizations s of bit length N. Assuming that the sym-
bols S are converted into a fixed number of bits (using a
FLC), when the a priori information is equally distributed, it
can be shown easily that, using the Bayes formula, the “se-
quence” MAP (P(SK|YN)) is equivalent to the ML estimate
(P(YN|SK)). The ML estimate can be computed with the
Viterbi algorithm (VA). When the a priori information is not
equally distributed, the “sequence” MAP can still be derived
from the ML estimate, as a subproduct of the VA, if the met-
ric incorporates the a priori probabilities P(Sk+11Sk). If the

'For notational convenience, in the sections where a channel coder is
not explicitly involved, the channel input and output are denoted by UN
and Y, respectively.
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symbols Sy are converted into variable numbers of bits, one
has to use instead the generalized Viterbi algorithm [44].

In ML and MAP estimations, the ratios of probabili-
ties of trellis paths leading to a given state X to the sum of
probabilities of all possible paths terminated at X are often
computed as likelihood ratios or in the logarithmic domain
as log-likelihood ratios (LLRs). Modifications have been in-
troduced in the VA in order to obtain at the decoder output,
in addition to the “hard”-decoded symbols, reliability infor-
mation, leading to the soft-output Viterbi algorithm (SOVA)
[18]. The ML or sequence MAP estimation algorithms do
supply sequence a posteriori probabilities but not actual a
posteriori symbol probabilities, hence are not optimal in the
sense of symbol error probability.

2.2. MPM estimation (or “symbol-by-symbol”
MAP decoding)

The symbol-by-symbol MAP decoding algorithms search for
the MPM estimates, that is, estimate each hidden state of the
Markov chain individually according to

Sk = argmax P(S; = s | YN = yN). (2)
Sk

Assuming that the symbols Sy are converted into a fixed
number of bits (using a FLC), computations can be orga-
nized around the factorization

P(SklY]) o< P(Sk, Y1) - P(Y, 1), (3)

where oc denotes a renormalization. The measures Y,, on bits
U, can indeed be converted into measures on symbols in a
very straightforward manner. In the case of VLC encoding of
the symbols Sk, the conversion brings some slight technical
difficulty (we return to this point in Section 3).

First “symbol-by-symbol” MAP decoding algorithms
have been known from the late sixties [45], early seventies
[19, 46]. The Markov property allows a recursive computa-
tion of both terms of the right-hand side organized in a for-
ward and backward recursion. The BCJR algorithm is a two-
recursion algorithm involving soft decisions and estimating
per-symbol a posteriori probabilities. To reconstruct the data
sequence, the soft output of the BCJR algorithm are hard lim-
ited. The estimates need not form a connected path in the
estimation trellis.

Because of its complexity, the implementation of the
MAP estimation has been proposed in the logarithmic do-
main leading to a log-MAP algorithm [47, 48]. In its log-
arithmic form, exponentials related to the classical additive
white Gaussian noise (AWGN) channel disappear, and mul-
tiplications become additions. Further simplifications and
approximations to the log-MAP algorithm have been pro-
posed in order to avoid calculating the actual probabili-
ties. These simplifications consist in replacing the additions
by some sort of MAX operations plus a logarithmic term
(In(1 + exp(—la — bl))). Ignoring the logarithmic term leads
to the suboptimal variant known as the Max-Log-MAP algo-
rithm [48].

2.3. MMSE decoding

The performance measure of source coding-decoding sys-
tems is traditionally the MSE between the reconstructed and
the original signal. In that case, the MAP criterion is sub-
optimal. Optimal decoding is given instead by conditional
mean or MMSE estimators. The decoder seeks the sequence
of reconstruction values (a; - --ax---dx), axr € R, k =
1,...,K, for the sequence CK. The values @; may not be-
long to the alphabet used initially to quantize the sequence of
symbols CK. This sequence of reconstruction values should
be such that the expected distortion on the reconstructed se-
quence CK, given the sequence of observations Y, and de-
noted by E [D(C’K ,CKY YN, is minimized. This expected dis-
tortion can be computed from the a posteriori probabilities
(APPs) of the estimated quantized sequence SK, given the se-
quence of measurements, obtained as a result of the sequence
MAP estimation described above.

However, minimizing E [D(éf ,C{< )IYlN ], that is, given
the entire sequence of measurements, becomes rapidly
untractable except in trivial cases. Approximate solutions
(approximate MMSE estimators (AMMSE)) considering
the expected distortion for each reconstructed symbol
E [D(ék,Ck)IYlN ] are used instead [22]. The problem then
amounts to minimizing

lar—all’PlSk=ar | YN = yN], (4

Mz

R K
b=y

k=1

where M is the size of the reconstruction alphabet, and the
reconstruction values gy are centroids computed as

M
A= aiP[Sk=ar | YV = yV]. (5)
=1

The term |P>[§k =aqa | YIN = y{\]] turns out to be the poste-
rior marginals computed with the MPM strategy described
above, that is, with the forward/backward recursion as in
[19].

3. SOFT-INPUT SOFT-OUTPUT SOURCE DECODING

The application of the turbo principle to JSCD, according to
serial or parallel structures, as we will see in Section 5, re-
quires first to design soft-input soft-output source decoding
algorithm. The problem is, given the sequence of observa-
tions Y]¥ (sequence of noisy bits received by the source de-
coder), to estimate the sequence of symbols SK. The term
“soft” here means that the decoder takes in input, and sup-
plies, not only binary (“hard”) decisions, but also a mea-
sure of confidence (i.e., a probability) on the bits. The de-
pendencies between the quantized indexes are assumed to
be Markovian, that is, the sequence of quantized indexes
SK is assumed to be a first-order Markov chain driven by
conditional probabilities P(Sk|Sk-1) and by initial station-
ary probabilities P(Sk). The Markovian assumption allows to
represent the source as a FSA with a well-established graph
representation, as shown in Figure 2a. The hidden states are
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FIGURE 2: Graphical representation of source and of source-coder dependencies: (a) Markov source; (b) source HMM augmented with a
counter Ni of the number of bits emitted at the symbol instant k; (c) example of codetree, the transition probabilities are written next to the
branches; (d) coder HMM augmented with a counter K, of the number of symbols encoded at instant n.

represented by nodes Si, while transitions between states are
represented by directed edges. In this general statement of
the problem, we denote by My the set of observations on the
hidden states S.

The design of soft-input soft-output source decoding al-
gorithms requires first to construct models capturing the de-
pendencies between the different variables representing the
source of symbols and the coding process. The modelling of
the dependencies between the variables involved in the cod-
ing chain can be performed by means of the Bayesian net-
work formalism [49]. Bayesian networks are a natural tool to
analyze the structure of stochastic dependencies and of con-
straints between variables, through graphical representations
which provide the structures on which can be run the MAP
or MMSE estimators.

3.1. Sources coded with fixed-length codes

The use of fixed-length source representations makes the
problem much simpler: in the case of FLC, the segmenta-
tion of the received bitstream into symbol measurements

is known. Symbols Sj are indeed translated into codewords

U(k kq_l) g+1» Where q is the length of the quantized source code-

words, by a deterministic function. The set of observations
M (see Figure 2a) is thus obtained by gathering the mea-
k o . .
surements Y(kq,l) q+1- Estimation algorithms on the resulting
symbol-trellis representation are thus readily available with
complexity in O(K X |Q|?), where Q is the size of the source

alphabet. This approach has been followed in [7, 8, 9, 10]
for source symbol estimation. One can alternatively consider
a bit-trellis representation of the dependencies between the
different variables, by noticing that estimating SX is equiv-
alent to estimating UV and by regarding the decision tree

generating the fixed length codewords Ufkq,l) q+1 as a finite-
state stochastic automaton. Although, this bit-trellis repre-
sentation is not of strong interest in the case of FLC, it is very
useful for VLC to help with the bitstream segmentation prob-
lem. The approach is detailed below.

3.2. Sources coded with variable-length codes

We first consider the case of sources coded with binary
variable-length codetrees, for example, Huffman [50] or re-
versible variable-length codes (RVLC) [51]. The difficulty in-
herent in the problem of soft decoding of variable-length
coded sources is the lack of synchronization between the re-
ceived bits and the symbols. The problem is hence to relate
measurements, or subsets of the sequence of observations,
to given symbols Sk. The positions of the symbol bound-
aries in the bitstream may not be estimated properly. The
problem is hence a joint problem of segmentation (i.e., re-
covering symbol boundaries) and estimation. This problem
can be addressed by regarding the coding and decoding pro-
cesses as FSA modelling the output bitstream distribution.
This is better explained in a simple example. We consider
the simple source coder based on the binary codetree shown
in Figure 2b. The example of Figure 2b is a Huffman tree
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corresponding to a probability vector P = [1/3 1/3 1/3]
and to the code (00,01, 1) for (a;, ay,as).

We first assume that the input of the coder is a white
source. For this type of code, the encoding of a symbol? de-
termines the choice of vertices in the binary decision tree.
The decision tree can be regarded as a stochastic automaton
that models the bitstream distribution. Each node » of the
tree identifies a state of the coder. Leaves of the tree represent
terminated symbols, and are thus identified with the root of
the tree, to prepare the production of another symbol code.
The coder/decoder states can thus be defined by variables
X, = (v), where v is the index of an internal node of the tree.
Successive branchings in the tree, hence transitions on the
automaton, follow the source stationary distribution P and
trigger the emission of the bits. This model leads naturally to
a bit-trellis structure such as that used in [20, 21, 52, 53].

We now assume that the input of the coder is a Markov
process. Optimal decoding requires to capture both inner
codeword and intersymbol correlation, that is, the depen-
dencies introduced by both the symbol source and the coder.
In order to do so, in the model described above, one must
in addition keep track of the last symbol produced, that is,
connect the “local” models for the conditional distribution
P(Sk|Sk—1). In the case of an optimal coder, the value of the
last symbol produced determines which codetree to use to
code the next symbol. In practice, the same codetree is used
for the subsequent symbols and the value of the last symbol
produced thus determines which probabilities to use on the
tree. The state of the automaton thus becomes X, = (7,s),
where s is the memory of the last symbol produced. This
connection of Jocal automata to model the entire bitstream
distribution amounts to identifying leaves of the tree with
the root of the next tree as shown in Figure 2b. Successive
branchings on the resulting tree thus follow the distribution
of the source P(Sk|Sk_1). Let X,, denote the state of the result-
ing automaton after n bits have been produced. The sequence
Xo,...,Xn is therefore a Markov chain, and the output of
the coder, function of transitions of this chain, that is, U, =
¢(Xn-1,X,) can also be modelled as a function of a HMM
graphically depicted in Figure 2d. The a posteriori probabil-
ities on the bits U, = ¢(X,-1,X,) can thus be obtained by
running a sequence MAP estimation (e.g., with a SOVA) or
a symbol-by-symbol MAP estimation (e.g., with a BCJR al-
gorithm) on the HMM defined by the pair (X,,—;,X,). This
model once more leads naturally to a bit-trellis structure [14],
but in comparison with the case of memoryless sources, the
state-space dimension is multiplied by the size of the source
alphabet (corresponding to the number of leaves in the code-
tree), hence can be very high. The authors in [54] extend
the bit trellis described in [21] to correlated sources and in-
troduce a reduced structure with complete and incomplete
states corresponding to leaf and intermediate nodes in the
codetree. The corresponding complexity reduction induces
some suboptimality.

2This can be extended in a straightforward way to blocks of I symbols
taking their values in the product alphabet /.

To help in selecting the right transition probability on
symbols, that is, in segmenting the bitstream into code-
words, the state variable can be augmented with a random
variable K, defined as a symbol counter K, = [. Transi-
tions on v follow the branches of the tree determined by
s, and s, | change each time one new symbol is produced.
Since the transitions probabilities on the tree depend on s,
one has to map P(s'[s) on the corresponding tree to deter-
mine P(v',s",1'|v,s,1). This leads to the augmented HMM
defined by the pair of variables (X,,K,) and depicted in
Figure 2d. Note that the symbol counter K, helps selecting
the right transition probability on symbols. So, when the
source is a stationary Markov source, K, becomes useless
and can be removed. If the length of the symbol sequence
is known, this information can be incorporated as a termi-
nation constraint (constraining the value of Ky) in order
to help the decoder to resynchronize at the end of the se-
quence. All paths which do not correspond to the right num-
ber of symbols can then be eliminated. The use of the symbol
counter leads to optimum decoding, however at the expense
of a significant increase of the state-space dimension and of
complexity.

Intersymbol correlation can also be naturally captured on
a symbol-trellis structure [14, 35, 37]. A state in this model
corresponds to a symbol Sx and to a random number of bits
Ni produced at the symbol instant k, as shown in Figure 2c.
If the number of transmitted symbols is known, an estima-
tion algorithm based on this symbol clock model would yield
an optimal sequence of pairs (Sk, Ni), that is, the best se-
quence of K symbols regardless of its length in number of
bits. Knowledge on the number of bits can be incorporated as
a constraint on the last pair (S, Nx), stating that Nx equals
the required number of bits N. When the number of bits is
known, and the number of symbols is left free, the Markov
must be large enough to allow all symbol sequences of N bits.
Then, once Ni reaches the required length, the model must
enter and remain in a special state for which all future mea-
surements are noninformative.

When both the numbers of symbols and of bits trans-
mitted are known and used in the estimation, the two mod-
els lead to optimum decoding with the same complexity.
However, in practice, the length of the bit sequence is nat-
urally obtained from the bitstream structure and the cor-
responding syntax (e.g., markers). The information on the
number of symbols would in many cases need to be trans-
mitted. Note also that a section of the symbol trellis corre-
sponds to a random number of observations. Efficient prun-
ing then becomes more difficult: pruning techniques should
indeed optimally compare probabilities derived from the
same (and same number of) measures. Pruning techniques
on bit trellises are then closer to optimum decoding. This ex-
plains why bit trellises have been the most widely used so far,
with variants depending on the source model (memoryless
(20, 21, 52, 53] or with memory [14, 54]), and on the side
information required in the decoding, that is, knowledge of
the number of transmitted bits [52], or of both transmitted
bits and transmitted symbols [14, 35].
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3.3. Sources coded with (quasi-) arithmetic codes

Soft-input soft-output decoding of arithmetically coded
sources brings additional difficulties. An optimal arith-
metic coder operates fractional subdivisions of the interval
[low, up) (with low and up initialized to 0 and 1, resp.) ac-
cording to the probabilities and cumulative probabilities of
the source [55]. The coding process follows a Q-ary decision
tree (for an alphabet of dimension Q) which can still be re-
garded as an automaton, however with a number of states
growing exponentially with the number of symbols to be en-
coded. In addition, transitions to a given state depend on all
the previous states. In the case of arithmetic coding, a direct
application of the SOVA and BCJR algorithms would then be
untractable. One has to rely instead on sequential decoding
applied on the corresponding decision trees. We come back
to this point in Section 3.5.

Let us for the time being consider a reduced precision
implementation of arithmetic coding, also referred to as
quasiarithmetic (QA) coding [56], which can be modelled
as FSA. The QA coder operates integer subdivisions of an
integer interval [0, T). These integer interval subdivisions
lead obviously to an approximation of the source distribu-
tion. The tradeoff between the state-space dimension and the
source distribution approximation is controlled by the pa-
rameter T It has been shown in [57] that, for a binary source,
the variable T can be limited to a small value (down to 4) at
a small cost in terms of compression. The strong advantage
of quasiarithmetic coding versus arithmetic coding is that all
states, state transitions, and outputs can be precomputed,
thus allowing to first decouple the coding process from the
source model, and second to construct a finite-state automa-
ton. Hence, the models turn out to be naturally a product of
the source and of the coder/decoder models. Details can be
found in [30].

The QA decoding process can then be seen as following a
binary decision tree, on which transitions are triggered by
the received QA-coded bits. The states of the correspond-
ing automaton are defined by two intervals: [low U, up Uy,)
and [low Sk,,up Sk,). The interval [low U,,up U,) defines
the segment of the interval [0, T) selected by a given input
bit sequence Uy'. The interval [low Sk, , up Sk,) relates to the
subdivision obtained when the symbol Sk, can be decoded
without ambiguity, K, is a counter representing the number
of symbols that has been completely decoded at the bit in-
stant 7. Both intervals must be scaled appropriately in order
to avoid numerical precision problems.

Note also that, in practical applications, the sources to
be encoded are Q-ary sources. The use of a quasiarithmetic
coder, if one desires to keep high compression efficiency
properties as well as a tractable computational complexity,
requires to first convert the Q-ary source into a binary source.
This conversion amounts to consider a fixed-length binary
representation of the source, as already performed in the
EBCOT [58] or CABAC [59] algorithms used in the JPEG-
2000 [60] and H.264 [61] standards, respectively. The full
exploitation of all dependencies in the stream then requires
to consider an automaton that is the product of the automa-

ton corresponding to the source conversion and to the QA-
coder/decoder automaton [30].

3.4. MAP estimation or finite-state trellis decoding

When the coder can be modelled as a finite-state automa-
ton, MAP, MPM, or MMSE estimation of the sequence of
hidden states X}’ can be performed on the trellis repre-
sentation of the automaton, using, for example, BCJR [19]
and SOVA [18] algorithms. We consider as an example the
product model described in Section 3.2 (see Figure 2d), with
X, = (v,5). The symbol-by-symbol MAP estimation using
the BCJR algorithm will search for the best estimate of each
state X,, by computing the a posteriori probabilities (APPs)
P(X,|YY). The computation of the APP P(X,|YN) is orga-
nized around the factorization

[P)(Xn|Y1N) oc P(Xn)Yln) ) p(lez\fr1|Xn)~ (6)

Assuming the length N of the bit sequence to be known, and
the length K of the sequence of symbols to be unknown, the
Markov property of the chain X} allows a recursive compu-
tation of both terms of the right-hand side. A forward recur-
sion computes

oy = P (X, Y1)

= > P(Xu-1 = Xpo1, YI7)
Xn—1 (7)
. [P(Yn | Xn—l = xnfl)Xi’l)

" [P)(Xn |Xn—l = xnfl)-

The summation on x,_; denotes all the possible realizations
that can be taken by the random variable X,,_; denoting the
state at instant n— 1 of the FSA considered. The quantity Y, is
a measurement on the bit U, corresponding to the transition
(Xyn—1,Xn) on the FSA. The backward recursion computes

ﬁn = IP(YrIzVH |Xn)

oc Z [P(Xn+1 = xn+1|Xn)
Xn+1 (8)
. [P)(Y;Iiz |Xn+1 = xn+1)

- [P(Yn+1 |Xn>Xn+1 = xn+1):

where [P)(Xn+l = Xn+1 |Xn) and [P)(YnJrl | X Xp41 = xn+1) de-
note the transition probability on the source coder automa-
ton and the channel transition probability, respectively. The
posterior marginal on each emitted bit U, can in turn be ob-
tained from the posterior marginal P(X,, X,+11Y’) on transi-
tions of X. Variants of the above algorithm exist: for example,
the log-MAP procedure performs the computation in the log
domain of the probabilities, the overall metric being formed
as sums rather than products of independent components.
Similarly, the sequence MAP estimation based on the
modified SOVA [62, 63, 64] proceeds as a bidirectional re-
cursive method with forward and backward recursions in or-
der to select the path with the maximum metric. For each
state, the metric corresponds to the maximum metric over
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all paths up to that state, with the branch metric defined as
the log-likelihood function

Mn(Xn—l = Xn-1> Xn = xn)
=In [[P(Yn | Xn-1=Xp-1, Xy = xn)] (9)
+In [p(Xn =X | Xp1 = xn—l)]~

For two states (x,_1,x,) for which a branch transition does
not exist, the metric is negative infinity. The soft output on
the transition symbol is obtained by combining the forward
metric at instant # — 1, the backward metric at instant n, and
the metrics for branches connecting the two sets. This soft
output is either expressed as the likelihood ratio, that is, as
the APP ratio of a symbol to the sum of APPs of all the other
symbols or as a log-likelihood ratio. The algorithm produc-
ing a log-likelihood ratio as soft output is equivalent to a
Max-Log-MAP algorithm [65], where the logarithm of the
exponentials of the branch metrics is approximated by the
Max. Note that MMSE estimators can also be applied pro-
vided that the bit-level APPs are converted into symbol-level
APP or by directly considering a symbol-level trellis repre-
sentation of the source coder. For the bit-symbol conversion
of APP, one can rely on the symbol counter / inside the X,
state vector to isolate states that are involved in a given sym-
bol.

3.5. Soft-input soft-output sequential decoding

Some variable-length source coding processes, for example,
optimal arithmetic coding, cannot be modelled as automata
with a realistic state-space dimension. Indeed, the number of
states grows exponentially with the number of symbols be-
ing encoded. In addition, in the case of arithmetic coding,
the state value is dependent on all the previous states. In this
case, sequential decoding techniques such as the Fano algo-
rithm [66] and the stack algorithm [67], initially introduced
for convolutional codes, can be applied. Sequential decoding
has been introduced as a method of ML sequence estimation
with typically lower computation requirements than those
of the Viterbi decoding algorithm, hence allowing for codes
with large constraint lengths. The decoding algorithm fol-
lows directly the coder/decoder decision tree structure. Any
set of connected branches through the tree, starting from the
root, is termed a path. The decoder examines the tree, mov-
ing forward and backward along a given path according to
variations of a given metric. The Fano algorithm and met-
ric, initially introduced for decoding channel codes of both
fixed and variable length [68], without and with [69] a pri-
ori information, is used in [70] for error-resilient decoding
of MPEG-4 header information, in [71] for sequential soft
decoding of Huffman codes, and in [72] for JSCD.
Sequential decoding has been applied to the decoding of
arithmetic codes in [23], assuming the source to be white.
A priori source information can in addition be exploited by
modifying the metric on the branches. A MAP metric, sim-
ilar to the Fano metric, can be considered and defined as
the APP of each branch of the tree, given the correspond-

ing set of observations, leading to sequential decoding with
soft output. This principle has been applied in [24, 25] for
error-resilient decoding of arithmetic codes, with two ways
of formalizing the MAP metric. Given that S§ uniquely de-
termines U} and vice-versa, the problem of estimating the
sequence SX given the observations Y}' can be written as [24]

P(SKIYY) = P(UY YY)
o P(SF) - P(Y]ISE) (10)
= P(SY) - P(Y|UY).

The quantity P(SK|Y}¥) can be computed recursively as

P(SK YY) oc P(SETYTH) -
CP(SkISk-1) - PYAE o 1Y, UMY,

where Ny is the number of bits that have been transmitted
when arriving at the state X;. Assuming S{ to be a first-order
Markov chain and considering a memoryless channel, this
APP can be rewritten as

P(SFIYT") o< P(SFHYH)

(12)

P(SkISk-1) - P(YAX | UNE 1)

Different strategies for scanning the branches and searching
for the optimal branch of the tree can be considered. In [23],
the authors consider a depth-first tree searching approach
close to a Fano decoder [66] and a breadth-first strategy close
to the M-algorithm, retaining the best M paths at each in-
stant in order to decrease the complexity. In [25], the authors
consider the stack algorithm (SA) [73].

Figure 3 illustrates the symbol error rate (SER) perfor-
mance obtained with a first-order Gauss-Markov source with
zero-mean, unit variance, and correlation factors p = 0.9
and p = 0.5. The source is quantized on 8 levels. The chan-
nel is an AWGN channel with a signal-to-noise ratio varying
from E,/Ny = 0dB to E,/Ny = 6 dB. Figure 3 shows a signifi-
cant SER performance gap between Huffman and arithmetic
codes when using decoding with soft information. The per-
formance gap between Huffman codes and arithmetic codes
decreases with decreasing correlation, however remains at
the advantage of arithmetic codes. The gain in compression
performance of arithmetic codes gives extra freedom to add
some controlled redundancy, for example, in the form of soft
synchronization patterns (see Section 4), that can be dedi-
cated to fight against the desynchronization problem. This
problem indeed turns out to be the most crucial problem in
decoding VLC-coded sources.

The sequential decoding algorithm presented above has
been used in an iterative structure following the turbo
principle in [24] for JSCD of arithmetic codes. The APP
IP’(S{< Nk = N| YIN ) (the quantity Ny = N meaning that
only the paths corresponding to the number of bits received
are kept) on the last state corresponding to entire sequences
of symbols are thus converted into APP on bits U, by the
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FiGUreg 3: SER performances of soft arithmetic decoding, hard arithmetic decoding, and soft Huffman decoding (for (a) p = 0.9 and

(b) p = 0.5, 200 symbols, 100 channel realizations, courtesy of [24]).

equation

P(U, = ilY) lizos
oc Z IP(S{<>NK|Y)3 (13)

all surviving paths sX:U, =i

where oc denotes an obvious renormalization. The tilde in
the term P denotes the fact that these probability values are
only approximations of the real APP on the bits U, since
only the surviving paths are considered in their computation.
However, the gain brought by the iterations is small. This is
explained both by the pruning needed to maintain the de-
coding complexity within a realistic range, and by the fact
that the information returned to the channel decoder is ap-
proximated by keeping only the surviving paths.

Remark 1. Quasiarithmetic coding can be regarded as a re-
duced precision implementation of arithmetic coding. Re-
ducing the precision of the coding process amounts to ap-
proximate the source distribution, hence in a way to leave
some redundancy in the compressed stream. A key advan-
tage of quasiarithmetic versus arithmetic codes comes from
the fact that the coding/decoding processes can be modelled
as FSA. Thus, efficient trellis decoding techniques, such as the
BCJR algorithm, with tractable complexity can be used. In
presence of transmission errors, QA codes turn out to out-
perform arithmetic codes for sources with low to medium
(p = 0.5) correlation. However, for highly correlated sources,
the gain in compression brought by optimal arithmetic cod-
ing can be efficiently exploited by inserting, up to a compa-
rable overall rate, redundancy dedicated to fight against the
critical desynchronization problem, leading to higher SER
and SNR performance.

3.6. Avariant of soft-input soft-output VLC source
decoding with factored models

To reduce the state-space dimension of the model or trellis on
which the estimation is run, one can consider separate mod-
els for the Markov source and the source coder. It is shown in
[14] that a soft source decoding followed by a symbol stream
estimation is an optimal strategy. Notice that this is possible
only if the model of dependencies (hence the automaton) of
the decoder is not a function of previous source symbol re-
alizations. For example, we consider a Huffman coder with
a unique tree constructed according to stationary probabili-
ties. As explained above, to take into account the intersymbol
correlation, one changes the transition probabilities on this
unique tree according to the previous symbol realization (for
first-order Markov sources), however, the automaton struc-
ture remains the same. One can hence consider separately the
automaton corresponding to the codetree structure and the
automaton corresponding to the Markov source. The result-
ing network of dependencies following a tree-structure, the
Markov source, and the source coder need not be separated
by another interleaver to design an optimum estimator.

To separate the two models, one must however be able to
translate pointwise measurements Y} on the useful bits U
into measurements on symbols. This translation is then han-
dled via the two augmented Markov processes: (S,N) com-
posed of pairs (S, Nx) which represents the Markov source
and (X, K) composed of pairs (X, K,,) representing the cod-
ing process described in Section 3 [14]. The estimation can
actually be run in two steps as follows.

(i) The first step consists in estimating states (X, K,)
assuming symbols are independent, which uses only
the inner-codeword redundancy and the constraint
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on K; this amounts to computing the probabilities
P(Xy, K,1Y), which can be done by a standard BCJR
algorithm.

(ii) The symbol stream is in turn estimated using the
symbol-clock HMM to exploit the intersymbol cor-
relation. This second step, being performed on the
symbol clock model of the source, requires as inputs
the posterior marginals P(Sk, Nk |Y), hence requires
a translation of the distributions P(X,,K,|Y) into
symbol-level posterior marginals P(S, Nx|Y), where
Y represents the variable length set of measurements
on the codeword Uy associated to the symbol Sk. This
conversion is made possible with the presence of the
counters Ny and K,,.

Now, we assume that an optimal Huffman coder is con-
sidered for the first-order Markov source. This requires to
use multiple codetrees according to the last symbol realiza-
tion, and this in order to follow the source conditional prob-
ability. In that case, the structure of the decoder automa-
ton changes at each symbol instant, impeding the separation
of the two models. This is the case of quasiarithmetic and
arithmetic coders and decoders. The corresponding coding
processes indeed follow the conditional distribution of the
source. Hence, at a given symbol instant, the decoding au-
tomaton is dependent on the last decoded symbol realization.
This is also the case for optimal arithmetic coding and decod-
ing for which a state (defined by the bounds of probability
intervals) depends on all the previous symbol realizations.

4. SYNCHRONIZATION AND ERROR DETECTION
IN SOFT DECODING OF VLCs

We have seen in Section 3 that if the number of symbols
and/or bits transmitted are known by the decoder, termina-
tion constraints can be incorporated in the decoding process:
for example, one can ensure that the decoder produces the
right number of symbols (Ky = K) (if known). All the paths
in the trellis which do not lead to a valid sequence length are
suppressed. The termination constraints mentioned above
allow to synchronize the decoding at both ends of the se-
quence but however do not guarantee synchronous decod-
ing of the middle of the sequence. Extra synchronization and
error detection mechanisms can be added as follows.

(i) Soft synchronization. One can incorporate extra bits
at some known positions Iy = {i},...,is} in the symbol
stream to precisely help achieving a proper segmentation of
the received noisy bitstream into segments that will corre-
spond to the symbols that have been encoded. This extra
information can take the form of dummy symbols (in the
spirit of the techniques described in [23, 26, 27, 29, 74]), or
of dummy bit patterns which are inserted in the symbol or
bitstream, respectively, at some known symbol clock posi-
tions. Bit patterns can have arbitrary length and frequency,
depending on the degree of redundancy desired. The proce-
dure amounts to extending symbols at known positions with
asuffix Uk, = Ug,B; - - - By, of a given length I. Transitions
are deterministic in this extra part of the tree. These suffixes

favor the likelihood of correctly synchronized sequences (i.e.,
paths in the trellis), and penalize the others.

(ii) Error detection and correction based on a forbidden
symbol. To detect and prune erroneous paths in soft arith-
metic decoding, the authors in [23, 25] use a reserved inter-
val corresponding to a so-called forbidden symbol. All paths
hitting this interval are considered erroneous and pruned.

(ii1) Error detection and correction based on a CRC. The
suffixes described for soft synchronization can also take the
form of a cyclic redundancy check (CRC) code. The CRC
code will then allow to detect an error in the sequence, hence
pruning the corresponding erroneous path.

The termination constraints do not induce any redun-
dancy (if the numbers of bits and symbols transmitted are
known; otherwise, the missing information has to be trans-
mitted) and can be used by any VLC soft decoder to resyn-
chronize at both ends of the sequence, whatever the chan-
nel characteristics. The other approaches, that is, soft syn-
chronization, forbidden symbol, or CRC help the decoder
to resynchronize at intermediate points in the sequence, at
the expense of controlled redundancy. A complete investiga-
tion of the respective advantages and drawbacks of the dif-
ferent techniques for different VLCs (e.g., Huffman, arith-
metic codes) and channel characteristics (e.g., random ver-
sus bursty errors, low versus high channel SNR) is still to be
carried out.

5. JOINT SOURCE-CHANNEL DECODING
WITH SOFT INFORMATION

In this section, we consider the case where there is a recur-
sive systematic convolutional (RSC) coder in the transmis-
sion chain. The channel coder produces the redundant bit-
stream R by filtering useful bits U according to

R(z) = %U(z), (14)

where F(z) and G(z) are binary polynomials of maximal de-
gree §, z denoting the delay operator. Once again, this fil-
tering can be put into state-space form by taking the RSC
memory content m as a state vector. This makes the coder
state a Markov chain, with states denoted X;, = m, when the
coder is driven by a white noise sequence of input bits. Op-
timal decoding requires to make use of both forms of redun-
dancy, that is, of the redundancy introduced by the channel
code and of the redundancy present in the source-coded bit-
stream. This requires to provide a model of the dependencies
present in the complete source-channel coding chain.

5.1. Product model of dependencies

To get an exact model of dependencies amenable to opti-
mal estimation, one can build a product of the three mod-
els (source, source coder, channel coder) with state vectors
X = (v, 5,1, m) in the case of the codetree-based coder, where
v, s, | are state variables of the source and source coder mod-
els, as defined in Section 3. In the case of a QA coder, the
state vectors would be Xj = ([lowy, up; ), m). Such a product
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FIGURE 4: (a) Serial and (b) parallel joint source-channel coding structures. I denotes an interleaver, P an optional puncturing mechanism,
and /B a symbol-to-bit conversion. The example depicted in the serial structure assumes a systematic channel coder of rate 1/2. In the
parallel structure, Vi denotes the binary representation of the quantized source symbol indexes. To have an overall rate equivalent to the
one given by the serial structure, the code rate and puncturing matrix can be chosen so that N’ = N.

model gathering state representations of the three elements
of the chain has been proposed in [16]. The set of nodes is
thus the product of the nodes in the constituent graphs, each
node of the joint decoder graph containing state informa-
tion about the source, the source code, and the channel code.
The resulting automaton can then be used to perform a MAP,
MPM, or MMSE decoding. The approach allows for optimal
joint decoding, however, its complexity remains untractable
for realistic applications. The state-space dimension of the
product model explodes in most practical cases, so that a di-
rect application of usual techniques is unaffordable, except
in trivial cases. Instead of building the Markov chain of the
product model, one can consider the serial or parallel con-
nection of two HMMs, one for the source + source coder
(or separately for the source and source coder as described
above) and one for the channel coder, in the spirit of serial
and parallel turbo codes. The dimension of the state space
for each model is then reduced.

The direct connection of the two HMMs (the source
coder HMM and the channel coder HMM) would result in
a complex dependency (Bayesian) network with a high num-
ber of short cycles, which is, as such, not amenable to fast
estimation algorithms. However, it has been observed with
turbo codes (75, 76, 77] that efficient approximate estima-
tion could be obtained by proceeding with the probabilis-
tic inference in an iterative way, making use of part of the
global model at each time, provided the cycles in the net-
work of dependencies are long enough. It was also observed
that the simple introduction of an interleaver between two
models can make short cycles become long. The adoption of
this principle, known as the turbo principle [78], led to the
design of iterative estimators working alternatively on each
factor of the product model. The estimation performance
obtained is close to the optimal performance given by the
product model.

5.2. Serially concatenated joint source-channel
(de-) coding

This principle has been applied to the problem of joint
source-channel decoding by first considering a serial con-

[1]
L=
Symbol a priori
Channel decoder Source decoder
Extg* APPY.
APPE, & Ext})
Ny* U*, Y U
@ s1s0—25(X) | SISO| AppY (}T@
(Yi)* —

€y

v
Hard symbol output

FIGURE 5: Joint source-channel decoding structure for a serial
source-channel encoder (courtesy of [79]).

catenation of a source and a channel coder, as shown in
Figure 4a. Figure 5 shows the structure of the correspond-
ing iterative decoder. In Figure 5, it is assumed that the chan-
nel encoder is a systematic convolutional code with rate 1/2
that provides systematic bits, denoted by UV, and redundant
bits RY. However, the principle applies similarly to channel
codes of different rates. Based on the schematic represen-
tations given in Figure 4a, it has to be noted that U} de-
notes an interleaved sequence. After transmission through
a noisy channel, the decoder receives the corresponding ob-
servations, denoted by Y and Z¥, respectively. In Figure 5,
the channel and source decoders are composed of soft-input
soft-output (SISO) decoding components.® The SISO com-
ponents for the source decoder can be either a trellis decoder
(e.g., using BCJR or SOVA algorithms) or a sequential de-
coder, as described in Section 3.5. The two decoding com-

ponents are separated by an interleaver I and a deinterleaver
e

3Note that additional bits can be used for terminating the trellis, but
this is not absolutely necessary. For instance, the results reported in Figure 9
are obtained considering uniform probabilities for initializing the different
states of the RSC encoder in the BCJR backward recursion.

4The notation * is used to represent an interleaved sequence.
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A first estimation (BCJR or SOVA) is run on the chan-
nel decoder HMM with measures YY" on the interleaved se-
quence of useful bits and the sequence of measures Z' on
the redundant bits as inputs. It involves the computation of a
sequence of APPs for the interleaved sequence UY denoted
by APP{,... Then, the extrinsic information Ex'(%k relative to

each bit U* of the interleaved sequence UN" of useful bits is
computed from its posterior distribution obtained as a result
of the channel decoding. The extrinsic information can be
regarded as the modification induced by a new measurement
(here all the measures Y - - - Y3 except for the local one Y;F)
on the APPs on the interleaved useful bits U, conditioned by
the local measurement Y,*. It can also be regarded as the in-
cremental information on a current decoder state through
the estimation of all the other decoder states. This extrinsic
information is computed as

=y 1Y =yF)

P(U; | Y* = y*)
CP(Up | Y =) Bxty, (Y* = y* | Y = y3)]
(15)

Extg, (Y*

where Ext(. represents the interleaved sequence of the ex-
trinsic information produced by the VLC decoder. Note that,
when running the first channel SISO decoder (i.e., at itera-
tion 0), this term simplifies as

P(Us | Y* = y*)
P(UF 1Y = 7))

Ext. (Y* = y* | Y = y¥) = (16)

If the estimation is run in a logarithmic domain, the extrinsic
information is computed by subtracting the logarithm of the
probability laws. The extrinsic information on a useful bit is
a direct subproduct of a BCJR algorithm or of a SOVA. In the
case of sequential decoding, a conversion of the APP on the
entire sequence of symbols (or equivalently states of the de-
coder) into the APP of each useful bit, as expressed in (13),
is needed. Notice that the motivation for feeding only extrin-
sic information from one stage to the next is to maintain as
much statistical independence between the bits as possible
from one iteration to the next. As long as iterative decoding
proceeds, and assuming sufficient interleaving, the reliabil-
ity on states (or on transition bits) improves until it gets to a
constant value. If the assumption of statistical independence
is true, the iterative estimation on parts of the model each
time approaches the MAP solution on the global model of
dependencies as the number of iterations approaches infin-
ity.

Thus, the channel decoder produces a sequence of extrin-
sic information (ExtU* = ExtU* - ExtU*) which is dein-
terleaved before being fed into the VLC decoder. A similar
computation has to be carried out in the source decoder con-
sidering the deinterleaved versions YV and Ext$, of the se-
quences of measurements and extrinsic information. It, in
turn, involves a computation of a sequence of APPs (APP}))
and yields another sequence of extrinsic information on the

rYzy

Demultiplexer

Ext* VY

K
Mean-square 1

estimation

FIGURE 6: Parallel iterative joint source-channel decoding structure.

useful bits:

Exty, (Y =y|Yy=yu)

P(U, | Y = y) (17)
P(Un | Yo =ya) ExtG (Y =y Yy=yn)

The sequence Exty; of extrinsic information is interleaved
and then fed into the channel decoder. After a few iterations
involving the two SISO decoders, the source decoder outputs
the symbol estimates.

This principle has been very largely applied to joint
source-channel coding and decoding of fixed-length [32] and
variable-length (Huffman, RVLC, arithmetic, quasiarith-
metic) codes. The convergence behavior of iterative source-
channel decoding with fixed-length source codes and a serial
structure is studied in [33] using extrinsic information trans-
fer (EXIT) charts [34]. The gain brought by the iterations
is obviously very much dependent on the amount of corre-
lation present on both sides of the interleaver. The variants
of the algorithms proposed for joint source-channel decod-
ing of VLC-encoded sources relate to various forms of trellis
representations for the source coder, as seen in Section 3, as
well as to the different underlying assumptions with respect
to the knowledge of the length of the sequences of symbols
or of bits [12, 13, 14, 17, 20, 21, 35, 52].

5.3. Parallel-concatenated joint
source-channel decoding

A parallel-concatenated source-channel coding and decod-
ing structure with VLC-encoded sources is described in [38].
In comparison with a parallel channel turbo coder, the ex-
plicit redundancy from one channel coder is replaced by
redundancy left in the source compressed stream U;' (see
Figure 4b) after VLC encoding. The indexes of the quantized
symbols are converted into a sequence of bits V¥ which is
fed into a channel coder (possibly followed by a punctur-
ing matrix to adjust the channel code rate). The channel
coder produces the sequence of parity bits RY . The decoder
(see Figure 6) proceeds with an iterative estimation where
the source decoder computes first the APPs on the quan-
tized symbol indexes, APP(Sk), which are then converted into
APPs on the bit representation of the indexes (APP(VM)).



918

EURASIP Journal on Applied Signal Processing

Extrinsic information on the binary representation of the
quantized indexes, Ext(V{), is then computed by remov-
ing (via a subtraction or a division depending on whether
the estimation is run in a logarithmic domain or not) the
a priori information. The interleaved extrinsic information,
Ext* (VM), is fed as a priori information to the soft-input
soft-output channel decoder. Extrinsic information result-
ing from the estimation run on the channel decoder model,
after deinterleaving, is converted into a priori information
on quantized symbols, which is fed in a second iteration to
the soft-input soft-output source decoder. The authors in
[38] show that, after the 20th iteration and for almost the
same code rate (around 0.3), the parallel structure brings a
gain that may be up to 3dB in terms of SNR of the recon-
structed source signal with respect to the serial structure.
However, this result, that is, the superiority of the parallel
versus serial structure, analogous to the comparison made
between parallel and serial turbo codes [80], is limited to the
case of a given RVLC code and to a AWGN channel with low
SNRs.

6. SOURCE-CONTROLLED CHANNEL DECODING

Another possible approach is to modify the channel decoder
in order to take into account the source statistics and the
model associated to the source and source coder. A key idea
presented in [39] is to introduce a slight modification of a
standard channel decoding technique in order to take ad-
vantage of the source statistics. This idea has been explored
at first in the case of FLC and validated using convolutional
codes in a context of transmission of coded speech frames
over the global system of mobile telecommunication (GSM).
Source-controlled channel decoding have also been applied
with block and convolutional turbo codes, considering FLC
for hidden Markov sources [40] or images [41, 81, 82, 83].
The authors in [81], by first optimizing the turbo code poly-
nomials, and second by taking into account source a pri-
ori information in the channel decoder, show performances
closer to the optimal performance theoretically achievable
(OPTA) in comparison with a tandem decoding system
based on Berrou’s rate-1/3 (37,21) turbo code, for the same
overall rate. However, when using FLC source codes, the ex-
cess rate in the bit sequence fed into the channel coder is
high. The source has not been compressed, and the channel
code rate is high. To draw any conclusion on the respective
advantages of joint versus tandem source-channel decoding
techniques, one must consider the chain in which the source
has been compressed as well. The freed bandwidth may then
allow to reduce the channel code rate, hence increasing the
error correction capability of the channel code. In this sec-
tion, we show how the approach of source-controlled chan-
nel decoding can be extended to cover the case of JSCD with
VLC.

6.1. Source-controlled convolutional
decoding with VLCs

Source-controlled channel decoding of VLC-coded sources
has been first introduced in [42]. The transmission chain

considered is depicted in Figure 1: the source compressed
stream produced by a VLC coder is protected by a convolu-
tional code. The convolutional decoder proceeds by running
a Viterbi algorithm which estimates the ML sequence. If we
denote by X} the sequence of states of the convolutional en-
coder, the ML estimation searches for the sequence Xé‘] such
that P(YN|X}') is maximum. The ML estimate would be
equivalent to the MAP estimate if the source was equiproba-
bly distributed, that is, if the quantity P(X,,|X,,—1) is constant.

However, here, the input U of the channel coder is not
in general a white sequence but a pointwise function of a
Markov chain. The quantity P(X,|X,_1) is therefore not any
more constant, but has instead to be derived from the source
statistics. One has in this case to use instead the generalized
Viterbi algorithm [44] in order to get the optimal MAP se-
quence, that is, the one minimizing the number of bit errors.
For this, a one-to-one correspondence has to be maintained
between each stage of the decoding path in the convolutional
decoder and the vertex in the VLC tree [42] associated to the
corresponding useful bit U, at the input of the channel coder.
The probability P(X,|X,-1) is thus given by the transition
probability on the VLC codetree. For a first-order Markov
source, to capture the intersymbol correlation, the probabil-
ity P(X,|Xu-1) becomes dependent on the last symbol that
has been coded, as explained in Section 3. The decoding al-
gorithm thus proceeds with the search for the path that will
maximize the metric

N
max P(XY YY) < max ( Z InP(Y, X, X,-1)
X X

n=1
(18)
N

+In[ [ P(XalX0m1) |,

n=1

where y denotes the set of all possible sequences of states
for the channel decoding trellis [43, 79]. Results reported in
[42, 84] show that though this method is suboptimal, it nev-
ertheless leads to performances that are close to the ones pro-
vided by the optimum MAP decoder [16], for which a prod-
uct of the Markov source model, of the source coder, and
channel coder model is computed.

6.2. Source-controlled turbo decoding with VLCs

Source-controlled turbo decoding can also be imple-
mented for VLC compressed sources. In the transmis-
sion system considered in [42, 84], the symbol stream
S1,82,...,Sk is encoded using a VLC followed by a system-
atic turbo code which is a parallel concatenation of two
convolutional codes. The transmitted stream, denoted by
Uy, Us,..., UN, R, Ry, ..., Ry in Figure 1, now corresponds
to a sequence of N triplets, denoted by (U, R;;,1, Ry2), where
U, denotes the systematic bits and R,,;, R, the parity bits
from the two constituent encoders. In contrast to Section 5,
UY now designates a sequence of noninterleaved bits. In or-
der to decode according to the “turbo principle,” an extrinsic
information has to be computed for each information bit. To
achieve this task, several algorithms can be used [39, 48, 75].
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FIGURE 7: Parallel turbo decoding structure using a priori source
information in the first decoder (courtesy of [79]).

Assuming that each decoder, say DEC1 and DEC2, can be
represented by an M-state trellis, then each decoder com-
putes the APP of each information bit as

M
> P(UnXal YY)  (19)
X,=1

APP (U,) = l}»(Un|Y1N) =

As shown in [75], the explicit expression of APP(U,) in-
volves a term corresponding to the state transition proba-
bility P(X,1X,-1), given, as in the case of source-controlled
convolutional code decoding, by the source statistics. The
source information is actually exploited only in the first de-
coder. The procedure is illustrated in Figure 7 in the case of a
parallel turbo encoder where the triplet (Y, Z,,1, Zy,) corre-
sponds to the systematic bit and the two parity bits, respec-
tively. To reduce the complexity, a submap algorithm can be
used in the first decoder (DEC1) [42, 79].

Figure 8 shows the SER and the Levenshtein distance
curves obtained with a tandem decoding system not tak-
ing into account a priori source information and with a
JSCD scheme, where the first constituent decoder takes ad-
vantage of this a priori information. The source considered
is a very simple 3-symbol first-order Gauss-Markov source
compressed with a Huffman code governed by the source
stationary distribution [16, 53]. The turbo encoder is com-
posed of two RSC codes defined by the polynomials F(z) =
1+z+2z>+zand G(z) = 1+ 2> + z*. The parity bits
are punctured in order to get a code rate equal to 1/2. A
64 X 64 line-column interleaver is inserted between the two
constituent codes. The simulations have been carried out
over an AWGN channel characterized by its signal-to-noise
ratio, E;/Np, with Ep the energy per useful transmitted bit
and Nj the single-sided noise density. For two different mea-
sures of the SER, a standard one based on the standard di-
rect computation and a second one using the Levenshtein
distance [85], it is shown, for the first three turbo decoding
iterations, that the JSCD scheme provides a significant im-
provement compared to the tandem scheme. Furthermore,
this high gain, that can reach 2.1dB, can be obtained for
a large range of SER values (whatever the measure being
used). Note that, in this scheme, the decoding is based on a

Max-Log-MAP algorithm. However, one could alternatively
use a modified version of the SOVA algorithm described in
[62].

Source-controlled turbo decoding has also been studied
with RVLC in [86] where the authors show that higher per-
formance could be achieved in comparison with Huffman
codes.

7. ESTIMATION OF SOURCE STATISTICS FROM
NOISY OBSERVATIONS

In a practical set-up, in order to run the above algorithms,
the source statistics need to be estimated from the received
noisy bitstream Y. If we consider a quantized first-order
Markov source, both the stationary and conditional distribu-
tions (P(Sx) and P(Sk|Sk_1)) need to be estimated. Two cases
can be considered: if the source can be represented using a
reasonable number of parameters, a parametric estimation
can be carried out, otherwise, a direct estimation has to be
performed.

In [82] where the VQ indexes are coded with FLC, a direct
estimation using simple histograms of stationary and transi-
tion probabilities is shown to be sufficient. However, this as-
sumes the source to be stationary. Alternatively, a paramet-
ric estimation method, making use of a modified turbo de-
coding procedure, is described in [88]. The estimation pro-
cedure has been tested with a quantized first-order Gauss-
Markov (GM) source having a correlation factor denoted by
ps. It is shown that for a stationary source, an appropriate
solution is to proceed, before iterating, to a hard decoding
at the source decoder output. Then the correlation, say p,
can be estimated using a Yule-Walker algorithm. From this
correlation, we can easily get an estimate of the transition
probabilities that are used at the next iteration to help the
BCJR decoding of the source. Setting the initial value of p to
zero, it is shown that, for sufficiently high channel signal-to-
noise ratio (Ep/Ny), after a few iterations, the performances
obtained are close to those resulting from a perfect knowl-
edge of p. Figure 9 shows a set of results obtained using a GM
source, with a correlation factor ps = 0.9, uniformly quan-
tized on 16 levels and encoded with a Huffman code adapted
to the stationary probabilities. The encoded source bitstream
is protected by an RSC code (see (14)) with feed-forward and
feedback polynomials given by F(z) = 1+ 22 +2°> + z* and
G(z) = 1+ z + z*, respectively. Furthermore a puncturing
matrix with first and second rows given by [111], [100], re-
spectively, is introduced that leads us to a code rate R, = 3/4.
After a binary phase shift keying modulation, the resulting
bitstream is transmitted over an AWGN channel. In Figure 9,
it can be seen that the online estimation provides accept-
able results. It also appears that an overestimation setting
a JSCD with p = 0.9, instead of ps = 0.5 for the actual
source, may have a dramatic impact on the overall perfor-
mance.

When dealing with real nonstationary signals, a good fit
with a parametrical model cannot always be found. An ex-
ample is given in [89] for a model that is supposed to fit
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Ficure 8: SER obtained with and without a priori information for a first-order Gauss-Markov source compressed with a Huffman code

governed by the source stationary distribution (courtesy of [53]).

the motion vectors of a video sequence, where the authors
acknowledge the relative inaccuracy of their model. Then a
direct approach has to be preferred, the underlying problem
being to estimate the parameters of an HMM. Techniques,
such as the Baum-Welch algorithm [90], are well suited for
this problem. They have been used in [40] for joint turbo de-
coding and estimation of Hidden Markov sources, and also
in [12] where the authors have proposed a method based
on a forward-backward recursion to estimate the HMM pa-
rameters of a VLC compressed source. In [88], an itera-
tive source-channel decoder is slightly modified in order to
integrate in its source decoding module an estimation of
the source statistics. The principle is illustrated in Figure 10
where the block named SISO-VLC realizes a BCJR decoding
of the VLCs using the decoding trellis presented in [14]. The
SISO-VLC makes use of an augmented HMM, as explained
in Section 3, in order to handle the bitstream segmentation
problem. The HMM thus incorporates in the state variables
a counter Ni of the number of bits encoded at the symbol
instant k.

Indeed, any symbol Sy may be represented by a bi-
nary word whose length «£(Sk) is not a priori known. Con-
sequently, at each symbol time k (k = 1,2,...,K), not
only the symbol Sk, but also the segmentation value Ny =
2’;:1 £L(Sj) = Ni-1 + L(Sk) has to be estimated. Using the
notation presented in Section 3.6, the codeword associated
to Sy may be written as Uy = Un,_,+1. .., Un;.

We assume again that the symbols Sy take their values in

the alphabet A = {ay,...,a;,...,aq}. Let 7%’;71 be the se-
quence of bits received (or of measurements) between the
time instants Nx_; and Ni by the source decoder. The BCJR
algorithm computes, for each possible realization of Sk, Sk_1

and for each possible realization nj of N,

ag(ai mi) = P(Nk = ni, S = a;, Y1),
Br(ai, ng) = [P’(Y,ﬁ\kfﬂ | Ny = ng, Sk = a;),
yr(aisaj,ng) = P(Sg = ai, Np = mi, V' poi1 | Sk1 = aj)
=P(Sk = ai | Sk-1 = a;)

(20)
Then, as in the original BCJR algorithm [19], ax(a;, nk) and
Pk (ai, n) are obtained by recursion equations corresponding
to the forward and backward steps, respectively.

But in many practical problems, the source conditional
probability P(a;|a;) is not a priori known and has to be es-
timated. The solution proposed in [87, 88] makes use of the
Baum-Welch method (cf. [90] for a tutorial presentation). As
the Baum-Welch source HMM parameter estimation can be
carried out together with the estimation performed by the
BCJR algorithm, this approach does not imply a significant
increase in complexity. For a first-order Markov source and
a source alphabet of size | Q|, the estimates of the |Q|? source
conditional probabilities P(a;|a;) are estimated as

ooy 2kbklasay)
IP(a,Ia,) - 2k Zigk(ai;aj))
& (aizaj) =
an K1 (”k - "C(ai))aj)yk (ai) aj’nk)ﬁk(ahnk)

an Za; Zaj Hk—1 (”k - °C(ai))aj)yk(ai) aj’nk)/jk(abnk).
(21)
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FIGURE 9: SER obtained by iterative source-channel decoding of a Gauss-Markov source quantized on 16 levels and coded with a Huffman
code. (a) p = p; = 0.9; (b) p = 0.9, ps = 0.5; (¢) p = 0.5, p; = 0.9; (d) p estimated online (p; = 0.9).

The performance of this online statistics estimation algo-
rithm is illustrated in Section 8 in the context of JSCD of
H.263++ video motion vectors.

8. DISCUSSION AND PERFORMANCE ILLUSTRATIONS

The last years have seen substantial effort beyond the theoret-
ical results and validations on theoretical sources to consider
the application of the above techniques in real source cod-

ing/decoding systems, for example, for error-resilient trans-
mission of still images and video signals over wireless net-
works. Among the questions at stake are indeed the viability
in practical systems of

(i) SISO source decoding solutions versus hard decoding
solutions still very widely used in source decoding sys-
tems due to their low decoding complexity;

(ii) JSCD solutions versus the tandem approaches.



922

EURASIP Journal on Applied Signal Processing

na!
L]

Channel decoder
(BCJR)

*, 2z

! Soft output (bit)

Source (VLC) decoder with g’lf

(BCJR) online estimation
P(sglse — 1)

FIGURE 10: Iterative source-channel decoding with online estimation (courtesy of [87]).

Key factors in relation to these questions are of course SNR
performance, complexity, and possibly cross-layer informa-
tion exchange support.

We first consider the question of benefits of SISO source
decoding solutions for state-of-the-art compression systems.
As an example, we consider a compression system making
use of arithmetic codes which are now the most prominent
codes in image and video compression and at the same time
the most sensitive to noise. Sequential decoding with soft
channel information and soft output has been tested in the
JPEG-2000 decoder in [24] together with a soft synchroniza-
tion technique, making use of the synchronization markers
specified in the standard. Figure 11 shows the decoding re-
sults with the Lena image encoded at 0.5 bpp and transmit-
ted over an AWGN channel with a signal-to-noise (E,/Ny) of
5dB. The standard JPEG-2000 decoder is compared against
the sequential decoding technique with an increasing num-
ber of surviving paths, corresponding to W = 10 and W =
20 surviving paths, respectively, that is, to an increasing com-
putational complexity. This shows on one hand the signifi-
cantly quality gain and on the other hand that the approach
allows to flexibly trade estimation reliability (performance)
against complexity. This makes this type of approach a vi-
able solution for practical state-of-the-art image compres-
sion systems. The authors in [71, 91] show similar benefits of
MAP decoding of RVLC- and VLC-encoded texture informa-
tion in an MPEG-4 video compressed stream. The authors in
[92] also apply sequential decoding with both soft and hard
channel values to the decoding of startcodes and overhead
information in an MPEG-4 video compressed stream. A per-
formance evaluation of MAP and sequential decoding with
soft channel information indicates that transmission with no
channel coding may be envisaged, provided the Hamming
distance between the source codewords is large enough.

We now consider the question of the benefits of JSCD
versus tandem decoding solutions. One related question is
the form and placement of redundancy: should we main-
tain a controlled, yet sufficient, amount of redundancy in
the source representation? Or should we compress as much
as possible the source and use the freed bandwidth for ex-
tra channel code redundancy? In relation to this question,
one has to bear in mind that, from a source representation
and decoding point of view, the quality criterion is, unlike in
channel coding, definitely not the bit error rate. One single bit
error in the entire bitstream can have a dramatic effect on the
quality of the reconstructed signal due to the source decoder
desynchronization problem. It is thus necessary to dedicate

some redundancy to address this specific problem. Many re-
sults illustrating this point can be found in the literature with
theoretical sources [24, 35].

Here, to illustrate this point, we focus on a set of achieve-
ments with real compression systems. The choice of a real
compression system is also motivated by the fact that the
application of the techniques described above in real video
decoding systems raises a certain number of practical issues
which deserve to be mentioned. For example, if we consider
JSCD of motion vectors, one must account for the fact that
the syntax of compressed video stream often multiplexes the
horizontal and vertical components of these displacement
vectors reducing the dependencies. Motion vectors are also
often encoded differentially, reducing the amount of residual
correlation. In [89], a joint source-channel decoding tech-
nique is used to exploit the residual redundancy between
motion vectors in a compressed video stream. The motion
vectors are assumed to be ordered so that all the horizon-
tal components are consecutive and then followed by all the
vertical displacement components. The authors in [87, 88]
proceed similarly with the JSCD of motion vectors in an
H.263++ video decoder. The JSCD structure presented in
Figure 10 is thus used to decode video sequences encoded
according to the H.263++ standard and transmitted over
a Rayleigh channel. Figure 12 gives the PSNR values ob-
tained when transmitting the sequence Flower garden com-
pressed with H.263+ on a Rayleigh channel. The JSCD sys-
tem is compared against the tandem structure making use
of the channel decoder followed by a hard RVLC decoder.
RVLC codes are indeed recommended by the H.263+ stan-
dard when using the compressed signals in error-prone en-
vironments. The channel coder that has been used in the ex-
periments is an RSC code defined by the polynomials F(z) =
1+2*2+2%+z%and G(z) = 1 + z + z*. Note that in the tan-
dem system, the motion vectors are encoded differentially to
free some bandwidth used for the redundancy inherent to
the RVLC and for the redundancy generated by the channel
coder. In the JSCD system, the motion vectors are not en-
coded in a differential manner. This introduces some form
of redundancy in the source that is exploited in a very ad-
vantageous way by the iterative decoder. In order to have
a comparable overall rate for both systems, in the case of
nondifferential encoding, the RSC encoder output is punc-
tured to give a channel code rate of 2/3. The curves reveal a
more stable PSNR and a significantly higher average PSNR
(gain of 4 dB) for the JSCD approach against the RVLC-RSC
structure.
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FiGure 11: Performance of sequential decoding with JPEG-2000 coded images (courtesy of [24]). (a) JPEG-2000 coded; PSNR = 37.41 dB;
no channel error. (b) JPEG-2000 coded; AWGN channel (E,/Ny = 5dB); PSNR = 16.43 dB. (c) JPEG-2000 coded with sequential decoding;
AWGN channel (E,/Ny, = 5dB); W = 10; PSNR = 25.15dB. (d) JPEG-2000 with sequential decoding; AWGN channel (E;/N; = 5dB);

W = 20; PSNR = 31.91dB.

The experiments reported above for the JSCD and the
tandem systems make use of a simple convolutional coder.
The gain in performance is achieved at the expense of in-
creased complexity. One could consider using a turbo code
in the tandem system. This would lead to a complexity com-
parable to the one of the JSCD chain. Such a comparison be-
tween a serial joint source-channel coding/decoding chain
and a tandem chain using a parallel turbo code has been
made in [93]. It is shown that for low AWGN channel SNR
values, JSCD with convolutional codes provides better results
than the tandem chain using the parallel turbo code, for the
same overall rate. However, for higher channel SNR values,
the tandem chain outperforms the serial JSCD system. The
study could be pushed further by considering turbo channel
codes in both chains, as described in [94]. The joint source-
channel decoder thus comprises three SISO modules, one for
the VLC decoder and one for each of the RSC constituent de-
coders of the turbo code. SISO source decoding is not neces-
sarily realized at each iteration, which limits the extra com-
plexity that one could expect for the JSCD chain. The authors
in [94] exhibit gains for variable-length encoded images us-
ing the JSCD approach based on the three SISO decoders.
Although, many issues (e.g., adequation of models to real-

istic systems, complexity, parameter settings, etc.) still need
further investigation, all the above results contribute to illus-
trate the potential benefit of JSCD for future image and video
communication systems.

9. CONCLUSION

This paper has given an overview of recent advances in JSCD
of VLC compressed signals. The JSCD framework can be
highly beneficial for future wireless multimedia services both
because of its higher SER and SNR performance with re-
spect to classical tandem decoding solutions and of the id-
iosyncrasies of the wireless links. The use of soft source de-
coding techniques, instead of classical decoding solutions,
indeed allows to decrease very significantly the source SER
(e.g., 0.4 X 1072 versus 0.8 for a channel SNR of 3dB and
with arithmetic codes). This SER can be further decreased by
using JSCD techniques. Note that the higher performance is
however obtained at the expense of an increased complex-
ity, which is an issue which requires further work. Prun-
ing techniques have already been studied in the literature in
order to reduce the decoding algorithms’ complexity. How-
ever, further work is needed, for example, to investigate the
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respective advantages/drawbacks of bit versus symbol trel-
lises with respect to pruning and complexity reduction, on
the best form of redundancy to be introduced in the chain,
including the most appropriate resynchronization mecha-
nisms depending on the channel characteristics (random or
bursty errors). Also, the implementation of JSCD in practi-
cal communication systems optimally requires some verti-
cal cooperation between the application layer and the lay-
ers below, with cross-layer soft information exchange. Such
ideas of interlayer communication which would allow to
best select and adapt subnet technologies to varying trans-
mission conditions and to application characteristics seem
also to be progressing in the networking community [95].
Therefore, before reaching a level of maturity sufficient for
a large adoption in standards and practical communication
systems, issues such as reduced complexity implementation
methods, cross-layer (possibly networked) signaling mecha-
nisms required, and optimal repartition of redundancy be-
tween the source and the channel codes still need to be re-
solved.
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