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Medical imaging applications produce large sets of similar images. Thus a compression technique is necessary to reduce space
storage. Lossless compression methods are necessary in such critical applications. Set redundancy compression (SRC) methods
exploit the interimage redundancy and achieve better results than individual image compression techniques when applied to sets
of similar images. In this paper, we make a comparative study of SRC methods on sample datasets using various archivers. We also
propose a new SRC method and compare it to existing SRC techniques.
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1. INTRODUCTION

Medical imaging applications produce a huge amount of
similar images. Storing such amount of data needs gigan-
tic disk space. Thus a compression technique is necessary to
reduce space storage. In addition, medical images must be
stored without any loss of information since the fidelity of
images is critical in diagnosis. This requires lossless compres-
sion techniques. Lossless compression is an error-free com-
pression. The decompressed image is the same as the original
image.

Classical image compression techniques (see [1–5]) con-
centrate on how to reduce the redundancies presented in
an individual image. These compression techniques use the
samemodel of compression as shown in Figure 1. Thismodel
ignores an additional type of redundancy that exists in sets of
similar images, the “set redundancy.”

The term “set redundancy” was introduced for the first
time by Karadimitriou [6] and defined as follows: “Set redun-
dancy is the interimage redundancy that exists in a set of similar
images, and refers to the common information found in more
than one image in the set.” The compression techniques based
on set redundancy follow the model presented in Figure 2.
These methods are referred to as SRC (for set redundancy
compression) methods. After extracting the set redundancy,
any compression algorithm can be applied to achieve higher
compression ratios.

In this paper, we present an evaluation of the set redun-
dancy compression (SRC) methods combined with differ-
ent archivers. The SRC methods tested are the Min-Max dif-
ferential method (MMD), the Min-Max predictive (MMP)
method, and centroid method. The archivers used for indi-
vidual compression are RAR compressor which is based on

[7–9], Gzip which is a variation of Ziv-Lempel (1977) [9]
method, Bzip2 that uses Ziv-Lempel (1978) [10] method,
and the ZIP archiver. The Huffman encoder [7] is also used
in the evaluation.

This paper is organized as follows. We define, in Section
2, the correlation coefficient to quantify similarity be-
tween images. The different SRC methods are explained in
Section 3. We present, in Section 4, a new predicting scheme
for the Min-Max predictive method. Experimental results on
medical CT (computed tomography) andMR (magnetic res-
onance) brain images are given in Section 5. Section 6 gives
conclusions.

2. IMAGES SIMILARITY

The redundancy extraction is a worth operation if the images
in the set are similar. The visual impression is not sufficient
to state that two or more images are similar. We must have a
statistical criterion to test similarity. Two images are said to
be similar or statistically correlated if they have similar pixel
intensities in the same areas or they have comparable his-
tograms.

The correlation coefficient is used to quantify similarity.
For two datasets X = (x1, x2, . . . , xN ) and Y = (y1, y2, . . . ,
yN ) with mean values xm and ym, Neter et al. [11] defined
this coefficient as

r =
∑N

i=1
(
xi − xm

)(
yi − ym

)

√∑N
i=1
(
xi − xm

)2
√∑N

i=1
(
yi − ym

)2
. (1)

The correlation coefficient is also called Person’s r. To
avoid the manipulation of negative values, r2 is often used
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Figure 1: Standard compression model.

instead of r. For two datasets X and Y , a value of r2 close to
0 means that no correlation exists between them. A value of
r2 close to 1 means that strong correlation exists between the
two datasets. X and Y are perfectly correlated if r2 = 1. In
context of images, a value r2 close to 0 means that the two
images are totally dissimilar, a value r2 close to 1 indicates
“strong” similarity, and a value r2 = 1 means that the images
are identical.

We give two examples to test the existence of corre-
lation among images. Figure 3 shows two successive MRI
brain scans of the same patient. The value r2 = 0.80 indi-
cates strong similarity between these two images. Figure 4
depicts two nonsimilar images. The correlation parameter
r2 = 0.005 indicates that the two images are noncorrelated.

3. SET REDUNDANCYMETHODS

In this section we present four types of SRC methods: the
Min-Max differential method [6, 12], the Min-Max predic-
tive method [6, 13], the centroid method [6, 14], and the
multilevel centroid method [15]. These methods are fast,
lossless, and easy to implement.

3.1. Min-Max differential method

MMD uses, for extracting the “set redundancy” in a set of
similar images, two images: a maximum image and a mini-
mum image. To create the minimum (MIN) image, the pixel
values across all the images in the set are compared, and
for each pixel position the smallest value is chosen. Simi-
larly, the maximum (MAX) image is created by selecting the
largest pixel value for each pixel position. Then, the set re-
dundancy can be reduced by replacing every image in the set
by its differences from the min or the max image, such that
for every pixel position, MMD finds and stores the small-
est difference value (see Figure 5). Note that pixel values are
indexed with only one subscript, despite corresponding to a
two-dimensional array. The image is observed pixel by pixel
in a predefined raster scan order.

The algorithms of both encoder and decoder are pre-
sented below. For each pixel at position i:

(1) encoder:

Di =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

value
(
Pi
)−mini if

(
value

(
Pi
)−mini

)

<
(
maxi−value

(
Pi
))
,

maxi−value
(
Pi
)

otherwise;
(2)

(2) decoder:

value
(
Pi
) =

⎧
⎪⎪⎨

⎪⎪⎩

Di +mini if
(
value

(
Pi
)−mini

< maxi−value
(
Pi
))
;

maxi−Di otherwise,

(3)

where Di, is the difference value to be stored in the difference
image, mini is the value at position i in the MIN image and
maxi is the value at position i in the MAX image.

To synchronize encoding and decoding, the encoder uses
consistently Min or Max curves until it finds a difference
value larger than (max−min)/2. In that case, it encodes
this value and switches to the other curve. The decoder fol-
lows the same rule; when it finds a difference larger than
(max−min)/2, it also switches to the other curve.

3.2. Min-Max predictivemethod

The MMP method also uses the Min and Max images. It is
more elaborated than the MMDmethod but it is also a more
powerful method. For each pixel at position i, the MIN im-
age provides the minimal value mini of all the images, and
the image MAX provides the maximum value maxi. These
two values are the limits of the range of the possible values
that a pixel at position i can have in each image in the set.
After dividing this interval into N levels, a pixel at position i
in each image can be represented as a level Li between its cor-
responding minimum and maximum values (see Figure 6).
The level Li is given by the equation

Li = N

(
Value

(
Pi
)−mini

maxi−mini

)

, (4)

where Li is the level of a pixel at position i in a given image,
and N is number of levels (N = 256).

Neighboring pixels often have similar levels despite hav-
ing different values. For example, consider the values of the
following neighboring pixels given in Table 1.

From (4), a prediction scheme for the value of pixel Pi
can be defined as

value− predicted
(
Pi
) = mini +

L′i
N

(
maxi −mini

)
, (5)

where L′i is the level predicted for a pixel at position i.
The prediction concerns only the element L′i in the pre-

ceding formula. The MMP method predicts the value of a
pixel Pi by using the level information from already treated
neighboring pixels. Since the levels of neighboring pixels are
often similar, this is a good prediction scheme.

Karadimitriou [6, 13] defined three predictors. These
predictors determine three variations of Min-Max predictive
methods referred to as MMP1, MMP2, and MMP3. The pre-
dictions schemes for MMP methods are shown in Table 2.
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Figure 2: Enhanced compression model.

(a) (b)

Figure 3: Two successive MRI brain scans.

(a) (b)

Figure 4: Two dissimilar images.

Lupper is the level of the upper neighboring pixel, Lleft is
the level of the left neighbor, and Lupperleft is the level of the
upper left neighbor (see Figure 7).

For every image in the set, the encoding process con-
sists of storing the differences between the predicted values
and the original values. These differences values replace the
original values. To restore the original image from the dif-
ferences stored, the decoding process calculate the predicted
values, and then adds the corresponding differences values.

3.3. Centroidmethod

The “centroid” method [6, 14] (which is also used in [16]),
uses the average image of a set of similar images to predict
the values of the difference image. If the prediction is effi-
cient enough, the difference image will contain small values
having a Laplacian distribution withmost of values very close
to zero.
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Figure 5: Min-Max differential method.
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Figure 6: Min-Max predictive method (20 levels).

A simple scheme for predicting the pixel value at position
i in image j is

Fi, j = mi, (6)

where mi is the average value at position i across all images
and Fi, j is the predicted value. This scheme is not very effi-
cient. A more sophisticated scheme [14] can be expressed as
follows:

Fi+1, j = mi+1 + xi, j −mi,

Di+1, j = xi+1, j − Fi+1, j ,
(7)

where Fi+1, j is the predicted value at position i + 1, Xi, j is the
pixel value at position i, mi is the average value of position i
across all images, andDi+1, j is the difference value of position
i+1 in image j between the original and the predicted values.
The detailed demonstration of (7) can be found in [6].
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Table 1: Example of neighboring pixels levels.

Pixel value Min value Maximum value Level

99 15 197 118

105 21 205 117

112 29 210 117

102 19 199 118

Table 2: Level prediction in MMP methods.

MMP method Level prediction

MMP1 L′i = Lleft

MMP2 L′i = (Lupper + Lleft)/2

MMP3 L′i = Lupper + Lleft − Lupperleft

3.4. Multilevel centroidmethod

Proposed by El-Sonbaty et al. [15] and derived from the
centroid method, this model executes the centroid method
N levels times. Given a set of similar images X , the corre-
sponding median image (median 1) is calculated. Applying
the centroid method on the given input set, the difference 1
set (difference images at level 1) is obtained. Repeating the
process recursively, the median 2 is obtained from the dif-
ference 1 set and applying centroid method again, the differ-
ence 2 set is also obtained. The process stops when all lev-
els are processed. The first level is the centroid method. The
prediction scheme of this method is the same as the centroid
method, and is given by

Fi+1, j(n) = mi+1(n) + xi, j(n)−mi(n),

Di+1, j(n) = xi+1, j(n)− Fi+1, j(n),
(8)

where Fi+1, j(n) is the estimation of a pixel at position i + 1 in
an image j at level n, xi, j(n) is the value of pixel i of the image
j at level n, mi(n) is the value of pixel i of the median image
at level n, and Di+1, j(n) is the value of pixel i of the difference
image j at level n.

4. THE NEWMMP PREDICTIVE SCHEME

The three predictors used by Karadimitriou [6, 13] by assign-
ing to L′i (see Section 3.2) information from previous treated
pixels are “not flexible.” We propose to use a more elaborated
predicting scheme. This scheme is based on the predictor
used in Weinberger et al. proposal, LOCO-I (low complexity
lossless compression for Images) [17]. LOCO-I uses a non-
linear predictor with edge detecting capability. It guesses the
value of the current pixel x based on neighboring pixels (see
Figure 8).

The approach in LOCO-I consists in performing a prim-
itive test to detect vertical or horizontal edges. If an edge is

Pupperleft Pupper

Pleft Pi Current pixel

Figure 7: Notation used for specifying neighboring pixels of cur-
rent pixel Pi.

c a d

e b x Current pixel

Figure 8: Notation used for specifying neighboring pixels of cur-
rent pixel x.

not detected, then the guessed value is a + b − c. Specifically,
the LOCO-I predictor guesses

predicted x =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min(a, b) if c ≥ max(a, b),

max(a, b) if c ≤ min(a, b),

a + b− c otherwise.

(9)

LOCO-I is the algorithm at the core of the ISO/ITU/
14495-1 standard for compression of continuous-tone im-
ages, JPEG-LS (see [18]). The guessed value is seen as the
median of three fixed predictors a, b, and a+b−c. The predic-
tor used in LOCO-I was renamed during the standardization
process “median edge detector” (MED).

From the MED predictor we derive a new predicting
scheme. In (5), the predicted term L′i will be calculated as
follows:

L′i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
(
Lupper,Lleft

)
if Lupperleft ≥ max

(
Lupper,Lleft

)
,

max
(
Lupper,Lleft

)
if Lupperleft ≤ min

(
Lupper,Lleft

)
,

Lupper + Lleft

−Lupperleft otherwise,
(10)

where Lupper is the level of the upper neighboring pixel, Lleft
is the level of the left neighbor, and Lupperleft is the level of the
upper left neighbor.

Since the image is processed pixel by pixel in a raster scan
order, pixels of the first line do not have upper left or upper
neighbors. In this case, the value Lleft will be assigned to L′i .
Similarly, the value Lupper will be assigned to L′i for pixels of
the first column in the image. Note that for the first pixel of
every image (no processed pixels yet), the value 128 is chosen
to be the predicted level.

The idea behind the use of the new predictor is to expect
better results than those obtained by using predictors defined
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in Section 3.2. We call the new method resulting from this
predicting scheme MMPM for MMPMED.

5. EXPERIMENTAL RESULTS

The evaluation of set redundancy method is made on sample
medical images. The images were taken from “M.D. Ander-
son Cancer Center in Houston, Texas” and “Harvard Med-
ical School.” All images were gray-level, and were scaled to
8 bits/pixel. All experiments were performed underWindows
XP operating system.

To make the evaluation of the SRC methods, we have
used the standard compression algorithms RAR, Bzip2, Gzip,
ZIP, Huffman. The medical images are compressed by these
algorithms with and without using the set redundancy ex-
traction. Each algorithm is tested separately and the attained
compression ratios are compared. The compression ratio is
given by

R = Size
(
original image

)

Size
(
compressed image

) . (11)

The improvement against standard compression method is
also needed in the evaluation. It shows if the use of SRC
methods is really effective. The improvement in compression
is defined by

A = RSRC − R

R
, (12)

where R is the compression ratio achieved when using a stan-
dard compression method only, and RSRC is the compression
ratio achieved when combining SRCwith that standard com-
pression method.

5.1. M.D. Anderson Cancer Center images

From M.D. Anderson Cancer Center images, a set of 10 CT
(computed tomography) similar images, and another set of
10MR images are chosen to conduct the first tests. These two
sets were selected and used by Karadimitriou [6, 12–14] and
also used by Sonbaty et al. [15], so an easy comparison can
be made. The resolution is 512 × 512 for the CT images and
256× 256 for the MR images.

5.1.1. CT experiments

The sample set of computed tomography images used in the
experiments is shown in Figure 9. The set contains axial CT
brain scans where horizontal slices of the brain at the eye-
level are depicted. The images were selected from patients of
both sexes, various ages, and a variety of pathological condi-
tions.

From the chosen set, the “average,” “minimum,” and
“maximum” images were created to be used in the MMD,
MMP, and centroid methods. These three images are shown
in Figure 10.

Results of tests on CT images (compression ratios
and improvement in compression by using SRC meth-
ods) are presented in Table 3. The histograms representing

Figure 9: CT test images.

(a) Average CT
image.

(b) Minimum
CT image.

(c) Maximum
CT image.

Figure 10: CT average, minimum, and maximum images.
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Table 3: Experimental results on CT images.

Compression technique Average size (KO) Average compression ratio Improvement %

Original image 256 — —

Bzip2 74.35 3.44 : 1 —

Centroid + Bzip2 72.55 3.52 : 1 2

MMD+ Bzip2 75.78 3.37 : 1 −2
MMP1 + Bzip2 71.71 3.57 : 1 3

MMP2 + Bzip2 64.64 3.96 : 1 15

MMP3 + Bzip2 63.35 4.02 : 1 17

MMPM+ Bzip2 61.92 4.13 : 1 20

Mutlilevel centroid (2 levels) + Bzip2 83.32 3.07 : 1 −10
Gzip 100.46 2.54 : 1 —

Centroid + Gzip 82.48 3.10 : 1 22

Gzip +MMD 88.71 2.88 : 1 13

MMP1 + Gzip 78.17 3.27 : 1 28

MMP2 + Gzip 70.92 3.61 : 1 42

MMP3 + Gzip 69.08 3.70 : 1 45

MMPM+Gzip 67.64 3.78 : 1 49

Mutlilevel centroid (2 levels) + Gzip 89.82 2.85 : 1 12

Huffman 193.45 1.32 : 1 —

Centroid + Huffman 98.41 2.60 : 1 96

MMD+Huffman 125.93 2.03 : 1 54

MMP1 +Huffman 84.08 3.04 : 1 130

MMP2 +Huffman 75.35 3.39 : 1 156

MMP3 +Huffman 69.15 3.70 : 1 180

MMPM+Huffman 69.06 3.71 : 1 181

Mutlilevel centroid (2 levels) + Huffman 91.31 2.80 : 1 112

RAR 76.09 3.36 : 1 —

Centroid + RAR 72.60 3.52 : 1 4

MMD+ RAR 82.52 3.10 : 1 −7
MMP1 + RAR 67.37 3.8 : 1 13

MMP2 + RAR 62.73 4.08 : 1 21

MMP3 + RAR 57.37 4.46 : 1 32

MMPM+ RAR 56.75 4.51 : 1 34

Mutlilevel centroid (2 levels) + RAR 82.57 3.10 : 1 −7
ZIP 99.94 2.56 : 1 —

Centroid + ZIP 80.47 3.18 : 1 24

MMD+ ZIP 87.35 2.93 : 1 14

MMP1 + ZIP 75.94 3.37 : 1 31

MMP2 + ZIP 68.36 3.74 : 1 46

MMP3 + ZIP 66.36 3.85 : 1 50

MMPM+ ZIP 64.90 3.94 : 1 54

Mutlilevel centroid (2 levels) + ZIP 88.16 2.90 : 1 13
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Figure 11: SRC methods improvement on CT images.
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Figure 12: Average compression ratios on CT images.

improvements and compression ratios using SRC methods
are shown in Figures 11 and 12, respectively.

5.1.2. MR experiments

The set of magnetic resonance images scans depict is hori-
zontal slices about 7-8 cm from the top of the head. These
images are shown in Figure 13. From this set, the “average,”
“minimum,” and “maximum” images were created to be used
in the MMD, MMP, and centroid methods. These three im-
ages are presented in Figure 14.

Results of tests on MR images (compression ratios
and improvement in compression by using SRC meth-
ods) are presented in Table 4. The histograms representing
improvements and compression ratios using SRC methods
are shown in Figures 15 and 16, respectively.

Figure 13: MR test images.

(a) Average MR
image.

(b) Minimum
MR image.

(c) Maximum
MR image.

Figure 14: Average, minimum, and maximumMR brain images.
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Table 4: Experimental results on MR images.

Compression technique Average size (KO) Average compression ratio Improvement %

Original image 64 — —

Bzip2 38.25 1.67 : 1 —

Centroid + Bzip2 37.93 1.68 : 1 0.5

MMD+ Bzip2 33.13 1.93 : 1 15

MMP1 + Bzip2 33.90 1.88 : 1 12

MMP2 + Bzip2 31.56 2.03 : 1 21

MMP3 + Bzip2 33.59 1.90 : 1 13

MMPM+ Bzip2 31.70 2.01 : 1 20

Mutlilevel centroid (2 levels) + Bzip2 41.69 1.53 : 1 −8
Gzip 46.19 1.39 : 1 —

Centroid + Gzip 41.05 1.55 : 1 11

MMD+Gzip 35.31 1.81 : 1 30

MMP1 + Gzip 35.03 1.83 : 1 31

MMP2 + Gzip 33.11 1.93 : 1 39

MMP3 + Gzip 35.02 1.82 : 1 32

MMPM+Gzip 33.10 1.93 : 1 39

Mutlilevel centroid (2 levels) + Gzip 44.09 1.45 : 1 5

Huffman 55.67 1.14 : 1 —

Centroid + Huffman 44.02 1.45 : 1 27

MMD+Huffman 37.12 1.72 : 1 50

MMP1 +Huffman 35.34 1.81 : 1 58

MMP2 +Huffman 32.67 1.95 : 1 71

MMP3 +Huffman 35.17 1.81 : 1 58

MMPM+Huffman 32.48 1.97 : 1 72

Mutlilevel centroid (2 levels) + Huffman 47.48 1.34 : 1 17

RAR 38.22 1.67 : 1 —

Centroid + RAR 36.78 1.74 : 1 4

MMD+ RAR 32.10 1.99 : 1 19

MMP1 + RAR 31.94 2.00 : 1 20

MMP2 + RAR 30.52 2.09 : 1 25

MMP3 + RAR 31.65 2.02 : 1 21

MMPM+ RAR 29.89 2.14 : 1 28

Mutlilevel centroid (2 levels) + RAR 40.52 1.67 : 1 0

ZIP 46.34 1.38 : 1 —

Centroid + ZIP 41.21 1.55 : 1 12

MMD+ ZIP 35.34 1.81 : 1 31

MMP1 + ZIP 35.11 1.82 : 1 32

MMP2 + ZIP 33.21 1.92 : 1 39

MMP3 + ZIP 35.13 1.82 : 1 32

MMPM+ ZIP 33.20 1.93 : 1 40

Mutlilevel centroid (2 levels) + ZIP 44.25 1.44 : 1 5
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Figure 15: SRC methods improvement on MR images.
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Figure 16: Average compression ratios on MR images.

5.2. HarvardMedical School images

From Harvard Medical School images, two sets of 20 and
30 magnetic resonance images are chosen to make the
evaluation. These images are taken from the “whole brain at-
las” which depicts various brain diseases. The resolution is
256× 256 for all images. The images were converted to PGM
format before being processed.

5.2.1. Cerebral edema images

A sample set ofmedical images is shown in Figure 17. This set
contains 20 axial MR brain scans. These images were selected
from an MR brain exam of a 51-year old woman. The un-
dertaken exam shows a cerebral edema which corresponds to
the high signal extending from the center of themass through
surrounding white matter.

The compression ratios attained on this set by using SRC
methods are presented in Table 5. The histogram represent-
ing these compression ratios is shown in Figure 18.

5.2.2. Brain tumor images

The set, shown in Figure 19, contains 30 axial MR brain
scans. These images were selected from an MR brain exam
of a 73-year old right-handed man that sought medical at-
tention because of a grand mal seizure and progressive diffi-
culty with speech. The exam indicates the presence of a brain
tumor.

The compression ratios attained on this set by using SRC
methods are presented in Table 6. The histogram represent-
ing these compression ratios is shown in Figure 20.

5.3. Discussion

From the results shown in the previous tables on sample
datasets, we see that the majority of SRC methods carry out
an improvement compared to standard compression. This
is a good indicator for the effectiveness of using SRC tech-
niques on similar images datasets. The results show that, in
most cases, the MMPmethods perform better than the other
SRC techniques. We also note that the proposed MMPM
method attains compression ratios slightly better than the
other MMP methods.

The tests have also shown that the centroid and multi-
level centroid techniques are not very efficient and that the
Huffman encoder gives the worst compression ratios com-
paratively to other encoders when the number of images in
the set grows.

6. CONCLUSION

One of the best application areas for SRC methods is med-
ical imaging. Medical image databases usually store huge
amount of similar images (CT, MR, PET, Ultrasound, X-
Ray, and Angiography images); therefore, they contain large
amounts of set redundancy. This paper attempts to evaluate
the performance of various SRCmethods on sample datasets
of grayscale similar images taken from different sources. An
SRC method, called MMPM, is also proposed. It is based
on the MED predictor of the JPEG-LS method. In the car-
ried out tests, MMPM performs slightly better than the other
MMP methods.

We must mention that, to be effective, the SRC methods
impose high similarity in the whole set of images. A prepro-
cessing phase can be done to cluster similar images before
launching the compression operation.

In this study, only the effect of compressing sets of gray-
scale images was evaluated. Further works must consider
compressing sets of multispectral or true color images.

SRC methods can also be tested on many other applica-
tion areas. Satellite image databases, for example, often con-
tain sets of images taken over the same geographical areas,
and under similar weather or lighting conditions. They nec-
essarily contain interimage redundancy.
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Figure 17: MR brain scans.

Table 5: Average compression ratios on MR images.

Without SRC MMD MMP1 MMP2 MMP3 MMPM Centroid Multilevel

Bzip2 4.25 3.95 4.02 4.18 4.08 4.26 3.53 3.38

Gzip 3.63 4.11 4.30 4.38 4.35 4.50 3.45 3.33

Huffman 2.38 2.68 2.86 2.97 2.81 3.02 2.40 2.36

RAR 4.17 4.04 4.20 4.35 4.27 4.47 3.60 3.40

Zip 3.64 3.75 3.99 4.06 4.01 4.15 3.40 3.32
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Figure 18: Average compression ratios on MR images.

Figure 19: MR brain scans.
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Table 6: Average compression ratios on MR images.

Without SRC MMD MMP1 MMP2 MMP3 MMPM Centroid Multilevel

Bzip2 5.37 5.12 5.34 5.51 5.39 5.56 4.85 4.66
Gzip 4.97 5.12 5.57 5.66 5.60 5.78 4.52 4.75
Huffman 2.99 3.14 3.47 3.55 3.44 3.56 3.21 3.15
RAR 4.98 5.02 5.23 5.52 5.41 5.60 4.88 4.73
Zip 4.97 5.05 5.48 5.60 5.46 5.68 4.91 4.74
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Figure 20: Average compression ratios on MR images.
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