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A novel keyword propagation method is proposed for image retrieval based on a recently developed manifold-ranking algorithm.
In contrast to existing methods which train a binary classifier for each keyword, our keyword model is constructed in a straightfor-
ward manner by exploring the relationship among all images in the feature space in the learning stage. In relevance feedback, the
feedback information can be naturally incorporated to refine the retrieval result by additional propagation processes. In order to
speed up the convergence of the query concept, we adopt two active learning schemes to select images during relevance feedback.
Furthermore, by means of keyword model update, the system can be self-improved constantly. The updating procedure can be
performed online during relevance feedback without extra offline training. Systematic experiments on a general-purpose image
database consisting of 5 000 Corel images validate the effectiveness of the proposed method.
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1. INTRODUCTION

The initial image retrieval methods are based on keyword an-
notation and can be traced back to the 1970’s [1, 2]. In such
approaches, images are first annotated manually with key-
words, and then retrieved by their annotations. As long as
the annotation is accurate and complete, keywords can accu-
rately represent the semantics of images. However, it suffers
from several main difficulties, for example, the large amount
ofmanual labor required to annotate the whole database, and
the inconsistency among different annotators in perceiving
the same image [3]. Moreover, although it is possible to ex-
tract keywords for Web images from their surrounding text,
such extraction might be far from accurate and complete [4].

To overcome these difficulties, an alternative scheme,
content-based image retrieval (CBIR) was proposed in the
early 1990’s, which makes use of low-level image features in-
stead of the keyword features to represent images, such as
color [5–7], texture [8–10], and shape [11, 12]. Its advantage
over keyword-based image retrieval lies in the fact that fea-
ture extraction can be performed automatically and the im-
age’s own content is always consistent [4]. Despite the great
deal of research work dedicated to the exploration of an ideal
descriptor for image content, its performance is far from sat-
isfactory due to the well-known gap between visual features
and semantic concepts, that is, images of dissimilar semantic
content may share some common low-level features, while

images of similar semantic content may be scattered in the
feature space [4].

In order to narrow or bridge the gap, a great deal of
work has been performed in the past years, such as exploring
more powerful low-level feature representation, seeking for
more suitable metric for perceptual similarity measurement
[4] and so on. Furthermore, many efforts have been made
to efficiently utilize the strengths of both keyword-based and
content-based methods in image retrieval. Those methods
can be categorized into: online, offline, and their combina-
tion [13–15].

Most, if not all, of existing online methods make use of
relevance feedback (RF). For example, Lu et al. proposed in
[15] using a semantic network and relevance feedback based
on visual features to enhance keyword-based retrieval and
update the association of keywords with images. Among oth-
ers, a key issue in relevance feedback is the learning strategy.
One of the most effective learning techniques used in RF is
support vector machines (SVM) [16], which aims to create
a classifier that separates the relevant and irrelevant images
and generalizes well on unseen examples. Furthermore, to
speed up the convergence to the target concept, active learn-
ing methods, such as SVMactive [17], are also utilized to select
the most informative images. However, one major problem
with SVM and SVMactive is the insufficiency of labeled ex-
amples, which might bring great degradation to the perfor-
mance of the trained classifier.
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On the other hand, Chang et al. in [13] proposed an
offline method to perform keyword propagation based on
classification. In their work, starting from a small portion
of manually labeled images in the database, an ensemble of
binary classifiers was trained for multiple soft annotations,
which in turn assists a user to find relevant images rapidly
via keyword. Jing et al. in [14] further extended this work
in: (1) combining relevance feedback to refine the retrieval
result; and (2) introducing labeling vector to online collect
training samples and to off-line update the keyword models.
However, there still exist some limitations and drawbacks: (1)
their method will not work if only positive example is pro-
vided in relevance feedback; (2) the way they combine the
information from relevance feedback is somewhat heuristic;
(3) active learning is not considered in relevance feedback;
(4) the ratio of initial manually labeled images is relatively
high (ten percent in their experiment), which is still a heavy
burden especially when the database is large.

In this paper, we propose a novel method to support key-
word propagation for image retrieval based on a recently de-
veloped manifold-ranking algorithm [18, 19]. This work is
motivated by our previous success in applying this algorithm
in the scenario of query by example (QBE) [4], and can be
viewed as its counterpart in the scenario of query by key-
word (QBK). Firstly, in our method, the keyword model is
constructed by exploring the relationship among all the im-
ages in the feature space, in contrast to inductive methods
which only use the labeled images to train an ensemble of
binary classifiers [13, 14]. Secondly, our method provides a
very natural way to incorporate the information from rel-
evance feedback to refine the retrieval result. Moreover, to
maximally improve the performance of propagation process,
active learning is investigated to select images in relevance
feedback. Finally, our method also supports accumulation
and memorization of knowledge learnt from user-provided
relevance feedback by means of keyword model update. Dif-
ferent from [14], in which an extra offline training procedure
is needed, our update procedure can be performed online
during relevance feedback sessions.

The manifold-ranking algorithm [18, 19] is initially pro-
posed to rank the data points or to predict the labels of un-
labeled data points along their underlying manifold by an-
alyzing their relationship in Euclidean space. In [4], we in-
troduced it in the scenario of QBE and found out that by
incorporating unlabeled data in the learning process and ex-
ploring their relationship with labeled data, this method out-
performs existing classification-based ones (such as SVM) by
a large margin. Motivated by this, we further apply it to key-
word propagation in this paper, hoping that it will still out-
perform existingmethods in the scenario of QBK. Like in [4],
the algorithm first constructs a weighted graph using each
data point as a vertex. Next, the keyword model is initialized
as a keyword matrix with positive scores of the labeled im-
ages in the corresponding positions. Then these scores are
iteratively propagated to nearby points via the graph. Finally,
each image in the database will be given a score vector, the el-
ement of which indicates the relevance of the given image to
the corresponding keyword (a larger score indicating higher

relevance). By ranking all the images according to their rele-
vance to a given keyword, it can assist a user to find relevant
images quickly via keywords.

In relevance feedback, if the user only marks relevant ex-
amples, they serve as the new query set with respect to the
query keyword, and their influence can be calculated by an
additional propagation process. On the other hand, if both
relevant and irrelevant examples are available, their influence
will be propagated, respectively, in different manners: the ef-
fect of negative examples is suppressed due to the asymme-
try between relevant and irrelevant images. This online in-
formation, when combined with the initial keyword model,
will help to improve the retrieval result.

To maximally improve the propagation performance, ac-
tive learning can be also incorporated in relevance feedback.
To be specific, we will examine two different schemes devel-
oped in [4]: (1) to select the most positive images; and (2) to
select the most positive and inconsistent images.

Another important issue with keyword propagation is
how to accumulate and memorize knowledge learnt from
user-provided relevance feedback so that the retrieval system
can be self-improved constantly. To achieve this goal, the key-
wordmodel should be updated periodically. By careful analy-
sis, we reach the conclusion that in our method, such update
procedure can be performed online during relevance feed-
back so that no extra offline training is needed.

The organization of the paper is as follows. In Section 2,
we briefly review the two versions of manifold-ranking al-
gorithm and its application to image retrieval in the sce-
nario of QBE. We describe the construction of the keyword
model using manifold-ranking algorithm with some analysis
in Section 3. In Section 4, the initial retrieval and following
feedback process of QBK scenario is presented, and the ac-
tive learning schemes are also discussed. The keyword model
updating is addressed in Section 5. In Section 6, we provide
systematic experimental results. Finally, we conclude the pa-
per in Section 7.

2. RELATEDWORK

2.1. Manifold-ranking algorithm

The manifold-ranking algorithm is a semisupervised learn-
ing algorithm which explores the relationship among all the
data points [18, 19]. It has two versions for different tasks: to
rank data points and to predict the labels of unlabeled data
points.

For the ranking task, it can be formulated as: given a set
of points χ = {x1, . . . , xq, xq+1, . . . , xn} ⊂ Rm, the first q
points are the queries which form the query set; the remain-
ing points are to be ranked according to their relevance to the
queries.

Let d : χ×χ → R denote a metric on χ which assigns each
pair of points xi and xj a distance d(xi, xj), and f : χ → R
denote a ranking function which assigns to each point xi a
ranking score fi. Finally, we define a vector y = [y1, . . . , yn]T

corresponding to the query set, in which yi = 1 if xi is a
query, and yi = 0 otherwise. The procedure of ranking the
data points in [19] can be given as follows.
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(1) Sort the pair-wise distances among points in ascending
order. Repeat connecting the two points with an edge
according to the order until a connected graph is obtained.
(2) Form the affinity matrixW defined by
Wij = exp[−d2(xi, xj)/2σ2] if there is an edge linking xi and
xj . LetWii = 0.
(3) Symmetrically normalizeW by S = D−1/2WD−1/2 in
which D is the diagonal matrix with (i, i)-element equal to the
sum of the ith row ofW .
(4) Iterate f (t + 1) = αS f (t) + (1− α)y until convergence,
where α is a parameter in [0, 1) and f (0) = y.
(5) Let f ∗ denote the limit of the sequence { f (t)}. Rank each
point xi according to its ranking scores f ∗i .

Algorithm 1: Ranking data points.

For the task of predicting the labels of unlabeled data
points, it can be formulated as: given a set of points χ =
{x1, . . . , xl, xl+1, . . . , xn} ⊂ Rm and a label set ζ = {1, . . . , c},
the first l points xi (i ≤ l) are labeled as yi ∈ ζ ; and the re-
maining points xu (l + 1 ≤ u ≤ n) are to be labeled.

Define an n × c matrix F corresponding to a classi-
fication on the dataset χ by labeling each point xi with
yi = argmax j≤c Fi, j . We also define an n × c matrix Y =
[Y1, . . . ,Yc] with Yi, j = 1 if xi is labeled as yi = j and Yi, j = 0
otherwise. The procedure of predicting labels is quite similar
with that of ranking the data points [18].

An intuitive description of the above two algorithms is:
a weighted graph is first formed which takes each data point
as a vertex; a positive score is assigned to each query while
zero to the remaining points; all the points then spread their
scores to the nearby points via the weighted graph; the spread
process is repeated until a global stable state is reached, and
all the points will have their own scores according to which
they will be ranked or to be labeled.

2.2. Application for image retrieval
in the scenario of QBE

In [4], we have applied Algorithm 1 to image retrieval in the
scenario of QBE. Its key points are summarized as follows.

(i) In the initial query stage in the scenario of QBE, there
is only one query in the query set. The resultant ranking score
of an unlabeled image is in proportion to the probability that
it is relevant to the query, with large ranking score indicating
high probability.

(ii) In relevance feedback, if the user only marks relevant
examples, the algorithm can be easily generalized by adding
these newly labeled images into the query set; on the other
hand, if examples of both labels are available, they are treated
differently: relevant images are also added to the query set,
while for irrelevant images, we designed three schemes based
on the observation that positive examples should make more
contribution to the final ranking score than negative ones.

(iii) Tomaximally improve the ranking result, we also de-
veloped three active learning methods for selecting images in

(1–3) The same as Algorithm 1.
(4) Iterate F(t + 1) = αSF(t) + (1− α)Y until

convergence, where α is a parameter in [0, 1)
and F(0) = Y .

(5) Let F∗ denote the limit of the sequence {F(t)}.
Label each point xi with yi = argmax j≤c F∗i, j .

Algorithm 2: Predicting labels.

each round of relevance feedback. Namely, (1) to select the
most positive images; (2) to select the most informative im-
ages; and (3) to select the most positive and inconsistent im-
ages.

3. KEYWORDMODEL CONSTRUCTION

3.1. Notation

Our keyword model is actually an n × c matrix F =
[F1, . . . ,Fc], where n is the total number of images in the
database and c is the total number of keywords. Each im-
age in the database corresponds to a row and each keyword
corresponds to a column. The element Fi,q (i = 1, . . . ,n; q =
1, . . . , c) of the keywordmodel denotes the relevance of image
xi to keyword Kq (large value indicating high relevance).

3.2. The keyword propagation process

To construct such keyword model, we need to manually label
a small portion of images in the database, and then propagate
their labels (keywords) to the unlabeled ones. It can be seen
that Algorithm 2 can perform this task well. However, we will
make some modifications as follows.

(i) Multilabels for a single image are supported. If an im-
age is given more than one keyword in the manually labeling
stage, all the corresponding elements in Y are assigned 1.

(ii) The weighted graph in step (1) is constructed as: cal-
culate the K nearest neighbors for each point; connect two
points with an edge if they are neighbors. The reason for this
modification is to ensure enough connection for each point
while preserving the sparse property of the weighted graph.

(iii) Since L1 distance can better approximate the per-
ceptual difference between two images than other popular
Minkowski distances when using either color or texture rep-
resentation or both [4], it is adopted to define the edge
weights inW ,

Wij =
m∏

l=1
exp

(− ∣∣xil − xjl
∣∣/σl

)
, (1)

where xil and xjl are the lth dimension of xi and xj , respec-
tively;m is the dimensionality of the feature space; and σl is a
positive parameter that reflects the scope of different dimen-
sions.

(iv) Step (5) in Algorithm 2 is ignored for the purpose of
soft annotation.
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3.3. Analysis

We make a short analysis of the keyword propagation pro-
cess by Algorithm 2 with respect to its transductive learning;
multiranking and incremental learning nature.

3.3.1. Transductive learning nature

The theorem in [18] guarantees that the sequence {F(t)}
converges to (from now on, we will omit the mark “∗”)

F = β
(
1− αS

)−1
Y , (2)

where β = 1 − α. Although F can be expressed in a closed
form, for large scale problems, the iteration algorithm is
preferable due to computational efficiency. Using Taylor ex-
pansion and omitting the constant coefficient β, we have

F = (I − αS
)−1

Y = (I + αS + α2S2 + · · · )Y
= Y + αSY + αS(αSY) + · · · . (3)

From the above equation, we can grasp the idea of the
algorithm from a transductive learning point of view. F can
be regarded as the sum of a series of infinite terms. The first
term is simply the score of initial labels Y , the second term
is to spread the scores of the initial labeled images to their
nearby points, the third term is to further spread the scores,
and so on. Thus the effect of unlabeled image is gradually
incorporated.

Different from existing methods, such as [13, 14], in
which keyword propagation is performed by training an en-
semble of binary classifiers, in our method, it is performed
in a much more straightforward way. While those inductive
methods aim to train a classifier using labeled images which
generalizes well on unlabeled images, our method is a trans-
ductive method and explores the unlabeled images in the
learning stage. By doing so, we hope it will outperform the
existing inductive ones.

3.3.2. Multiranking nature

Since Y = [Y1, . . . ,Yc], and F = [F1, . . . ,Fc], the following
fact will hold:

Fq = β(1− αS)−1Yq, (q = 1, . . . , c). (4)

Define the initial query set Qq for each keyword Kq: if
a given image is labeled as keyword Kq, it is added into
Qq (q = 1, . . . , c). It can be seen that Yq is the correspond-
ing vector as defined in Algorithm 1 for Qq. By doing so,
we make a bridge between the two versions of manifold-
ranking algorithm. The keyword propagation by Algorithm 2
can be viewed as a multiranking process: each keyword has
its own initial query set; propagates its influence by step (4)
of Algorithm 1 independently; and combines the results al-
together.

3.3.3. Incremental learning nature

Here, we explore the incremental learning nature of the key-
word propagation process. Since it can be viewed as a multi-
ranking process, we only focus on one specific keyword Kq.

LetQq and Yq be the initial query set and the correspond-
ing vector, respectively. The ranking vector Fq can be com-
puted as (4). Suppose that we get some new labeled examples
for Kq. Let these examples compose a new query set Qnew

and define its corresponding vector ynew. Adding Qnew into
Qq, we get a combined query set Qcom and its corresponding
vector ycom. The ranking vector with respect to Kq should
be updated by rerunning Algorithm 1 on Qcom, and the se-
quence { f com(t)} converges to

f com = β(I − αS)−1ycom. (5)

Note that Qcom = {Qq,Qnew}, and ycom = Yq + ynew.
Thus, (5) can be converted to

f com = β(I − αS)−1Yq + β(I − αS)−1ynew = Fq + f new, (6)

where f new = β(I − αS)−1ynew.
It can be seen from the above equation that the algorithm

provides a natural way to incorporate the newly labeled ex-
amples: propagate their influence and simply add the result
into the original ranking vector.

4. QUERY BY KEYWORD

4.1. Initial retrieval result

After the keyword model is constructed, each image xi (i =
1, . . . ,n) in the database corresponds to a row in the ma-
trix, indicating its relevance to different keywords; while
each keyword Kq corresponds a column in the matrix Fq =
[F1,q, . . . ,Fn,q]T , indicating the relevance of different images
to that keyword. Thus, the similarity score of image xi with
respect to the query keyword Kq can be expressed as

Si = Fi,q, i ∈ {1, . . . ,n}; q ∈ {1, . . . , c}. (7)

The initial retrieval result is given by sorting the images
in the decreasing order of their similarity scores.

As point out in [13], when the query is not in the keyword
set, query expansion is needed to translate the initial query.
However, we will skip the details of this issue in this paper.

4.2. Relevance feedback

Benefited from its incremental learning nature, our method
provides a natural way to incorporate the additional infor-
mation from users to refine the similarity score in relevance
feedback.

For a query keyword Kq, its initial ranking vector is Fq.
Let all examples from users’ feedback compose two new
query sets: Q+ for positive examples and Q− for negative
ones. We also define their corresponding vectors y+ and
y− as Algorithm 1, except that the element of y− is set to
−1 if the corresponding image is a negative example. Using
Algorithm 1, the effect of these two query sets can be written
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as

f + = β(I − αS)−1y+,

f − = β(I − αS)−1y−.
(8)

By the incremental learning nature we analyzed in
Section 3.3.3, the similarity score of image xi with respect to
Kq is updated as

Si = Fi,q + f +i + γ f −i , i ∈ {1, . . . ,n}; q ∈ {1, . . . , c}, (9)

where f +i and f −i are the ith elements of f + and f −, re-
spectively, and γ ∈ [0, 1]. Note that the effect of nega-
tive examples is suppressed by γ, the idea of which can be
traced back to [4]: due to the asymmetry between relevant
and irrelevant images, the positive and negative examples
should be treated differently. Generally speaking, positive ex-
amples should make more contribution to the overall simi-
larity score than negative ones. Here, the parameter γ con-
trols the suppression extent: the smaller γ is, the less impact
negative examples will have on the overall similarity score.

When only positive examples are available from the user’s
feedback or when we consider only the relevant images, we
simply set γ = 0, and the similarity score is updated as

Si = Fi,q + f +i , i ∈ {1, . . . ,n}; q ∈ {1, . . . , c}. (10)

4.3. Active learning

Contrary to passive learning, in which the learner randomly
selects some unlabeled images and asks the user to provide
their labels, active learning selects images according to some
principle, hoping to speed up the convergence to the query
concept. This scheme has been proven to be effective in im-
age retrieval by previous research work [17, 20]. In [4], we
have developed three active learning methods based on dif-
ferent principles, and each of them has its counterpart in the
scenario of QBK.

The first method is to select the unlabeled images with
the largest Si, that is, the most positive images, which is
widely used in previous research work [16, 21]. The motiva-
tion behind this simple scheme is to ask the user to validate
the judgment of the current system on image relevance.

The secondmethod is to select the unlabeled images with
the smallest |Fi,q + f +i + γ f −i |. Since the value of Fi,q and f +i
indicates the relevance of an unlabeled image determined by
initial labels and positive examples, respectively, while the
absolute value of γ f −i indicates the irrelevance of an unla-
beled image determined by negative examples, a small value
of |Fi,q + f +i + γ f −i | means that the image is judged to be
relevant by the same degree as it is judged to be irrelevant,
therefore, it can be considered an inconsistent one. From the
perspective of information theory, such images are most in-
formative.

The third method tries to take the advantage of the above
two schemes by selecting the inconsistent images which are
also quite similar to the query (most positive and incon-
sistent). To be specific, we select unlabeled images with the

largest Fi,q + f +i − |Fi,q + f +i + γ f −i |. The scheme can be ex-
plained intuitively as follows: the selected images should not
only provoke maximum disagreement among labeled exam-
ples (small |Fi,q + f +i + γ f −i |), they must also be relatively
confidently judged as a relevant one by the initial labels and
the positive examples (large Fi,q + f +i ).

In [4], we found out by experiments that the second
scheme is not as effective as the other two. So, in this pa-
per, we will only adopt the first (most positive) and the third
(most positive and inconsistent) schemes.

For keyword propagation, another interesting matter
with active learning is how to select the images for labeling
in the stage of initial keyword model construction. However,
we will not address this issue in this paper and will leave it to
future work.

5. KEYWORDMODEL UPDATE

An important issue with keyword propagation is how to
accumulate and memorize knowledge learnt from user-
provided relevance feedback so that the retrieval system can
be self-improved constantly. In [14], Jing et al. introduced la-
beling vectors to collect examples provided by the users, and
their keyword model (an ensemble of binary SVM classifiers)
is periodically updated by an offline training procedure.

It is very easy to incorporate such updating procedure in
ourmethod. Remember that each column Fq (q = 1, . . . , c) in
our keyword model corresponds to a keyword Kq. Taking the
multiranking nature of keyword propagation, the updating
procedure is performed on one by one column as follows.

Firstly, consider positive examples only. For a query key-
word, its initial ranking vector is Fq. Let Qj,+ ( j = 1, . . . ,N+)
and y j,+ denote the ensemble of the query sets and corre-
sponding vectors from various positive feedback sessions,
where N+ is the total number of feedback sessions used to
update the keyword model. Using Algorithm 1, their effect
can be written as

f j,+ = β(I − αS)−1y j,+ (
j = 1, . . . ,N+). (11)

Taking advantage of the incremental learning nature
again, the final updating process can be denoted as

Fq ←− Fq +
N+∑

j=1
f j,+ (for q = 1, . . . , c). (12)

If both positive and negative examples are considered, let
Qk,− (k = 1, . . . ,N−) and y j,− denote the ensemble of the
query sets and corresponding vectors from various negative
feedback sessions, where N− is the total number of negative
feedback sessions used to update the keyword model. By a
similar analysis, we reach the following updating procedure:

Fq ←− Fq +
N+∑

j=1
f j,+ + γ

N−∑

k=1
f k,− (for q = 1, . . . , c), (13)

where f k,− = β(I−αS)−1yk,− (k = 1, . . . ,N−), and γ ∈ [0, 1]
is the controlling parameter as discussed in Section 4.2. If
only positive examples are available or considered, γ = 0.
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Figure 1: Comparison of the initial retrieval result between manifold ranking and SVM. Only 1% of the images were labeled for training.
(a) Precision versus scope. (b) Recall versus scope.

In both cases, the ensemble of corresponding vectors ac-
tually plays a role of labeling vector as in [14]. Moreover,
note that f j,+ and f k,− are actually what we get during rele-
vance feedback, thus the keyword model can be updated on-
line during the relevance feedback sessions, and there is no
extra offline training process.

6. EXPERIMENTAL RESULT

6.1. Experiment design

We have evaluated the proposed method with a general-
purpose image database of 5 000 images from Corel. In our
experiments, one percent (much less than that of [14]: ten
percent) of all images in the database are randomly selected
for manual annotation and used to train the initial keyword
model. Currently, an image is labeled with only one keyword,
that is, the name of the category that contains it. Some cat-
egories are sunset, mountain, eagle, beach, and (or) subsea
animal. Totally, there are 50 keywords representing all im-
ages in the database. Images from the same (different) cate-
gory are considered relevant (irrelevant). The precision ver-
sus scope curve is used to evaluate the performance of vari-
ous methods. We use each keyword as a query. Considering
the randomness of initial labels, we run 50 times of labeling
and training for each query and the average retrieval result
is recorded. Finally, we average the results over the total 50
queries.

Image feature has a great impact on the performance of
image retrieval system. However, in this paper, our major
concern is relative performance comparison, and therefore
we do not perform careful feature selection. In our current
implementation, the features that we use to represent each
image include color histogram [7] and wavelet feature [10].

Color histogram is obtained by quantizing the HSV color
space into 64 bins. To calculate the wavelet feature, we first
perform 3-level Daubechies wavelet transform to the im-
age, and then calculate the first- and second-order moments
of the coefficients in High/High, High/Low, and Low/High
bands at each level.

There are five parameters left to be set in the algorithm:
K , α, σl, γ, and the iteration steps. As pointed out in [4], the
algorithm is not very sensitive to the number of neighbors.
In this paper, we set K = 20. The other four parameters are
consistent with what we did in [4], that is, α = 0.99, σl =
0.05, γ = 0.25, and the number of iteration steps is 50.

6.2. Initial retrieval result

Firstly, the initial retrieval is evaluated. The precision (re-
call) versus scope curve is shown in Figure 1. In order to per-
form a systematic evaluation, we vary the percentage of train-
ing data and compare the average precision (P20) and re-
call (R20) of top 20 retrieved images with that by SVM [14].
The precision (recall) versus the percentage of training data
curve is shown in Figure 2. From the figures, it can be seen
that our manifold-ranking-based method outperforms the
classification-based one by a large margin, especially when
only a small number of images were labeled for training. The
improvement is very significant from the practical point of
view.

6.3. Relevance feedback

In this case, we fix the total number of images that are
marked by the user to 20, but vary the times of feedback and
the number of feedback images each time accordingly. The
combinations used in this experiment include 1 feedback
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Figure 2: Systematic comparison between manifold ranking and SVM under different size of training data. (a) P20 versus the percentage of
training data. (b) R20 versus the percentage of training data.
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Figure 3: Comparison of different relevance feedback schemes (2 feedbacks with 10 images at each). (a) Only positive examples are consid-
ered. (b) Both positive and negative examples are considered.

with 20 images each time, 2 feedbacks with 10 images each
time, and 4 feedbacks with 5 images each time. When both
positive and negative examples are available, passive scheme
(to select randomly) and two active schemes (to select most
positive and to select most positive and inconsistent) are
compared. When only positive examples are available, the
most positive and inconsistent scheme is skipped. Note that,
in the first round of relevance feedback, the most positive
and inconsistent scheme is not provoked, and the most pos-
itive images are selected for users’ labels. In all experiments,

we find out that both of our active schemes help to improve
the retrieval performance by a large margin, while the passive
scheme makes little improvement. Here, we only present the
results after 2 feedbacks with 10 images each time in Figure 3,
and the initial result is also given as a reference.

6.4. Keywordmodel update

To collect training data for the updating process, each of the
50 keywords is used as the query once. In this case, users’
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Figure 4: Comparison of performance improvement of the keywordmodel update process. (a) Initial retrieval result. (b) Relevance feedback
(one feedback with 10 images).

feedback processes are simulated as follows. For a query im-
age, 5 iterations of user-and-system interaction were carried
out. At each iteration, the most 5 positive images are labeled
by the user. Both positive and negative examples are consid-
ered. The initial retrieval result after updating the keyword
model is presented in Figure 4(a), together with that with-
out the updating procedure as a reference. The effect of up-
dating process on subsequent relevance feedback sessions is
also evaluated, and the retrieval results (one feedback with
10 images) with and without updating process are shown in
Figure 4(b). It can be seen that the updating process enables
the proposed system to self-improve progressively.

7. CONCLUSION

In this paper, we have proposed a novel method to support
keyword propagation for image retrieval. This work is an ex-
tension to our previous work in the scenario of QBE and can
be viewed as its counterpart in the scenario of QBK. Start-
ing from a very small portion of labeled images, a keyword
model is constructed by the manifold-ranking algorithm and
all the images in the database are softly annotated. Different
from existing methods which rely on labeled data to train
an ensemble of binary classifiers, ours is a transductive one
which explores the relationship among all labeled and un-
labeled images in the learning stage. Such keyword model
serves as a bridge that connects the semantic keyword space
with the low-level feature space. The information from rel-
evance feedback can be naturally incorporated to refine the
retrieval result; and the influence of positive examples and
negative ones are treated differently. Two active schemes are
adopted to accelerate the convergence to the query concept.

The proposed keyword model can be updated online with-
out extra offline training process. Experiments on a general-
purpose image database consisting of 5 000 Corel images
demonstrate the effectiveness of the proposed method.
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