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Oversampled filter banks (OSFBs) have been considered for channel coding, since their redundancy can be utilised to permit
the detection and correction of channel errors. In this paper, we propose an OSFB-based channel coder for a correlated additive
Gaussian noise channel, of which the noise covariance matrix is assumed to be known. Based on a suitable factorisation of this
matrix, we develop a design for the decoder’s synthesis filter bank in order to minimise the noise power in the decoded signal,
subject to admitting perfect reconstruction through paraunitarity of the filter bank. We demonstrate that this approach can lead to
a significant reduction of the noise interference by exploiting both the correlation of the channel and the redundancy of the filter
banks. Simulation results providing some insight into these mechanisms are provided.
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1. INTRODUCTION

The redundancy and design freedom afforded by oversam-
pled filter banks (OSFBs) has in the past been exploited for
robustness towards quantisation of subband signals [1–3],
reconstruction of erased or erroneously received subband
samples [4, 5], or for the design of error correction coders
[6, 7]. More recently, in [8], a systematic parallelism between
block codes and oversampled filter bank systems for channel
coding has been drawn, whereby the system design is based
on unquantised “soft-input” signals [9].

The channel coding schemes in [2, 3, 6–9] are based on
an encoding stage using a preset analysis filter bank. The de-
sign freedom afforded in the decoding stage formed by the
oversampled synthesis filter bank is then utilised to find the
solution that reconstructs the signal—either perfectly or in
the mean-square error sense—while ideally projecting away
from the noise. The filter banks in [6–9] are constructed from
FFTs, which leads to low-cost implementations, and have
been shown to be very robust towards burst-type errors, and
are easily compatible with OFDM-based modulation system.

If the additive channel noise is correlated, the projection
in [8] is performed in the direction of the principal compo-
nents of the noise subspace, which ideally is restricted such
that a noise-free signal subspace exists. Also, in [6–9], the
synthesis design is, despite some degrees of freedom (DOFs)
due to oversampling, limited by the a priori choice of the

analysis filter bank. In [10], the synthesis filter bank is given
more flexibility by the design aiming at the suppression of the
channel noise under the constraint of invertibility, such that
an analysis filter bank encoder can be derived from the syn-
thesis bank. However, the filter bank design in [10] is based
on a crude iterative method that can prove the potential of
the approach but is otherwise far from being optimal.

Therefore, in this paper, we follow the channel coding
scheme in [10] for a correlated additive Gaussian noise chan-
nel, but apply a considerably improved constrained synthesis
filter bank designmethod based on the second-order sequen-
tial best rotation (SBR2) algorithm [11]. By linking the re-
maining noise variance after decoding to the covariance ma-
trix of the channel noise as a function of the synthesis filter
bank, a suitable broadband eigenvalue decomposition using
SBR2 leads to a paraunitary filter bank design that exploits
both the correlation of the channel noise as well as the DOFs
provided by the OSFBs.

The paper is organised as follows. Based on a brief de-
scription of filter banks in Section 2, the general channel
coding structure is presented. With the aim of minimising
the impact of additive channel noise on the decoded sig-
nal, we derive a noise power term, which can be utilised
as a cost function for the channel coder design. The pro-
posed constrained optimisation scheme for the synthesis fil-
ter bank is outlined in Section 3, which aims to minimise
the channel noise power at the decoder output subject to the
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Figure 1: Subband decomposition of a signal X(z).

filter bank being paraunitary, and therefore perfectly recon-
structing. Some insight into the functioning of the channel
coder design is provided by simulation in Section 4. Conclu-
sions are drawn in Section 5.

In terms of notation, vector quantities are denoted by ei-
ther lowercase boldface or underscored variables, such as v or
V , while matrix quantities are boldface uppercase, such as R.
Indexed vectors or matrices refer to quantities with polyno-
mial entries, such as H(z). Finally, a transform pair, such as
the Fourier or z-transform, is denoted as h[n] ◦—• H(e jΩ)
or h[n] ◦—• H(z), respectively.

2. SYSTEMMODEL

Based on the description of basic filter bank structures in
Section 2.1 and their polyphase description in Section 2.2, a
model of the proposed encoder and decoder together with
the transmission model is discussed in Section 2.3.

2.1. Oversampled filter banks

Figure 1 shows a general filter bank structure comprising of
an analysis and a synthesis stage. The analysis filter bank
splits a full-band signal X(z) into K frequency bands by a
series of bandpass filters Hk(z), k = 0, 1, . . . ,K − 1, and dec-
imates by a factor N ≤ K , resulting in so-called “subband”
signals Yk(z). The dual operation of reconstructing a full-
band signal from the K subband signals is accomplished by a
synthesis filter bank, where upsampling by N is followed by
interpolation filters Gk(z), k = 0, 1, . . . ,K − 1.

The purpose of oversampling by a ratio K/N > 1 rather
than a critical decimation by K has application-specific rea-
sons, and has in the past, for example, enabled subband
adaptive filtering techniques for acoustic echo cancellation
[12], beamforming [13–15], or equalisation [16] by permit-
ting independent processing of the subband signals. In these
cases, the filters have to be highly frequency selective, and the
redundancy introduced through oversampling is located in
the spectral overlap region of the filters within the filter bank
system.

The redundancy afforded by OSFBs has more recently
attracted attention for channel coding [6, 7]. There, a code
rate N/K < 1 can ensure robustness against noise interfer-
ence, with the aim of restoring noise-corrupted samples due
to the redundant format in which the data is transmitted.
The analysis and synthesis filter banks function as encoder

and decoder, while the filters Hk(z) and Gk(z) are no longer
limited to a bandpass design, but will rather be selected ac-
cording to the characteristics of the interfering noise.

2.2. Polyphasematrices

For implementation and analysis purposes, OSFBs as shown
in Figure 1 are conveniently represented by polyphase anal-
ysis and synthesis matrices. The former is based on a type-I
polyphase expansion of the analysis filters Hk(z) [17]:

Hk(z) =
N−1∑
n=0

z−nHk,n
(
zN
)
, (1)

with polyphase componentsHk,n(z), and a type-II decompo-
sition [17] of the input signal

X(z) =
N−1∑
n=0

z−N+n−1Xn
(
zN
)
, (2)

with polyphase components Xn(z). This allows us to denote
the vector of subband signals Y(z) as⎡⎢⎢⎣

Y0(z)
...

YK−1(z)

⎤⎥⎥⎦
︸ ︷︷ ︸

Y(z)

=

⎡⎢⎢⎣
H0,0(z) · · · H0,N−1(z)

...
. . .

...
HK−1,0(z) · · · HK−1,N−1(z)

⎤⎥⎥⎦
︸ ︷︷ ︸

H(z)

⎡⎢⎢⎣
X0(z)
...

XN−1(z)

⎤⎥⎥⎦
︸ ︷︷ ︸

X(z)

.

(3)

Therefore, the filter bank can be represented by a demul-
tiplexing of the input signal into N lines, followed by a
multiple-input multiple-output (MIMO) system described
by the polyphase analysis matrix H(z). This structure is seen
as part of Figure 2.

Analogously, a polyphase synthesis matrix G(z) ∈
CN×K (z) can be defined based on a polyphase expansion
of Gk(z), yielding the synthesis filter bank representation in
Figure 2 comprising G(z) followed by an N-fold multiplexer.

A filter bank system is perfectly reconstructing if

G(z)H(z) = z−ΔIN . (4)

The design of such a system can be demanding in terms
of the number of coefficients that need to be optimised. A
reduction of the parameter space by, for example, deriving
all K filters from a prototype by modulation [2, 18] or by
permitting only symmetric filter impulse responses [4, 18]
often makes the problem tractable.
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Figure 2: General setup of a channel coder based on K channel analyses and synthesis filter banks, arranged around the transmission over
K additive Gaussian noise channels.

2.3. Setup and channel coder

The overall model of the considered system is provided in
Figure 2. In the transmitter, the N polyphase components
of X(z) are encoded by the polyphase analysis matrix H(z).
The transmission could either employ K separate channels
as shown in Figure 2, or multiplex the K encoder outputs
onto a single signal transmitted over a single-input single-
output channel. This channel is subject to corruption by ad-
ditive Gaussian wide-sense-stationary (WSS) noise, and for
simplicity is assumed to be nondispersive.

In the case of a dispersive channel, the model in Figure 2
can also be applied, if an ideal zero-forcing (ZF) equaliser
is employed prior to decoding by the polyphase synthesis
matrix G(z). While the channel and the ZF equaliser an-
nihilate each other for the signal path, in the noise path,
the ZF equaliser can be absorbed into the innovations fil-
ter model producing the additive noise components Wk(z),
k = 0, 1, . . . ,K − 1. This absorption would result in an addi-
tional shaping of the channel noise corrupting the K received
signals Ŷk(z), and provide an additional incentive for chan-
nel coding that can exploit the spatiotemporal structure of
the noise.

In the receiver after decoding, the polyphase components
X̂n(z) can be collected similar to X(z) in (3) in a vector X̂(z),
which is given by

X̂(z) = G(z)
(
Y(z) +W(z)

)
, (5)

whereby Y(z) = H(z)X(z) ∈ CK (z) andW(z) ∈ CK (z) con-
tain the subband signal components of the transmitted data
and the noise, respectively. Selecting perfect reconstruction
filter banks G(z)H(z) = IN ,

E(z) = X(z)− X̂(z) = −G(z)W(z) (6)

is obtained.
In order to assess the total received noise variance σ2e in

X̂(z), let theN-element vector e[m] contain theN time series
associated with the z-domain quantities in E(z) •—◦ e[m],
which depend on the time indexm in the decimated domain.
Thus, we have

σ2e =
1
N

tr
{
E
{
e[m]eH[m]

}}
, (7)

where tr{·} denotes trace and E{·} is the expectation opera-
tor. Defining the autocorrelation matrix

Ree[τ] = E
{
e[m]eH[m− τ]

}
(8)

and its z-transform Ree(z) •—◦ Ree[τ] denoting the power
spectrum of the process e[m] [17], the noise variance is given
by

σ2e =
1
N

tr
{
Ree[0]

} = 1
N

tr
{
Ree(z)

}∣∣
z=0 (9)

= 1
N

tr
{
G(z)Rww(z)G̃(z)

}∣∣
z=0. (10)

The notation in (10) uses the para-Hermitian operator {̃·},
which applies a complex conjugate transposition and a time
reversal [17] to its operand. Note that (6) has been ex-
ploited to trace the noise variance back to the power spec-
trum Rww(z), which is the z-transform of the covariance ma-
trix of the channel noise,

Rww[τ] = E
{
w[m]wH[m− τ]

}
, (11)

with w[m] ◦—•W(z) as defined in Figure 2.

3. CHANNEL CODER AND FILTER BANK DESIGN

Based on the idea of the channel coder outlined in Section
3.1, this section considers a suitable factorisation of the
power spectrum at the decoder output in Section 3.2, ad-
mitting a useful coder design in Section 3.3. An algorithm
to construct filter banks achieving this design is reviewed in
Section 3.4.

3.1. Proposed coding approach

It is the quantity σ2e in (7) which is generally minimised in
some sense in channel coding. In [8], for a givenH(z), the de-
grees of freedom (DOFs) in the design of G(z) are exploited
to minimise σ2e in the MSE sense. Note however that this ap-
proach limits the DOFs that can be dedicated to fit the syn-
thesis matrix to the spatiotemporal structure of the noise.

Therefore, we proposed to minimise (7) by optimising
G(z) without restriction by a specific H(z). The only condi-
tion placed on G(z) is that it admits a right inverse G†(z)
such that G(z)G†(z) = z−Δ. A stronger restriction than sim-
ple invertibility placed on G(z) is paraunitarity, which how-
ever has two important advantages: (i) the analysis filter bank
is immediately given by H(z) = G̃(z), and (ii) paraunitarity
provides a minimum-norm solution such that the transmit
power is limited. As a counterexample, an invertible G(z)
might elicit an ill-conditioned H(z) which may attempt to
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transmit highly powered signals over subspaces associated
with near-rank deficiency.

3.2. Factorisation of the noise covariancematrix

We approach the minimisation of (10) via a factorisation of
the power spectrum

Rww(z) = U(z)Γ(z)Ũ(z) (12)

such thatU(z) ∈ CK×K (z) is paraunitary and strongly decor-
relates Rww(z), that is,

Γ(z) = diag
{
Γ0(z),Γ1(z), . . . ,ΓK−1(z)

}
(13)

is a diagonal matrix with polynomial entries Γk(z). This fac-
torisation presents a broadband eigenvalue decomposition,
which can be further specified by demanding Γ(z) to be spec-
trally majorised [11, 19] such that the power spectral den-
sity (PSD) of the kth noise component Γk(e jΩ) = Γk(z)

∣∣
z=e jΩ

evaluated on the unit circle obeys

Γk
(
e jΩ
) ≥ Γk+1

(
e jΩ
) ∀Ω, k = 0, 1, . . . ,K − 2, (14)

similar to the ordering of the singular values in a singu-
lar value decomposition. Note that paraunitarity or loss-
lessness of U(z) conserves power, that is, tr{Γ(z)}|z=0 =
tr{Rww(z)}|z=0.

3.3. Channel coding design

Using the redundancy N < K due to oversampling, we can
construct G(z) from U(z) to select the lower (and therefore
smallest) N elements on the main diagonal of Γ(z). Let

U(z) =
[
U0(z) U1(z) · · · UK−1(z)

]
, (15)

then

G(z) =

⎡⎢⎢⎢⎢⎢⎣
ŨK−N (z)

ŨK−N+1(z)
...

ŨK−1(z)

⎤⎥⎥⎥⎥⎥⎦ ∈ CN×K (z), (16)

such that G(z)U(z) = [0N×K−N IN ]. If

Γ(z) =
[
Γ00(z) Γ01(z)

Γ10(z) Γ11(z)

]
(17)

with Γ11(z) ∈ CN×N and the remaining submatrices of ap-
propriate dimension, then the noise power at the decoder
output becomes

σ2e =
1
N

tr
{
Γ11(z)

}∣∣
z=0

= 1
N

K−1∑
i=K−N

∫ 2π

0
Γi
(
e jΩ
)
dΩ.

(18)

Therefore, the spectral majorisation in the broadband eigen-
value decomposition (12) is essential to the success of the
proposed channel coder design.

3.4. Sequential best rotation algorithm

In order to achieve the factorisation in (12) fulfilling spec-
tral majorisation according to (14), we use the second-order
sequential best rotation (SBR2) algorithm [11]. In the fol-
lowing, only a brief description of the algorithm is provided,
while for an in-depth treatment, the reader is referred to
[11, 20].

SBR2 is an iterative broadband eigenvalue decomposition
technique based on second-order statistics only and can be
seen as a generalisation of the Jacobi algorithm. The decom-
position after L iterations is based on a paraunitary matrix

UL(z) =
L∏
i=0

QiΛi(z), (19)

whereby Qi is a Givens rotation and the matrix Λi(z) is a pa-
raunitary matrix of the form

Λi(z) = I− vivHi + z−ΔivivHi , (20)

with vi = [0 · · · 0 1 0 · · · 0]H containing zeros except
for a unit element in the δith position. Thus,Λi(z) is an iden-
tity matrix with the δith diagonal element replaced by a delay
z−Δi .

At the ith step, SBR2 will eliminate the largest off-
diagonal element of the matrixUi−1(z)Rww(z)Ũi−1(z), which
is defined by the two corresponding subchannels and by a
specific lag index. By delaying the two contributing subchan-
nels appropriately with respect to each other by selecting the
position δi and the delay Δi, the lag value is compensated.
Thereafter, a Givens rotation Qi can eliminate the targeted
element such that the resulting two terms on the main diag-
onal are ordered in size, leading to a diagonalisation and at
the same time accomplishing a spectral majorisation.

Hence, each step comprises of optimising the parame-
ter set {δi,Δi, θi}. While the largest off-diagonal element in
Ui−1(z)Rww(z)Ũi−1(z) is eliminated, the remainder of the
matrix is also affected. In extensive simulations, SBR2 has
proven very robust and stable in achieving both a diagonali-
sation and spectral majorisation of any given covariance ma-
trix, whereby the algorithm is stopped either after reaching
a certain measure for suppressing off-diagonal terms or after
exceeding a defined number of iterations [11, 20]. The order
OOSFB of the filter bank defined by the paraunitary polyphase
matrix UL(z) is bounded by OOSFB ≤

∑L
i=0 Δi. Since the in-

dividual delays Δi are optimised by the algorithm and not
known a priori, the filter bank order OOSFB cannot be de-
termined or limited a priori to applying SBR2 to the power
spectral matrix Rww(z).

4. SIMULATIONS AND RESULTS

To illustrate the proposed channel coding design, three
design examples are demonstrated in the following. The
first design assumes an independent transmission across
K subchannels, while the latter two are based on a time-
multiplexed transmission leading to correlation between the
K virtual subchannels.
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4.1. Multichannel transmission

We assume the transmission scenario shown in Figure 2,
whereby K subchannels are available and are corrupted by
Gaussian noise processes wk[m], k = 0, 1, . . . ,K − 1, such
that

E
{
wk[m]wj[m− τ]

} =
⎧⎨⎩0 for k �= j,

rk[τ] ◦—• Rk
(
e jΩ
)

for k = j.

(21)

Specifically, for the example below, we assume that K = 6
and that the wk[m] are produced by uncorrelated unit vari-
ance and zero-mean Gaussian processes by passing through
innovation filters pk[m] ◦—• Pk(z) [21],⎡⎢⎢⎢⎢⎣

P0(z)

P1(z)

P2(z)

P3(z)

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
1 1 1 1

1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤⎥⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎢⎣

1

z−1

z−2

z−3

⎤⎥⎥⎥⎥⎦ ,
P4(z) = P5(z) = 10,

(22)

such that rk[τ] =
∑

m pk[m] p∗k [m− τ]. The resulting power
spectrum Rww(z) is a diagonal matrix with PSDs Rk(e jΩ) as
defined in (21) and shown in Figure 3(a) on its diagonal.

Prior to running the SBR2 algorithm on Rww(z), its
purely diagonal structure must be perturbed through the ap-
plication of an arbitrary paraunitary matrix. Thereafter, in-
dependent of this perturbation, SBR2 achieves a diagonal-
isation of Γ(z) after L ≈ 250 iterations, whereby a ratio
of approximately 10−3 between the energy of off-diagonal
and on-diagonal terms is reached. However, recall from (17)-
(18) that the minimisation of the noise power σ2e at the de-
coder output does not necessitate the diagonality of Γ(z) but
does strongly depend on its spectral majorisation. To exam-
ine the latter after convergence of SBR2, the PSDs of the
main diagonal elements Γk(e jΩ) are depicted in Figure 3(b).
Quite clearly, except for a low-power region of the bands
Γ4(e jΩ) and Γ5(e jΩ) near Ω = π, spectral majorisation has
been achieved in the sense of (14). Interestingly, the gen-
eral shape of the PSDs in Figure 3(b) closely follows those in
Figure 3(a), but frequency intervals have been reassigned to
different subchannels and have been ordered in descending
power.

Integrating over the PSDs in Figure 3 provides the noise
variance of the various subchannels, which are illustrated
in Figure 4 for Rww(z) and Γ(z) without and with coding,
respectively. The coder would then utilise those N coded
subchannels represented in Γ(z) that carry the lowest noise
power. These N coded subchannels convey the N polyphase
components of the transmitted signal X(z), which accord-
ing to Figure 4 are subject to different levels of noise. Note
that the polyphase component transmitted over the lowest
subchannel provides the best protection against noise, while
noise introduced on higher subchannels increases in power.
This fact can be exploited for unequal error protection to, for
example, high-quality high-speed video transmission.

In order to demonstrate how the residual noise power in
the decoded subchannels depends on the order of the filter
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Figure 3: PSDs on the main diagonals of (a) the power spectrum
Rww(z) of the channel noise consisting of the Rk(e jΩ) of (21) and
(b) Γ(z) after application of the SBR2 algorithm.

bank, Figure 5(a) provides an evolution of the total received
noise power in dependence on the number of iterations used
for SBR2 and on the number of selected subchannels N . If
all subchannels are selected, that is, N = K = 6, no re-
dundancy can be exploited and the total noise power cannot
be reduced. For N < 4, the channel characteristics permit
the exploitation of low-noise subspaces, which is achieved
through spectral majorisation of the power spectrum due to
the filter banks. Note that in Figure 5, initially a small degra-
dation of the cumulative noise powers for N < 6 with respect
to (21) occurs as a result of the random perturbance of the
diagonal Rww(z) by an arbitrary paraunitary matrix. It is ev-
ident from Figure 5 that the required filter order, and there-
fore the complexity of the resulting filter bank, depends on
the code rate, that is, the lower N and hence the higher the
oversampling ratio, the more iterations are required to fully
exploit the available potential in reducing the output noise
power σ2e =

∑K−1
k=K−N γk[0]. The order of the polynomial ma-

trix UL(z), and therefore the filter bank matrices H(z) and
G(z) after L iterations, is given in Figure 5(b), whereby tails
of the filters can be truncated if a lower numerical resolution
is sufficient. In the case of channel coding, infinite numerical
precision would be wasteful, while quantisation noise is ac-
ceptable if its power is well below the level of residual channel
noise in Figure 5(a).
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Figure 5: (a) cumulative variance of N subchannels containing the
lowest noise power after L iterations of SBR2 and (b) filter bank or-
der after L iterations; the curves are averaged over 50 random trials
with different paraunitary matrices perturbing the originally diag-
onal Rww(z); γk[0] is defined in Figure 4.

If a decimation factor of N = 2 is chosen for the fil-
ter banks, only the two coded subchannels with the lowest
noise variance in Figure 4(b) will be utilised. The reduction
in noise power results in an SNR enhancement of the coded
scheme with respect to a transmission scenario of identical
symbol throughput based on maximum-ratio combining of

the K = 6 channels in Figure 4(a) of 7.5 dB. Note that a
maximum-ratio combiner uses a zero-order diagonal G(z),
and accordingly H(z) with the elements inversely propor-
tional to the standard deviation of the noise in the subchan-
nels.

Some insight into how the reduction of noise power is
gained by the proposed coding method for the case N = 2
is demonstrated in Figure 6, where the resulting characteris-
tics of a K = 6 channel filter banks decimated by N = 2 are
shown. The displayed characteristics refer to the filter bank
structure given in Figure 1, and are plotted against the PSDs
of the channel noise after N = 2-fold expansion. Figure 6
very clearly underlines the functioning of the coder, which
effectively excludes the two subchannels with high noise
power from transmission, while in all other subchannels, the
transmitted power is concentrated in frequency bands where
the noise PSD assumes its lowest values.

4.2. Time-multiplexed transmission

In the following, we consider the case where the noise in the
K subchannels in Figure 2 may be mutually correlated. This
can occur through a time-multiplexed transmission of the K
encoded symbols over the same channel corrupted by noise
w[m], which is assumed to be modelled as a unit-variance
zero-mean Gaussian WSS process undergoing an innovation
filter p[m]. Therefore, the autocorrelation function of w[m]
is given by r[τ] = ∑

m p[m]p∗[m − τ] ◦—• R(z). After de-
multiplexing into K channels in the receiver, the resulting
noise power spectrum Rww(z) can be shown to be given by
the pseudocirculant matrix

Rww(z) =

⎡⎢⎢⎢⎢⎢⎣
R0(z) R1(z) · · · RK−1(z)

z−1RK−1(z) R0(z) RK−2(z)
...

. . .
. . .

...

z−1R1(z) · · · z−1RK−1(z) R0(z)

⎤⎥⎥⎥⎥⎥⎦ (23)

containing the K polyphase components Rk(z), k = 0, 1, . . . ,
K − 1, of R(z),

R(z) =
K−1∑
k=0

Rk
(
zK
)
z−k. (24)
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Figure 6: PSDs of channel noise processes wk[m], k = 0, 1, . . . ,K − 1, decimated by N = 2 (dashed) and magnitude responses of the filters
|Gk(e jΩ)| = |Hk(e jΩ)| (solid).
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Figure 7: Channel noise PSD in time multiplex Channel II.

Channel I

In a first case, the multiplex channel is assumed to be cor-
rupted by an interfering radio signal occupying a quarter
of the available bandwidth. The interference is modelled by
a zero-mean unit-variance white Gaussian noise exciting a
49th-order bandpass FIR filter, which results in the channel
noise PSD shown in Figure 7. The PSD within each of the
subchannels described by Rww(z) for any given K is identical.
Here, different from Section 4.1, the coder has to addition-
ally exploit the correlation between the K subchannels. Af-
ter application of the SBR2 algorithm, the reduction in noise
power—the ratio between the output power of the coder to

10−2
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σ
2 e
/σ
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Code rate N/K
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K = 3
K = 4
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K = 6
K = 8
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K = 12
K = 15
K = 20
Max. ratio

Figure 8: Noise reduction achieved by the proposed coding scheme
over Channel II characterised in Figure 7.

the power of the channel noise process w[m]—for various
choices of K and N is depicted in Figure 8. In comparison to
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Figure 9: Spectral majorisation in the decomposition of the noise
power spectral matrix R(z) by SBR2 for K = 20 channels.

maximum-ratio combining with identical symbol through-
put, the proposed coder in general performs consistently and
considerably better, whereby an increase in K permits both
a finer resolution to exploit spatial correlation as well as the
use of more flexible code rates N/K .

The proposed channel coder can exploit the spectral
characteristics of the channel noise well, and, provided a
sufficient resolution of the code rate, exhibits an approx-
imately constant output noise power once the code rate
reaches the approximately interference-free relative band-
width of 75% available over the channel.

Channel II

We select a power-line communication channel (PLC),
whose PSD in a worst-case scenario can be modelled as [22]

Slog( f ) = 38.75| f |−.72 dBm/Hz. (25)

Sampled at 30MHz, an iterative least-squares fit has been
employed to derive an FIR innovation filter with 256
coefficients to produce the PSD characterised in (25) [23].
Applying SBR2 to the resulting noise power spectrum R(z),
an example for the resulting spectral majorisation is given
in Figure 9 for a decomposition into K = 20 channels, for
which SBR2 yields a 37th-order filter bank matrix H(z). The
latter is reached with a stopping criterion of 103 for the ra-
tio between the total power and the power contained in off-
diagonal elements in UL(z)Rww(z)ŨL(z). For this broadband
eigenvalue decomposition, a single strong eigenmode of the
noise is clearly visible. Therefore, if oversampling is applied
and the strongest eigenmodes of the noise subspace can be
deselected form transmission, the noise power in the de-
coded signal in the receiver can be significantly reduced. The
coding gain for the PLC simulation model in (25) is given in
Figure 10 for various selections of channels K , and compared
to maximum-ratio combining by repeated transmission of
symbols over an otherwise uncoded channel.

Figure 10 suggests that the OSFB approach can provide
considerable coding gain at a high code rate close to unity
for the case of highly correlated noise. In order to exploit this,
K has to be chosen sufficiently large in order to offer a high
resolution with respect to possible code rates.

In the following, we consider transmitting quadrature
amplitude modulated (QAM) symbols over the OSFB-coded
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Figure 10: Coding gain of the OSFB coder applied to the PLC chan-
nel defined in (25) for various values of K and different code rates.
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Figure 11: BER for coding using M-QAM and OSFB and BCH
channel coding, in dependency on the code rate.

PLC channel. For a channel SNR of 3 dB, Figure 11 presents
results for different code rates for a QPSK/4-QAM and a 16-
QAM-based transmission.

As a comparison, we also present results for a (63, NBCH)
BCH-coded PLC channel, where NBCH is varied to achieve
various code rates [23]. The BCH-encoded bit stream is M-
QAM mapped and transmitted over the PLC channel. In the
receiver, after slicing and demapping, a BCH decoder aims to
recover the original bit stream. A (37,20) matrix interleaver,
imposing the same processing delay as the OSFB coder, is set
to assist in breaking up noise correlation and burst-type er-
rors. Although its computational complexity is higher than
the various BCH coders, it is clear that the OSFB coder pro-
vides superior protection against correlated channel noise,
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and almost enables the use of 16-QAM rather than QPSK
as opposed to a BCH coder, thus nearly doubling the data
throughput without sacrificing error protection.

5. CONCLUSIONS

In this paper, we have proposed a channel coding approach
based on OSFBs by first designing a decoder that minimises
the influence of correlated channel noise in the receiver, and
thereafter obtaining the encoder. By demanding paraunitar-
ity for the decoding OSFB, the latter step is trivial and ensures
a strict bound on the transmitted power. An OSFB design
method has been proposed, which is based on a broadband
eigenvalue decomposition and demonstrates good perfor-
mance in suppressing the correlated channel noise. Some in-
sight into the effects of the design have been given by consid-
ering transmission scenarios over K independent channels
or by time-multiplexed transmission, where the exploitation
of spatial or spectral correlations can bring substantial bene-
fits over a transmission of identical symbol throughput using
maximum-ratio combining of the subchannels.

The SNR enhancement gained from the proposed coding
architecture can be utilised in conjunction with the trans-
mission of quantised data such as found in binary-phase
shift keying or multilevel QAM symbols, such that the oc-
currence of symbol or bit errors is reduced. This has been
demonstrated by considering a power-line communications
scenario, whereby the proposed OSFB design can signifi-
cantly outperform standard channel coding techniques such
as BCH, offering a higher data throughput at identical pro-
tection against errors.
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