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In this paper, we derive the Cramér-Rao bound (CRB) for joint carrier phase, carrier frequency, and timing estimation from a noisy
linearly modulated signal with encoded data symbols. We obtain a closed-form expression for the CRB in terms of the marginal a
posteriori probabilities of the coded symbols, allowing efficient numerical evaluation of the CRB for a wide range of coded systems
by means of the BCJR algorithm. Simulation results are presented for a rate 1/2 turbo code combined with QPSK mapping. We
point out that the synchronization parameters for the coded system are essentially decoupled. We find that, at the normal (i.e.,
low) operating SNR of the turbo-coded system, the true CRB for coded transmission is (i) essentially the same as the modified
CRB and (ii) considerably smaller than the true CRB for uncoded transmission. Comparison of actual synchronizer performance
with the CRB for turbo-coded QPSK reveals that a “code-aware” soft-decision-directed synchronizer can perform very closely to
this CRB, whereas “code-unaware” estimators such as the conventional non-data-aided algorithm are substantially worse; when
operating on coded signals, the performance of the latter synchronizers is still limited by the CRB for uncoded transmission.
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1. INTRODUCTION

The impressive performance of turbo receivers implicitly as-
sumes perfect synchronization, that is, the carrier phase, fre-
quency offset, and time delay must be recovered accurately
before data detection. Synchronization for turbo-encoded
systems is yet a very challenging task since the receiver usu-
ally operates at extremely low SNR values. The development
of accurate synchronization techniques has therefore recently
received a lot of attention in the technical literature.

A common approach to judge the performance of param-
eter estimators is to compare their resulting mean square er-
ror (MSE) with the Cramér-Rao bound (CRB), which is a
fundamental lower bound on the error variance of unbiased
estimators [1]. In order to avoid the computational com-
plexity related to the true CRB, a modified CRB (MCRB) has

been derived in [2, 3]. The MCRB is much simpler to evalu-
ate than the CRB but is, in general, looser (i.e., lower) than
the CRB, especially at low SNR. In [4, 5, 6, 7], the CRB for
the estimation of carrier phase, carrier frequency, and tim-
ing delay from uncoded data symbols has been obtained and
discussed. In [8], the CRB for carrier phase estimation from
coded data has been expressed in terms of the marginal a pos-
teriori probabilities (APPs) of the coded symbols.

In this contribution, we derive the CRB for joint carrier
phase, carrier frequency offset, and timing recovery in coded
systems. Again we obtain a closed-form expression for the
CRB in terms of the marginal APPs, allowing the numerical
evaluation of the bound for a wide range of coded systems,
including schemes with iterative detection (turbo schemes).
This CRB is evaluated for rate 1/2 turbo-coded QPSK,
and compared to (i) the MCRB, (ii) the CRB for uncoded
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transmission, and (iii) the MSE of some practical synchro-
nizers. Our results point out that, at the normal operating
SNR of the turbo code, (i) the CRB is essentially the same as
the MCRB, (ii) the CRB is significantly smaller than the CRB
for uncoded transmission, and (iii) the CRB is a tight lower
bound on the MSE resulting from the joint synchronization
and turbo-decoding scheme the authors proposed in [9].

2. PROBLEM FORMULATION

Consider an observation vector r with a probability density
function p(r;u) that depends on a deterministic vector pa-
rameter u. Suppose that from the observation r, one is able
to produce an unbiased estimate û of the parameter u, that
is, Er[û] = u for all u; the expectation Er[·] is with respect to
p(r;u). Then the estimation error variance is lower bounded
by the CRB [1]: Er[(ûi − ui)2] ≥ CRBi(u), where CRBi(u) is
the ith diagonal element of the inverse of the Fisher informa-
tion matrix (FIM) J(u). The (i, j)th element of J(u) is given
by

Ji, j(u) = Er

[
− ∂2

∂ui∂uj
ln
(
p(r;u)

)]

= Er

[
∂

∂ui
ln
(
p(r;u)

) ∂

∂uj
ln
(
p(r;u)

)]
.

(1)

The probability density p(r;u) of r, corresponding to a
given value of u, is called the likelihood function of u, while
ln(p(r;u)) is the log-likelihood function of u. Note that J(u)
is a symmetrical matrix. When the element Ji, j(u) = 0, the
parameters ui and u j are said to be decoupled.

When the observation r depends not only on the pa-
rameter u to be estimated but also on a nuisance vector pa-
rameter v, the likelihood function of u is obtained by aver-
aging the likelihood function p(r|v;u) of the vector (u, v)
over the a priori distribution of the nuisance parameter:
p(r;u) = Ev[p(r|v;u)]. We refer to p(r|v;u) as the joint like-
lihood function, as p(r|v;u) is relevant to the joint estima-
tion of u and v.

We consider the complex baseband representation r(t) of
a noisy linearly modulated signal:

r(t) =
K∑

k=−K
akh(t − kT − τ) exp

(
j(θ + 2πFt)

)
+w(t), (2)

where a = (a−K , . . . , aK ) is a vector of L = 2K + 1 symbols
taken from anM-PSK,M-QAM, orM-PAM constellation ac-
cording to a combination of an encoding rule and a map-
ping rule; h(t) is an even, real-valued unit-energy square-root
Nyquist pulse; τ is the time delay; θ is the carrier phase at
t = 0; F is the carrier frequency offset; T is the symbol inter-
val; w(t) is complex-valued zero-mean Gaussian noise with
independent real and imaginary parts, each having a normal-
ized power spectral density of N0/(2Es), with Es and N0 de-
noting the symbol energy and the noise power spectral den-
sity, respectively.

With u = (u1,u2,u3) = (θ,F, τ) and v = a, the joint
likelihood function p(r|v;u) resulting from (2) is Gaussian,
with a mean depending on (u, v) and a covariance matrix
that is independent of (u, v). Within a factor not depending
on (u, v), p(r|v;u) is given by

p(r|v;u) = p(r|a; θ,F, τ) =
K∏

k=−K
F
(
ak, z̃k(θ,F, τ)

)
, (3)

where

F
(
ak, z̃k(θ,F, τ)

) = exp
(
Es
N0

(
2Re

[
a∗k z̃k(θ,F, τ)

]− ∣∣ak∣∣2)
)
.

(4)

In (3), r is a vector representation of the signal r(t) from (2),
and z̃k(θ,F, τ) = zk(F, τ)e− jθ , where zk(F, τ) is defined as

zk(F, τ) =
∫
e− j2πFtr(t)h(t − kT − τ)dt. (5)

Note that z̃k(θ,F, τ) is obtained by first frequency-correcting
r(t) by an amount −F, then applying the result to a filter
that is matched to the transmit pulse h(t) and sampling the
matched filter output at instant kT + τ, and finally rotating
the resulting sample over an angle −θ. Hence, z̃k is a func-
tion of (θ,F, τ), whereas zk depends only on (F, τ). The log-
likelihood function ln(p(r;u)) resulting from (3) is given by

ln p(r;u) = ln p(r; θ,F, τ)

= ln

(
Ea

[ K∏
k=−K

F
(
ak, z̃k(θ,F, τ)

)])
.

(6)

The expectation Ea[·] in (6) is with respect to the a priori
distribution p(a) of the transmitted data sequence a. Com-
putation of the CRB requires the substitution of (6) into (1),
and the evaluation of the various expectations included in
(6) and (1).

The evaluation of the expectations involved in J(θ,F, τ)
and p(r; θ,F, τ) is quite tedious. In order to avoid the com-
putational complexity caused by the nuisance parameters, a
simpler lower bound, called the modified CRB (MCRB), has
been derived in [2, 3], that is, Er[(ûi − ui)2] ≥ CRBi(u) ≥
MCRBi(u), where MCRBi(u) is the ith diagonal element
of the inverse of the modified Fisher information matrix
(MFIM) JM(u). The (i, j)th element of JM(u) is given by

JMi, j(u) = Er,v

[
− ∂2

∂ui∂uj
ln
(
p(r|v;u))]

= Er,v

[
∂

∂ui
ln
(
p(r|v;u)) ∂

∂uj
ln
(
p(r|v;u))]

(7)

and Er,v[·] denotes averaging over both r and v, that is,
with respect to p(r, v;u) = p(r|v;u)p(v). When p(r|v;u) is
Gaussian, (7) is much simpler than (1) as far as analytical
evaluation is concerned, because the tedious computation of
p(r;u) is avoided.
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The MCRB for joint carrier phase, carrier frequency off-
set, and timing estimation, corresponding to r(t) from (1), is
given by [2, 3]

E
[
(θ̂ − θ)2

] ≥MCRBθ = N0

2EsL
, (8)

E
[
(F̂ − F)2 · T2] ≥MCRBF = 3N0

2π2EsL
(
L2 − 1

) , (9)

E
[
(τ̂ − τ)2/T2] ≥MCRBτ = N0

2EsLT2
∫ (

ḣ(t)
)2
dt
, (10)

where ḣ(t) = dh(t)/dt and L = 2K + 1 denotes the num-
ber of symbols transmitted within the observation interval.
Note that in (9) and (10), the frequency and timing errors
have been normalized by the symbol interval T . The MCRB
does not depend on the symbol constellation; the shape of
the transmit pulse h(t) affects only the quantity

∫
(ḣ(t))2dt in

(10), which is an increasing function of the excess bandwidth
of the transmit pulse h(t). The MCRB for phase and timing
estimation is inversely proportional to L; the MCRB for fre-
quency estimation is, for large L, inversely proportional to
L3. In [10], the high-SNR limit of the true CRB related to the
estimation of a scalar parameter has been evaluated analyti-
cally and has been shown to coincide with the MCRB from
(8), (9), and (10).

In the next section, we derive a closed-form expression of
the CRB resulting from (1) in terms of the marginal APPs of
the coded symbols, allowing efficient numerical evaluation
of the CRB.

3. DERIVATION OF THE CRB

The log-likelihood function ln(p(r; θ,F, τ)) from (6) can be
written as

ln p(r; θ,F, τ) = ln

(ML−1∑
i=0

Pr
[
a = ci

]
p
(
r|ci; θ,F, τ

))
, (11)

where p(r|ci; θ,F, τ) is given by (3) and i enumerates all ML

symbol sequences ci of length L. Denoting by ξ the set of le-
gitimate coded sequences of length L, we have Pr[a = ci] =
M−ρL for ci ∈ ξ and Pr[a = ci] = 0 otherwise, with ρ andM
denoting the rate of the code and the number of constellation
points, respectively. Differentiation of (11) yields

∂

∂u�
ln
(
p(r;u)

)

=
ML−1∑
i=0

Pr
[
a = ci

]
p
(
r|ci; θ,F,τ

)
p(r; θ,F,τ)

∂

∂u�
ln
(
p
(
r|ci;u

))
.

(12)

Making use of Bayes’ rule, we obtain

Pr
[
a = ci

]
p
(
r|ci; θ,F, τ

)
p(r; θ,F, τ)

= Pr
[
a = ci|r; θ,F, τ

]
, (13)

where Pr[a = ci|r; θ,F,τ] (i = 0, . . . ,ML − 1) are the joint
symbol a posteriori probabilities (APPs); note from (3) that
Pr[a = ci|r; θ,F,τ] is a function of ci and z̃ = (z̃−K , . . . , z̃K )T

only. Using (13) and (3), (12) is transformed into

∂

∂u�
ln
(
p(r;u)

) = 2
Es
N0

K∑
k=−K

Re
(
µ∗k (z̃)z̃�,k

)
, (14)

where the subscript � denotes differentiation with respect to
u� , that is,

z̃�,k = ∂

∂u�

(
z̃k
)

(15)

and µk(z̃) is the a posteriori average of the symbol ak:

µk(z̃) =
ML−1∑
i=0

(ci)k Pr
[
a = ci|r; θ,F, τ

]

=
M−1∑
m=0

αm Pr
[
ak = αm|r; θ,F, τ

]
.

(16)

In (16), (ci)k is the kth component of the vector ci, (α0,
α1, . . . ,αM−1) denotes the set of constellation points, and
Pr[ak = αm|r; θ,F,τ] (m = 0, . . . ,M − 1) are the marginal
symbol APPs. We emphasize that no approximation is in-
volved when arriving at (16). The second line of (16) sim-
ply expresses the a posteriori average of ak in terms of
the marginal APP of ak, rather than the joint APP of
(a−K , . . . , aK ).

Substitution of (14) into (1) yields an exact expression of
the FIM in terms of the a posteriori symbol averages µk(z̃),
which in turn depend on the marginal symbol APPs Pr[ak =
αm|r; θ,F, τ]. One obtains

Ji, j = 4

(
Es
N0

)2 K∑
k=−K

K∑
k′=−K

E
[
Re
[
µ∗k (z̃)z̃i,k

]
Re
[
µ∗k′(z̃)z̃ j,k′

]]
,

(17)
where E[·] denotes averaging over the quantities z̃, z̃i,k, and
z̃ j,k′ . As this averaging cannot be done analytically, we have
to resort to a numerical evaluation.

A brute force evaluation of the FIM involves replacing
in (17) the statistical average E[·] by an arithmetical aver-
age over a large number of realizations of (z̃, z̃i,k, z̃ j,k′) that
are computer-generated according to the joint distribution
of (z̃, z̃i,k, z̃ j,k′). However, because of the correlation between
the quantities z̃, z̃i,k, and z̃ j,k′ , a brute force numerical aver-
aging is time consuming. In the appendix, we show how the
computational complexity can be reduced by performing the
averaging in (17) over z̃, z̃i,k, and z̃ j,k′ in two steps. In the first
step, we average over z̃i,k and z̃ j,k′ , conditioned on z̃; this con-
ditional averaging is done analytically. In the second step, we
remove the conditioning by numerically averaging over z̃; the
generation of realizations of z̃ is easy, as z̃ = a + n, where the
complex-valued zero-mean Gaussian noise vector n has sta-
tistically independent components with variance N0/Es, and
the data symbol vector a results from the encoding and map-
ping of a randomly generated information bit sequence.
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The numerical evaluation of the FIM requires the com-
putation of the a posteriori symbol averages µk(z̃) that cor-
respond to the realizations of the vector z̃. These a posteriori
symbol averages are given by the second line of (16) in terms
of the marginal symbol APPs Pr[ak = αm|r; θ,F, τ]. In prin-
ciple, the marginal symbol APPs can be obtained as appro-
priate summations of joint symbol APPs Pr[a = ci|r; θ,F, τ],
which in turn can be computed from (13) and (3). However,
the computational complexity of this procedure increases ex-
ponentially with the sequence length L.

For codes that are described by means of a trellis, the
marginal symbol APPs can be easily computed from the
trellis state APPs and state transition APPs, which in turn
can be determined efficiently from z̃ by means of the Bahl-
Cocke-Jelinek-Raviv (BCJR) algorithm [11]. As its compu-
tational complexity grows only linearly with the number of
states and with the sequence length L, the BCJR algorithm
is the appropriate tool for marginal symbol APP computa-
tion in case of linear block codes, convolutional codes, and
trellis codes, provided that the number of states is manage-
able.

When the coded symbol sequence results from the (se-
rial or parallel) concatenation of two encoders that are sep-
arated by an interleaver (such as turbo codes [12]), the un-
derlying overall trellis has a number of states that grow expo-
nentially with the interleaver size. However, when the con-
stituent encoders themselves are described by a small trel-
lis, the state APPs and state transition APPs of the individ-
ual trellises can be efficiently computed by means of iter-
ated application of the BCJR algorithm to each of the trel-
lises, with exchange of extrinsic information between the
BCJR algorithms at each iteration. When the coded bits
(conditioned on r and (θ,F, τ)) can be considered as inde-
pendent (which is a reasonable assumption when the inter-
leaver size is large), this iterative procedure yields the cor-
rect APPs after convergence [13]. Whereas a turbo decoder
makes use of the state APPs and state transition APPs (re-
sulting from iterated application of the BCJR algorithm) to
compute the log-likelihood ratios of the information bits, we
use these APPs to compute the marginal symbol APPs in-
stead.

Once we have obtained the numerical value of the 3 × 3
FIM (15), the CRBs related to the joint estimation of (θ,F, τ)
are obtained from matrix inversion. However, in many prac-
tical situations, a subset of the parameters (θ,F, τ) is esti-
mated, assuming the remaining parameters to be perfectly
known; in this case, the relevant FIM is obtained by deleting
from the 3 × 3 FIM (15) the rows and columns that corre-
spond to the parameters that are known. Therefore, we con-
sider the following cases.

(i) The CRB for the estimation of ui jointly with u j and uk
is given by

CRBi =
J j, jJk,k − J2j,k

Ji,iJ j, jJk,k − Ji,iJ2j,k − J j, jJ2i,k − Jk,kJ2i, j + 2Ji, jJ j,kJi,k
.

(18)

(ii) The CRB for the estimation of ui assuming u j and uk to
be perfectly known is given by

CRBi = 1
Ji,i

. (19)

(iii) The CRB for the estimation of ui jointly with u j assum-
ing uk to be perfectly known is given by

CRBi =
J j, j

Ji,iJ j, j − J2i, j
. (20)

4. NUMERICAL RESULTS ANDDISCUSSION

Simulation results are obtained for the observation of L =
1001 QPSK turbo-encoded symbols. The transmit pulse is
a square-root cosine rolloff pulse with an excess bandwidth
of 20% or 100%. The turbo encoder consists of the parallel
concatenation of two identical recursive systematic rate 1/2
convolutional codes with generator polynomials (37)8 and
(21)8, through a pseudorandom interleaver of length L; the
output of the turbo encoder is punctured to obtain an overall
rate of 1/2 and Gray-mapped onto the QPSK constellation.

As far as this simulation setup is concerned, our numer-
ical results indicate that J2i j � JiiJ j j for all i, j ∈ {1, 2, 3} and
i �= j. This implies that both (18) and (20) yield CRBi

∼= 1/Jii.
Comparing this result with (19) indicates that the CRB re-
lated to the estimation of a synchronization parameter (car-
rier phase, carrier frequency offset or timing) is essentially
independent of the considered scenario (joint estimation of
all three parameters, joint estimation of two parameters with
the third parameter assumed to be known, estimation of
one parameter with the other two parameters assumed to
be known). This means that there is almost no coupling be-
tween the parameters θ, F, and τ, so that (at least for small er-
rors) the inaccuracy in one of the parameters does not impact
the estimation of the other parameters. A similar observation
regarding the elements of the FIM for uncoded transmission
and the MFIM (7), resulting from r(t) given by (2), has been
reported in [7] and [3], respectively.

For the joint estimation of θ, F, and τ, Figure 1 shows the
ratio CRB/MCRB (the left ordinate) along with the BER cor-
responding to perfect synchronization (the right ordinate) as
a function of Es/N0 per coded symbol (solid lines). The ratio
CRB/MCRB for uncoded transmission (UC) is also displayed
(dashed lines). We make the following observations.

(i) The ratio CRB/MCRB related to timing estimation in-
creases with decreasing rolloff. The same behavior has
been observed in [7], but for uncoded transmission
only.

(ii) The ratios CRB/MCRB related to phase estimation and
frequency estimation are essentially the same and do
not depend on the shape of the transmitted square-
root Nyquist pulse h(t). The same behavior has been
observed in [4], but for uncoded transmission only.

(iii) We denote by CRBuncoded and CRBcoded the CRBs re-
lated to uncoded and coded transmissions, respec-
tively. We observe that CRBuncoded > CRBcoded. This
implies that it is potentially more accurate to estimate
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Figure 1: Comparison of the ratio CRB/MCRB for turbo-encoded
transmission with the ratio CRB/MCRB for uncoded (UC) trans-
mission; for QPSK symbols and an observation length L = 1001.

the synchronizer parameters from coded data than
from uncoded data.

(iv) We restrict our attention to coded transmission. The
MSE resulting from “code-aware” synchronizers (that
exploit code properties during the estimation process)
is lower bounded by CRBcoded. However, the MSE of
synchronizers that do not exploit code properties (i.e.,
“code-unaware” synchronizers) is lower bounded by
CRBuncoded (even when operating on coded systems).
At the normal operating SNR of the turbo code (this
excludes very low SNR at which the turbo code be-
comes unreliable, as well as very high SNR at which
uncoded transmission becomes reliable), CRBcoded is
considerably smaller than CRBuncoded. It follows that
code-aware synchronizers are potentially more accu-
rate than code-unaware synchronizers when operating
on coded signals. The ratio CRBuncoded/CRBcoded pro-
vides a quantitative indication to what extent synchro-
nizer performance can be improved by making clever
use of the code structure.

(v) At high SNR, the CRB converges to theMCRB; this be-
havior is consistent with [10]. When Es/N0 decreases,
a critical value (Es/N0)crit is reached, below which the
CRB starts to diverge from the MCRB. Figure 1 shows
that, for coded transmission, this critical value corre-
sponds to a BER between 10−2 and 10−3 (a similar ob-
servation has been reported for uncoded transmission
[7, 8]: (Es/N0)crit for uncoded transmission also cor-
responds to BER ∼= 10−3, but exceeds (Es/N0)crit for
coded transmission by an amount equal to the coding
gain). This indicates that, even at the (very low) oper-
ating SNR of the coded system, the CRB is very well
approximated by the MCRB (which is much simpler
to evaluate).

5. ACTUAL ESTIMATOR PERFORMANCE

In this section, we will show that CRBcoded and CRBuncoded

are useful benchmarks for the MSE resulting from code-ware
and code-unaware synchronizers, respectively. Therefore, we
consider practical joint phase and frequency estimators, op-
erating on the rate 1/2 turbo-encoded QPSK signal from the
previous section. We assume that the frequency offset does
not exceed 10% of the baud rate, that is, |FT| ≤ 0.1. The
MSE for phase and frequency estimation is shown as a func-
tion of the SNR in Figures 2 and 3. As the joint estimation
of carrier phase and frequency is only marginally affected by
a small timing estimation error (because (θ, F) and τ are es-
sentially decoupled), we have determined the mean square
phase and frequency error assuming the timing to be known.
An observation of L = 1001 (i.e., block size of the code)
unknown data symbols was considered. A preamble of N
known pilot symbols (PS) at the beginning of each blockmay
be used for initialization (to be explained in Sections 5.1 and
5.2). A minimum of 10 000 trials has been run; at each trial,
a new phase offset θ and a new frequency offset FT are taken
from a uniform distribution over [−π,π] and [−0.1, 0.1], re-
spectively.

Two algorithms for joint carrier phase and frequency es-
timation are considered.

(i) The conventional 4th-power non-data-aided (NDA)
synchronizer [14, 15] is a code-unaware algorithm for
carrier phase and frequency estimation that is very
easy to implement. Moreover, this estimator was pro-
posed in [16] for operation on a turbo-coded signal
at very low Es/N0. In contrast with the MSE of the
code-aware estimators, the MSE of code-unaware es-
timators is lower bounded by the CRBuncoded (with
CRBuncoded ≥ CRBcoded). We will show that the MSE
of this NDA synchronizer is close to CRBuncoded, which
indicates that this synchronizer is among the best
code-unaware estimators.

(ii) The soft-decision-directed (SDD) synchronizer from
[9] is a code-aware algorithm that accepts soft infor-
mation from the turbo decoder (i.e., “turbo synchro-
nization”). As motivated in [9], it involves a practi-
cal implementation of the maximum-likelihood (ML)
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Figure 2: Comparison of the MSE of practical estimators with the
CRB (phase estimate).

estimator by means of the expectation-maximization
(EM) algorithm. This iterative algorithm converges to
the ML estimate provided that the initial estimate is
sufficiently accurate [17]. The ML estimator is known
to become asymptotically unbiased and efficient (i.e.,
the MSE converges to CRBcoded) for an increasing
number of observations. Therefore, we expect that the
MSE performance of the SDD synchronizer from [9]
will closely approach CRBcoded.

The phase error of the turbo synchronizer is measured mod-
ulo 2π and supported in the interval [−π,π]. The phase er-
ror of the NDA estimator was measured modulo π/2, that is,
in the interval [−π/4,π/4], as the NDA estimator for QPSK
gives a 4-fold phase ambiguity.

5.1. Conventional (code-unaware) NDA estimator
The dashed curve in Figures 2 and 3 corresponds to the
MSE for carrier phase and frequency estimation, respec-
tively, as obtained with the (code-unaware) conventional
NDA estimator. For Es/N0 ≥ 3.5dB, the algorithm achieves

0 1 2 3 4 5

Es/N0 (dB)

MCRB
CRB uncoded
CRB
NDA
DA-NDA, N = 128
DA-NDA, N = 256
DA-SDD, N = 256, 10 iter.
DA-SDD, N = 512, 10 iter.
DA-NDA-SDD, N = 128,10 iter.
DA-NDA-SDD, N = 256,10 iter.
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Figure 3: Comparison of the MSE of practical estimators with the
CRB (frequency estimate).

near-optimal CRBuncoded performance. However, for Es/N0 <
3.5dB, the performance of the frequency estimator dramat-
ically deteriorates across a narrow SNR interval. This is the
so-called threshold phenomenon, which is caused by the oc-
currence of large, spurious frequency errors (outliers) when
the SNR drops below a certain threshold and results in a very
high frequency error variance at SNR below threshold [14],
which also affects the accuracy of the phase estimate.

To show that the CRBuncoded can be closely approached
by the MSE resulting from code-unaware synchronizers even
at low SNR, we replace the conventional NDA frequency es-
timation with the combined DA and NDA frequency estima-
tion proposed in [18]. This approach consists of a two-stage
coarse-fine search. The DA estimator is used to coarsely lo-
cate the frequency offset, and then the more accurate NDA
estimator attempts to improve the estimate within the resid-
ual uncertainty of the coarse estimator. In fact, the search
range of the NDA estimator is restricted to the neighbor-
hood of the peak of the DA-based likelihood function. This
considerably reduces the probability to estimate an outlier
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frequency. As a result, the accuracy below threshold increases
dramatically and the MSE approaches the CRBuncoded. More-
over, the PS can be exploited to resolve the phase ambigu-
ity: after frequency and phase correction, the samples of the
preamble are compared to the known pilot symbols and, if
necessary, an extra multiple of π/2 is compensated for. In
Figures 2 and 3, the square markers illustrate the MSE for
carrier phase and frequency estimation as obtained with this
DA-NDA estimator, assuming the initial DA estimate is based
on the observation of N preamble symbols. Results are dis-
played for N = 128 and N = 256. A threshold is still evident,
but the performance below the SNR threshold degrades less
rapidly than with the conventional NDA frequency estima-
tor. The more PS are used, the more the threshold softens.
Relatively large preambles are required for the DA-NDA esti-
mator to perform closely to the CRBuncoded, for example, with
N = 256 the overhead N/(N + L) equals about 20%.

Note that the SNR threshold can also be decreased by in-
creasing the observation length (in [16], L = 8192). How-
ever, enlarging the observation interval is not always possible.
For the sake of completeness, we mention also that a more
sophisticated distribution of the PS across the burst may re-
duce the number of PS required to obtain a certain DA esti-
mation accuracy, thereby increasing the spectral efficiency of
the transmission systems [18, 19].

5.2. Soft-decision-directed (code-aware) synchronizer

We consider the (code-aware) SDD synchronizer from [9]
and compare its MSE to the new CRB for coded transmis-
sion. In our simulations, we used the approximate imple-
mentation proposed in [9]: at every turbo decoder iteration,
soft decisions on the data symbols are extracted from the de-
coder and used to update the carrier phase and frequency
estimates. This iterative SDD procedure was initialized with
a data-aided (DA) frequency and phase estimate obtained
from the preamble, or with a combined DA-NDA frequency
and phase estimate as described in Section 5.1. We will re-
fer to these synchronization schemes as DA-SDD and DA-
NDA-SDD, respectively. The PS are strictly used for the DA
initialization, and the (NDA-)SDD algorithm uses only the L
coded symbols; therefore the CRBcoded related to L symbols
from Section 3 is the appropriate lower bound on the perfor-
mance of the SDD algorithms.

Our results indicate the importance of an accurate initial
estimate. The curves marked with triangles (circles) in Fig-
ures 2 and 3 show the MSE for carrier phase and frequency,
respectively, as obtained with the DA-SDD (DA-NDA-SDD)
estimator after 10 iterations of the turbo decoder/estimator.
With N = 512, the DA-SDD estimator performs very closely
to the CRB. However, the resulting overhead of about 34% is
often not acceptable. Reducing the number of PS to N = 256
causes a serious degradation of the DA-SDD estimator. For
a given number of PS, the DA-NDA-SDD estimator pro-
vides a considerable improvement over the DA-SDD estima-
tor within the useful SNR range of the turbo code and coin-
cides with CRBcoded at values of SNR larger than about 1.5 dB
for N = 256 (about 20% overhead) and 2 dB for N = 128
(about 11% overhead).

6. CONCLUSION

This contribution derives the CRB for joint carrier phase,
carrier frequency offset, and timing estimation from coded
signals. The closed-form expression of the CRB in terms of
the marginal symbol APPs allows efficient numerical evalua-
tion. It was shown that, at the normal operating SNR of the
code (say, 10−6 < BER < 10−3), the CRB is very close to the
MCRB, which in turn is much less than the CRB for uncoded
transmission. Furthermore, the CRB for uncoded transmis-
sion has been shown to lower bound the MSE of “code-
unaware” synchronizers that make no use of the code struc-
ture when operating on coded signals. This implies that in
order to approach optimal performance, estimators should
make clever use of the code properties during the estimation
process. The iterative code-aware turbo synchronizer for car-
rier phase and frequency estimation, presented in [9], has
been shown to operate very closely to the CRB for coded
transmission, provided that a sufficiently accurate initial es-
timate is available.

Although using a code-aware synchronizer instead of a
code-unaware synchronizer substantially reduces the MSE at
the normal operating SNR of the code, it highly depends on
the specific coded system considered whether or not this re-
duction in MSE yields a considerable improvement in BER
performance. In [16], code-unaware algorithms for carrier
phase, carrier frequency, and timing estimation that operate
on a turbo-coded QPSK signal give rise to a BER degrada-
tion of only 0.05 dB as compared to a perfectly synchronized
system. In this case, there is no need to use code-aware syn-
chronization to further reduce the already very small BER
degradation. On the other hand, [20] considers a different
turbo-coded QPSK system, where the code-unaware 4th-
power NDA phase synchronizer yields a BER degradation of
about 1 dB at a BER of 10−3, whereas code-aware phase syn-
chronization reduces this BER degradation to about 0.05 dB
only.

No performance results for practical timing estimators
have been presented here. However, it has been shown in [21]
that applying the turbo synchronization approach to timing
estimation from coded signals results in a very low MSEE,
which approaches the new CRB for timing estimation from
Section 3.

APPENDIX

For further use, we introduce the functions g(t) and f (t)
given by

g(t) =
∫ +∞

−∞
h(v)h(t + v)dv, (A.1)

f (t) =
∫
u2h(u)h(t + u)du (A.2)

and denote the first and second derivates of g(t) with respect
to t as ġ(t) and g̈(t), respectively. Note that g(t) is a Nyquist
pulse: g(kT) = δk. The pulses g(t) and g̈(t) are even in t,
whereas ġ(t) is an odd function of t. For even h(t), the func-
tion f (t) is also even in t.
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It follows from (17) that Ji, j can be expressed in terms of
the following expectations:

E
[
µ∗k (z̃)µ

∗
k′(z̃)z̃i,kz̃ j,k′

] = Ez̃
[
µ∗k (z̃)µ

∗
k′(z̃)E

[
z̃i,kz̃ j,k′ |z̃

]]
,

E
[
µ∗k (z̃)µk′(z̃)z̃i,kz̃

∗
j,k′
] = Ez̃

[
µ∗k (z̃)µk′(z̃)E

[
z̃i,kz̃

∗
j,k′ |z̃

]]
,

(A.3)

where Ez̃[·] denotes averaging with respect to z̃. The condi-
tional expectations E[zi,kz j,k′ |z̃] and E[zi,kz∗j,k′ |z̃] can be de-
termined analytically. One obtains

E
[
z̃θ,kz̃θ,k′ |z̃

] = −z̃kz̃k′ , (A.4)

E
[
z̃θ,kz̃

∗
θ,k′ |z̃

] = z̃kz̃k′ , (A.5)

E
[
z̃θ,kz̃F,k′ |z̃

] = 2π(k′T + τ)z̃kz̃k′ , (A.6)

E
[
z̃θ,kz̃

∗
F,k′ |z̃

] = 2π(k′T + τ)z̃kz̃∗k′ , (A.7)

E
[
z̃θ,kz̃τ,k′ |z̃

] = − jz̃k

K∑
m=−K

z̃mġ(k′T −mT), (A.8)

E
[
z̃θ,kz̃

∗
τ,k′ |z̃

] = − jz̃k

K∑
m=−K

z̃∗mġ(k
′T −mT), (A.9)

E
[
z̃F,kz̃F,k′ |z̃

] = −4π2z̃kz̃k′(kT + τ)(k′T + τ), (A.10)

E
[
z̃F,kz̃

∗
F,k′ |z̃

] = 4π2z̃kz̃
∗
k′(kT + τ)(k′T + τ)

+ 4π2N0

Es
f (kT − k′T),

(A.11)

E
[
z̃F,kz̃τ,k′ |z̃

] = − j2π(kT + τ)z̃k
K∑

m=−K
z̃mġ(k′T −mT),

(A.12)

E
[
z̃F,kz̃

∗
τ,k′ |z̃

] = − j2π(kT + τ)z̃k
K∑

m=−K
z̃∗mġ(k

′T −mT)

+ j2π
N0

Es

{
− (kT − k′T)

2
ġ(kT − k′T)

− 1
2
δk−k′

}
,

(A.13)

E
[
z̃τ,kz̃τ,k′ |z̃

] = K∑
m,n=−K

z̃mz̃nġ(kT −mT)ġ(k′T − nT),

(A.14)

E
[
z̃τ,kz̃

∗
τ,k′ |z̃

] = K∑
m,n=−K

z̃mz̃
∗
n ġ(kT −mT)ġ(k′T − nT)

+
N0

Es

(− g̈(kT − k′T)
)

− N0

Es

K∑
m=−K

ġ(kT −mT)ġ(k′T −mT).

(A.15)

Making use of (A.4), (A.5), (A.6), (A.7), (A.8), (A.9), (A.10),
(A.11), (A.12), (A.13), (A.14), and (A.15), the evaluation of
the FIM now requires numerical averaging over z̃ only. This
reduces the numerical complexity considerably.

Note from (A.6), (A.7), (A.10), (A.11), (A.12), and (A.13)
that Jθ,F , JF,F , and JF,τ are functions of the parameter τ. This
implies that the CRB depends on the exact value of the un-
known but deterministic time delay τ ∈ [−T/2,T/2] that is
being estimated. However, under the usual assumption that
the observation interval is much longer than the symbol du-
ration (L 
 1), this dependence can be safely ignored, be-
cause we can use in (A.6), (A.7), (A.10), (A.11), (A.12), and
(A.13) the approximations kT + τ ∼= kT and k′T + τ ∼= k′T
when summing over k and k′ in (17). A similar reasoning was
made in [3] regarding the computation of the MCRB. Nu-
merical results for different values of τ (not reported here)
confirm this behavior.
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