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This paper addresses model-based analysis of string instrument sounds. In particular, it reviews the application of autoregressive
(AR) modeling to sound analysis/synthesis purposes. Moreover, a frequency-zooming autoregressive moving average (FZ-ARMA)
modeling scheme is described. The performance of the FZ-ARMA method on modeling the modal behavior of isolated groups
of resonance frequencies is evaluated for both synthetic and real string instrument tones immersed in background noise. We
demonstrate that the FZ-ARMA modeling is a robust tool to estimate the decay time and frequency of partials of noisy tones.
Finally, we discuss the use of the method in synthesis of string instrument sounds.
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1. INTRODUCTION

It has been known for quite a long time that a free vibrat-
ing body may generate a sound that is composed of damped
sinusoids, assuming valid the hypothesis of small perturba-
tions and linear elasticity [1]. This behavior has motivated
the use of a set of controllable sinusoidal oscillators to artifi-
cially emulate the sound of musical instruments [2, 3, 4]. As
for analysis purposes, tools like the short-time Fourier trans-
form (STFT) [5] and discrete cosine transform (DCT) [6]
have been widely employed since these transformations are
based on projecting the input signal onto an orthogonal ba-
sis consisting of sine or cosine functions.

An appealing idea, which is also based on resonant be-
havior of vibrating structures, consists in letting the resonant
behavior be parametrically modeled by means of resonant
filters (all-pole or pole-zero) excited by a source signal. For
short duration excitation signals and filters parameterized by
a few coefficients, such a source-filter model implies a com-
pact representation for sound sources. Furthermore, para-

metric modeling of linear and time-invariant systems finds
applications in several areas of engineering and digital sig-
nal processing, such as system identification [7], equaliza-
tion [8], and spectrum estimation [9]. The moving-average
(MA), the autoregressive (AR), and autoregressive moving-
average (ARMA) models are among the most widely used
ones. Indeed, there exists an extensive literature on estima-
tion of these models [9, 10, 11, 12].

There is a long tradition in applying source-filter schemes
in sound synthesis. For instance, the linear predictive cod-
ing (LPC) [13] used for speech coding and synthesis is one
of the most well-known applications of source-filter synthe-
sis. The problems involved in source-filter approaches can be
roughly divided into two subproblems: the estimation of the
filter parameters and the choice or design of suitable excita-
tion signals. As regards the filter parameter estimation, stan-
dard techniques for estimation of AR and ARMA processes
can be used. Ways of obtaining adequate excitations for the
generator filter have been discussed in [14, 15, 16].
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Model-based spectral analysis of recorded instrument
sounds also finds applications in parametric sound synthe-
sis. In this context, it is possible to derive the frequencies and
decay times of the partial modes from the parameters of the
estimated models (all-pole or pole-zero filters). This infor-
mation can be used afterward to calibrate a synthesis algo-
rithm, for example, a guitar synthesizer based on the com-
muted waveguide method [17, 18].

However, when dealing with signals exhibiting a large
number of mode frequencies, for example, low-pitched har-
monic tones, high-order models are needed for properly
modeling the signal resonances. Therefore, it is plausible to
expect difficulties to either estimate or realize such high-
order models.

A possible way to alleviate the burden of employing high-
order models is to split the original frequency band into sub-
bands with reduced bandwidth. Frequency-selective schemes
allow signal modeling within a subband of interest with
lower-order filters [14, 19, 20, 21]. Naturally, the choices of
the subband bandwidth as well as the modeling orders de-
pend on the problem at hand. For instance, in [20], Laroche
shows that adequate modeling of beating modes of a single
partial of a piano tone can be accomplished by applying a
high-resolution spectral analysis method to the signal associ-
ated with the sole contribution of the specific partial. In this
case, the decimated subband signal associated with the par-
tial contribution was analyzed via the ESPRIT method [22].

In this paper, we review a frequency-zooming ARMA
(FZ-ARMA) modeling technique that was presented in [23]
and discuss the advantages of applying the method for anal-
ysis of string instrument sounds. Our focus, however, is not
on the FZ-ARMA modeling formulation, which bears simi-
larities to other subband modeling approaches, such as those
proposed in [14, 20, 24, 25], among others. In fact, we are
more interested in reliable ways to estimate the frequencies
and decay times of partial modes when the tone under study
is corrupted with broadband background noise. Within this
scenario, our aim is to investigate the performance of the FZ-
ARMA modeling as a spectrum analysis tool.

Every measurement setup is prone to noise interference
to some extent, even in controlled conditions as in an ane-
choic environment. For instance, the recording circuitry in-
volving microphones and amplifiers is one of the sources of
noise. In [26], the authors highlight the importance of taking
into account the level of background noise in the signal when
attempting to estimate the decay time of string tone partials,
especially for the fast decaying ones.

Another situation in which corrupting noise has to be
carefully considered is in the context of audio restoration.
In a recent paper [27], the authors proposed a sound source
modeling approach to bandwidth extension of guitar tones.
The method was applied to recover the high-frequency con-
tent of a strongly de-hissed guitar tone. To perform this task,
a digital waveguide (DWG) model for the vibrating string has
to be designed. In [27], the DWG model was estimated using
a clean guitar tone similar to the noisy one. This resource
was adopted because the presence of the corrupting noise
prevented obtaining reliable estimates for the decay time of

high-frequency partials. These estimates were determined via
a linear fitting over the time evolution of the partial ampli-
tude (in dB), which was obtained through a procedure simi-
lar to the McAulay and Quatieri analysis scheme [2, 28].

Through examples which feature noisy versions of both
synthetic and real string tones, we demonstrate that the FZ-
ARMA modeling offers a reliable means to overcome the lim-
itations of the STFT-based methods regarding estimating the
decay time of partials.

This paper is organized as follows. Section 2 reviews
the basic properties of AR and ARMA modeling and dis-
cusses signal modeling strategies in full bandwidth as well
as in subbands. In Section 3, we formulate the FZ-ARMA
modeling scheme and address issues related to the choice
of the processing parameters. In Section 4, we employ the
FZ-ARMA modeling to focus the analysis on isolated par-
tials of synthetic and real string tones. Moreover, we as-
sess the FZ-ARMA modeling performance on estimating the
decay times of the partial modes under noisy conditions.
In addition, we confront the results of spectral analysis of
the subband signals using ARMA models against those ob-
tained through the ESPRIT method. Section 5 discusses ap-
plications of the FZ-ARMA modeling in sound synthesis.
In particular, we show an example in which, from the FZ-
ARMA analysis of a noisy guitar tone, a DWG-based gui-
tar tone synthesizer is calibrated. Conclusions are drawn in
Section 6.

2. AR/ARMA MODELING OF STRING
INSTRUMENT SOUNDS

2.1. Basic definitions

An ARMA process of order p and ¢, here indicated as
ARMA(p, q), can be generated by filtering a white noise se-
quence e(n) through a causal linear shift-invariant and stable
filter with transfer function [12]

_ By(2) _ Sh bg(k)z*
Ap(z)  1-30  a,(k)zk

(1)

For real-valued filter coefficients, the transfer function of an
ARMA(p, q) model has p poles and g zeros. Considering a
flat power spectrum for the input, that is, P,(z) = o2, the
resulting output x(n) has power spectrum given by

B,(z)B} (1/z*
Py(2) = ae”‘f—*(), (2)
Ap(2)Af (1/2*)
where the symbol * stands for complex conjugate.
An AR process is a particular case of an ARMA process
when g = 0. Thus, the generator filter assumes the form

_ b(0)
HE& =15 e

which is usually referred to as the transfer function of an all-
pole filter.

(3)
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2.2. Parameter estimation of AR and ARMA processes

Thorough descriptions of methods for estimation of AR and
ARMA models are outside the scope of this paper since this
topic is well covered elsewhere [9, 12] and computer-aid tools
are readily available for this purpose. Here, we briefly sum-
marize the most commonly used methods.

Parameter estimation of AR processes can be done by
several means, usually through the minimization of a mod-
eling error cost function. Solving for the model coefficients
from the so-called autocorrelation and covariance normal
equations [9] are perhaps the most common ways.

The stability of the estimated AR models is an important
issue in synthesis applications. The autocorrelation method
guarantees AR model estimates that are minimum phase.
The Matlab function ar.m allows estimating AR models us-
ing several approaches [29].

Parameter estimation of ARMA processes is more com-
plicated since the normal equations are no longer linear
in the pole-zero filter coefficients. Therefore, the estima-
tion relies on nonlinear optimization procedures that have
to be done in an iterative manner. Prony’s method and the
Steiglitz-McBride iteration [30, 31] are examples of such
schemes. A drawback of these methods is that the estimated
pole-zero filters cannot be guaranteed to be minimum phase.
In addition, and especially for high-order models, the esti-
mated filters can be unstable. The functions prony.m and
stmcb.m are available in Matlab for estimation of ARMA
models using Prony’s and Steiglitz-McBride methods, re-
spectively [32].

2.3. Full bandwidth modeling

Modeling of string instrument sounds has been approached
by either physically motivated or signal modeling methods.
Examples of the former can be found in physics-based algo-
rithms for sound synthesis [18, 33, 34, 35]. Examples of the
latter include the AR-based modeling of percussive sounds
presented in [14, 15, 16, 36, 37].

In principle, when approaching the problem from a sig-
nal modeling point of view, it seems natural to employ a res-
onant filter, such as an all-pole or pole-zero filter, to model
the mode behavior of a freely vibrating string, which consists
of a sum of exponentially decaying sinusoids. However, mod-
eling of broadband signals can be a tricky task. One practical
issue related to both AR and ARMA modeling is model or-
der selection. In general, there is no automated way to choose
an appropriate order for the model assigned to a signal. For
instance, one can deduce that AR modeling of low-pitched
tones in full bandwidth is expected to require high-order
models. The same is valid for piano tones which are pro-
duced by one to three strings sounding together. In this case,
considering the detuning among the strings and two polar-
izations of transversal vibration per string, up to 6 resonance
modes should be allocated to each partial of the tone.

In fact, the temporal envelope exhibited by partials of
guitar and piano tones can be far from being exponentially
decaying. On the contrary, the usually observed temporal en-
velopes contain frequency beating and two-stage decay [38].

This indicates that the partials are composed of two or more
modes that are tightly clustered in frequency. The need for
high-resolution frequency analysis tools is evident in these
cases.

If frequency analysis is to be performed by means of
AR/ARMA modeling, higher spectral resolutions can be at-
tained by increasing the model orders. However, parameter
estimation of high-order AR/ARMA models may be prob-
lematic if the poles of the system are very close to the unit
circle and if there are poles located close to each other. Re-
alizing a filter with these features is very demanding as the
required dynamic range for the filter coefficients tends to be
huge. In addition, computation of the roots associated with
the corresponding polynomial in z, if necessary, can be also
demanding and prone to numerical errors [39].

2.4. Frequency-selective modeling

The aforementioned problems have motivated the use of al-
ternative modeling or analysis strategies based on subband
decomposition [40]. In such schemes, the original signal is
first split in several spectral subbands. Then, modeling or
analysis of the resulting subband signals can be performed
separately in each subband. Examples of subband modeling
approaches can be found in [14, 16, 20, 24, 25].

A prompt advantage of subband decomposition of an
AR/ARMA process is the possibility to focus the analysis on
thinner portions of the spectrum. Thus, a small number of
resonances can be analyzed at a time. This accounts for using
lower-order models to analyze subband signals. Moreover,
the subband signals can be down sampled, as their band-
width is reduced compared to that of the original signal.
As a consequence, the implied decrease in temporal resolu-
tion due to down-sampling is rewarded by an increase in fre-
quency resolution. This fact favors the problem of resolving
resonant modes that are very close to each other in frequency.
The effects of decimating AR and ARMA processes have been
discussed in [21, 41, 42].

3. FREQUENCY-ZOOMING ARMA METHOD

As presented in [23], the FZ-ARMA analysis consists of the
following steps.

(i) Define a frequency range of interest (for instance, to
select a certain frequency region around the spectral
peaks one wants to analyze).

(i1) Modulate the target signal (shift in frequency by multi-
plying with a complex exponential) to place the center
of the previously defined frequency band at the origin
of the frequency axis.

(iii) Lowpass filter the complex-valued modulated signal in
order to attenuate its spectral content outside the band
of interest.

(iv) Down sample the lowpass filtered signal according to
its new bandwidth.

(v) Estimate an ARMA model for the previously obtained
decimated signal. Throughout all examples shown
in this work, the Steiglitz-McBride iteration method
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[12, 30, 31] is employed to perform this task. More
specifically, we used the stmcb.m function available in
the signal processing toolbox of Matlab [32].

In mathematical terms, and starting with a target sound sig-
nal h(n), the first two steps of the FZ-ARMA method imply
defining a modulation frequency f, (in Hz) and multiplying
h(n) by a complex exponential, as to obtain the modulated
response

hin(n) = e 7" h(n), (4)

where Q= 27 fn/f; with f; being the sample rate. This
modulation implies only a clockwise rotation of the poles
of a hypothetical transfer function H(z) associated with the
AR process h(n). Thus, if z; is a pole of H(z) with phase
arg(z;) = Q;, its resulting phase after rotation becomes

Qi,rot = Qi - Qm- (5)

The lowpass filtering is supposed to retain without distortion
those poles located inside its passband. On the other hand,
down sampling the resulting lowpass filtered response yields
modified poles

Kioom

Kaoom _i(Q;—
Zizoom = Zj = |Zi eJ(Qx Qm)Kznom’ (6)

where Koom is the zooming factor, which relates the new
sampling rate to the original one as f;,0om = fs/Ksoom-

Now, we know what the zooming procedure does to the
poles, z;, of the original transfer function. As a result, those
poles, Z;,00m, estimated in subbands via ARMA modeling,
need to be remapped to the original fullband domain. This
can be accomplished by inverse scaling the poles and counter
rotating them, that is,

A A 1/Kzoom _j
Zi = (Zi,zoom) e]Qm~ (7)

The frequency and decay time of the resonances present
within the analyzed subband can be drawn from the angle
and magnitude of Z;, respectively.

Note that the original target response is supposed to be
real valued and, therefore, its transfer function must have
complex-conjugated pole pairs. However, due to the one-
sided modulation performed in (4), the subband model re-
turns pure complex poles. Thus, if the goal is to devise a real-
valued all-pole filter in fullband for synthesizing the contri-
bution of resonances within the analyzed subband, its trans-
fer function must include not only the remapped poles, but
also their corresponding complex-conjugates.

Hereafter, when referring to the models of the complex-
valued subband signals, we will adopt the convention FZ-
ARMA(p, q), where p and g stand for the orders of the de-
nominator (AR part) and numerator (MA part), respectively.

3.1. Choice of parameters for the FZ-ARMA method

The choice of the FZ-ARMA parameters, that is, fm, Ksoom>
and the model orders, depends on several factors. We will
now discuss these issues.

3.1.1. Zoom factor

Considering first the zoom factor, it can be said that the
greater K,oom, the higher the frequency resolution attainable
in a subband. This favors cases in which the frequencies of the
modes are densely clustered. However, large values of K,oom
imply a more demanding signal decimation procedure and
shorter decimated signals.

The values of Kyoom and f;,0om are tied together, and the
latter defines the bandwidth of the subband which the anal-
ysis will be focused on. For instance, if the aim is to analyze
the behavior of isolated partials of a tone, the choice of f; ,0om
should be such that its value be less than two times the mini-
mum frequency difference between adjacent partials. On the
other hand, f;,00m should be large enough to guarantee that
the modes belonging to a given partial do not lie inside dif-
ferent subbands.

While the model estimation may be unnecessarily over-
loaded if based on long signals, it may yield poor results if
based on few signal samples only. Therefore, the criterion
upon which the value of f;,0om is chosen should also take
into account the number of samples that remains in the dec-
imated signal.

3.1.2. Modulation frequency

Suppose that we are interested in analyzing a set of reso-
nances concentrated around a frequency f;. Having defined
the bandwidth of the zoomed subband f; oom, a straightfor-
ward choice is to set the value of the modulation frequency to
fm = fr. Note that this option places the resonance peaks in-
side the subband around Q, = 0. As pole estimation around
Q, = 0 may be more sensitive to numerical errors, we de-
cided to adopt fm = fi — fiz00m/8, which implies concen-
trating the peaks around Q, = 7/4. This frequency shift is
not harmful since the resonance peaks are still well inside the
subband. Thus, their characteristics are not severely distorted
by the nonideal lowpass filtering employed during the deci-
mation procedure. However, to afford this choice of f, and
still ensure the isolation of a tone partial, the maximum value
of f,00m should be at maximum one and half times the min-
imum frequency difference between adjacent partials.

The frequency of the partials can be predicted from
that of the fundamental if the tone is harmonic or quasi-
harmonic. However, as some level of dispersion is always
present, errors at the frequencies of the higher partials are
expected to occur. Alternatively, the frequencies of the par-
tials can be determined by performing spectral analysis on
the attack part of the tone and running a peak-picking algo-
rithm over the resulting magnitude spectrum, as employed
in [16, 25]. This approach is more general since it can deal
with highly inharmonic tones.

In our experiments, we first estimate the fundamental
frequency of the tone, a task that was performed through the
multipitch estimator described in [43]. Then, after model-
ing the first partial, which allows obtaining a precise value of
this partial frequency, the frequency of the following partial
to be analyzed is set as the sum of the estimated frequency
of the current partial with the value of the fundamental
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frequency. This procedure is repeated until one reaches the
desired number of partials to be analyzed. This approach
minimizes the problems related to multiplicative errors when
predicting the frequencies of higher partials based on integer
multiples of the fundamental frequency.

3.1.3. Model order

Regarding the orders of the ARMA models, they should be
chosen as to allow the modeling of the most prominent res-
onant modes of the signal. Depending on the case, a priori
information on the characteristics of the signal at hand can
be used to guide suitable model-order choices. For string in-
strument sounds, the estimation of the number of modes per
partial can be based on the number of strings per note and
the number of polarizations per string.

Moreover, it is known that if a real-valued signal has p
resonant modes, one has to allocate at least two poles per res-
onant mode, that is, an ARMA(2p, 0), to properly model it.
However, due to the one-sided modulation used in the FZ-
ARMA scheme, the resulting subband signals are complex
valued, thus composed of pure complex poles. Therefore,
only one single complex pole per mode suffices. As a con-
sequence, at the expense of working with a complex arith-
metic, the FZ-ARMA scheme optimizes the resources spent
on modeling of the subband signals. This represents one ad-
vantage over, for instance, the modulation scheme proposed
in [20], which yields real-valued decimated signals.

4. FZ-ARMA MODELING OF STRING
INSTRUMENT TONES

In this section, we apply the FZ-ARMA modeling to ana-
lyze the resonant modes of isolated partials of string instru-
ment sounds. We start by analyzing synthetic signals as a way
to objectively evaluate the results. This allows knowing be-
forehand the mode frequencies and decay rates of the arti-
ficial tone. Thus, we can compare them with the estimates
obtained via the FZ-ARMA modeling. In this context, the
choice of the model orders is investigated as well as the mod-
eling performance under noisy conditions. Then, following a
similar analysis procedure, we evaluate the modeling perfor-
mance of the FZ-ARMA method on recorded tones of real-
world string instruments.

4.1. Experiments on artificially generated string
instrument tones

4.1.1.

In this case study, the synthetic guitar tone is generated by
means of a dual-polarization DWG model [18]. Thus, each
of its partials has two modes with known parameters, that is,
resonance frequencies and time constant of the exponentially
decaying envelope.

The string model for one polarization is depicted in
Figure 1. Its transfer function is given by

Guitar tone synthesis

1

S(Z) = 1 - Z*LiHFD(Z)HLF(Z))

(8)
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subscripts “v” and “h” stand for vertical and horizontal, respectively.

where z7li and Hpp(z) are, respectively, the integer and frac-

tional parts of the delay line associated with the length of the
string. This length is given by L = f/f,, where f; and f,
are the sample frequency and fundamental frequency of the
tone, respectively. The transfer function Hig(z) is called loop
filter and is in charge of simulating the frequency-dependent
losses of the partial modes.

For the sake of simplicity, we implemented the loop filter
via the one-pole lowpass filter with transfer function given
by

g(1+a)
1+azt

Hyp(z) = )
The magnitude response of Hir(z) must not exceed unity in
order to guarantee the stability of S(z). This constraint im-
poses that 0 < ¢ < 1 and —1 < a < 0. As regards the
fractional-delay filter Hrp(z), we chose to employ the first-
order allpass filter proposed in [44], which implies the com-
putation of a single coefficient agg. This choice assures that
the decay rates of the partials depend mainly on the charac-
teristics of Hyp(2).

The dual-polarization model consists in placing two
string models in parallel as depicted in Figure 2. With this
model, amplitude beating can be obtained by setting slightly
different delay line lengths for each polarization. In addi-
tion, two-stage envelope decay can be accomplished by hav-
ing loop filters with different magnitude responses for each
polarization.

Consider first a string model with only one polarization.
The partials of the resulting tone will decay exponentially
and form a perfect harmonic series, that is, their frequen-
cies are f, = vf,, where f, is the fundamental frequency of
the tone,and v = L,..., | £/(2f,)] the partial indices. To de-
termine the decay rate associated with each partial, we need
to know the gain of the loop filter as well as the group delay
of the feedback path (cascade of z%i, Hgp(z), and Hip(z))
at the partial frequencies. By defining the partial frequencies
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TaBLE 1: Parameters used to generate the synthetic guitar tone. The
sample rate was chosen as f; = 44.1kHz and « was set to 0.5.

Polarization f g a L; ag
Vertical 200 Hz 0.997 —-0.03 220 0.3614
Horizontal 200.4 Hz 0.980 —-0.10 219 0.0263

in radians as w, = 27 f,/ f;, the gain of the loop filter at w, is
given by

g(1+a)
\/1 +2acos (w,) + a

| Hip (/)

(10)

The group delay of a transfer function F(z) is commonly
defined as the ratio I'r(w) = —darg{F(e/*)}/0w. Then, if one
defines G(w,) as the group delay (in samples) of the feedback
path at w,, thatis, G(w,) = Li+ 'y, (wy) + 'y (wy), the decay
time (in seconds) of the partials can be obtained by

_ l _ G(wv)
i fs< log (| Hur () >>' (1)

Now we can generate an artificial guitar tone through
the dual-polarization model, analyze it using the FZ-ARMA
method, and compare the estimated values of the mode pa-
rameters with the theoretical ones. The tone is generated
via the model shown in Figure 2 with parameters given in
Table 1.

By adopting the parameters shown in Table 1, one guar-
antees that the modes of each partial will decay with different
time constants. Hence, each partial exhibits a two-stage enve-
lope decay behavior. Moreover, the mode frequencies of each
partial are also different, thus yielding amplitude modulation
in its envelope.

4.1.2. FZ-ARMA analysis

To proceed with the FZ-ARMA analysis of the generated
tone, we have to choose appropriate values for the frequency
bands of interest and corresponding modulation frequencies.
In this example, equal bandwidth subbands are used to an-
alyze the partials. The subband bandwidth is chosen to be
equal to the fundamental frequency of the vertical polariza-
tion. This implies a new sampling frequency of fi,oom =
fpv = 200Hz for the subband signals and a zoom factor
Ki0om = 220. For convenience, we only show results of pa-
rameter estimation up to the 45th partial. As highlighted in
Section 3.1.2, for each partial frequency f, (of the vertical po-
larization) to be analyzed, the modulation frequency is cho-
sentobe fm = f, — fsz00m/8.

The goal of this experiment is to gain an insight of the
model orders that are necessary to reasonably estimate the
mode parameters of the partials of a guitar tone. The FZ-
ARMA procedure was devised in such a way that the subband
signals are supposed to contain only two complex modes.
Therefore, at least an FZ-ARMA(2, 0) must be employed to
model each subband signal.

The results of mode parameter estimation obtained in
this example are shown in Figure 3. Subplot 3(a) depicts

the reference values of the time constants of each polariza-
tion 7, and 7,y as a function of the partial index v. In
subplots 3(c) and 3(e), one finds the relative errors in the
time constant estimates, AT, = |Tyref — Tymeas|/Tyref, When
modeling the target signals through FZ-ARMA(2, 1) and FZ-
ARMA(3, 2), respectively. Subplots 3(d) and 3(f) display the
relative errors in the frequency estimates, Af, = |fyref —
Jfrmeas|/ frref, when modeling the target signals through FZ-
ARMA(2, 1) and FZ-ARMA(3, 2), respectively.

From Figure 3, it is possible to verify that low-order mod-
els suffice to estimate the mode frequencies. On the contrary,
to properly estimate the decay time of the partial modes,
higher-order models are required. Furthermore, as one could
expect, it is more difficult to estimate the time constants of
faster decaying modes.

4.1.3. Analysis of noisy tones

We start with the same synthetic tone devised in Section
4.1.1. This tone is then corrupted with zero-mean white
Gaussian noise, whose variance is adjusted to produce
a certain signal-to-noise ratio (SNR) within the first
10 milliseconds of the tone. We proceed with the FZ-ARMA
analysis of four noisy tones with SNR equal to 40, 20, 10, and
0 dB, respectively. The goal now is to investigate the effect of
the SNR on the decay time estimates of the partial modes.

As in the previous example, equal-bandwidth subbands
are used to analyze the partials of the tone. But, here, the
adopted value of the zoom factor was K,oom = 600. As be-
fore, the frequency f, of each partial to be analyzed de-
fined the modulation frequency, which was chosen to be
fm = fv = fszoom/8. To model the two-mode partial signals,
FZ-ARMA(3, 3) models were used. From the poles of each
estimated model, those two with the largest radii were se-
lected to determine the decay times and frequencies of the
partial modes. In addition, for the sake of convenience, the
estimated mode parameters were sorted by decreasing values
of decay time.

The results are depicted in Figure 4, in which the solid
and dashed lines describe the reference values of the decay
time, associated with the vertical and horizontal polariza-
tions, respectively, as functions of the partial indices. The cir-
cle and square markers indicate the corresponding estimated
values.

As one could expect, the estimation performance is wors-
ened when decreasing the SNR. Nevertheless, it is worth not-
ing that even for the signal with SNR equal to 10 dB, the ma-
jority of the estimated values of decay time is concentrated
around the reference values, especially for low-frequency
partials. The occurring outliers can be either discarded, for
example, negative values, or removed by means of median
filtering. As for the mode frequency estimates (not shown),
the maximum relative error encountered for the tone with
SNR = 0dB is of order equal to +£0.1%, which is negligible.

4.1.4. Comparison against STFT-based methods

At this stage, one wonders if an estimation procedure based
on short-time Fourier analysis or heterodyne filtering would
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FIGURE 3: Case study on a synthetic string tone with amplitude envelope featuring beating and two-stage decay. Subplots (a) and (b) show,
respectively, the reference time constants and frequencies of the modes as functions of the partial index; subplots (c) and (d) depict the
relative errors AT, = [Tyrer — Tymeas|/Toref AN Afy, = | forer — fymeas!/ furer When estimating 7, and f,, respectively, via FZ-ARMA(2, 1)
models; similar curves are shown in subplots (e) and (f) when adopting FZ-ARMA(3, 2) models. The results for the vertical and horizontal

polarizations are indicated by solid and dashed lines, respectively.

yield similar results as those of the FZ-ARMA-based scheme
when dealing with noisy signals.

In these approaches, each prominent partial is isolated
somehow and the evolutions of its amplitude over time are
tracked. Then, a linear slope is to be fitted to the obtained
log-amplitude envelope curve. The decay time of the ana-
lyzed partial is determined from the slope of the fitted curve.

To start answering our question, we should remember
that, even for clean signals, there are situations in which the
just described slope fitting does not give appropriate results.
Perhaps the most striking one is when the envelope curve
shows amplitude beating. Back to the noisy signals, there may
be a point in the amplitude envelope curves of the partials
after which the noise component dominates the amplitude.
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FIGURE 4: Decay times of two-mode partials of a synthetic noisy guitar tone: comparison between reference values and FZ-ARMA(3, 3)

estimates.

The noise floor is not so critical for the decay time estima-
tion of low-frequency partials since they are usually stronger
in amplitude and decay slowly. On the other hand, high-
frequency partials are in general weaker in magnitude and
decay fast. They are likely to reach and be masked by the noise
floor very early in time. Taking into account the noise floor
level is essential for the decay time estimation of these par-
tials (see [26, Figure 5]).

For the sake of simplicity, we do not use neither the het-
erodyne filtering nor the sinusoidal modeling (SM) analy-
sis in the comparisons shown in this section. Instead, we
can resort to the frequency-zooming procedure itself. The
amplitude envelope curves of each partial are obtained di-
rectly from the evolution of the signal magnitude within each

subband. Note that we are dealing with narrow subbands
(bandwidth of about 70 Hz) and that each subband isolates
a given partial. Therefore, the so-attained envelope curves
will approximate well the curves that would result from ei-
ther the heterodyne filtering or the SM analyses. The latter,
however, would provide smoother curves. Yet, they would in-
evitably be lower-bounded by the average amplitude of the
noise floor.

As an example, we compare the analysis of two high-
frequency partials (6th and 13th) of the string tone devised
in Section 4.1. These high-order partials are chosen on pur-
pose to illustrate the effect of the corrupting noise on the
amplitude envelope curves. Figure 5 compares the envelope
curves of the featured partials in 3 conditions: noiseless tone
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FIGURE 5: Analysis of the 6th and 13th partials of the synthetic
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ner solid line), its noisy version with SNR = 0dB (dash-dotted
line), and the modeled signal via FZ-ARMA (3, 3) (thicker solid line)
based on the noisy signal.

(thinner solid line), noisy signal with SNR = 0dB (dash-
dotted line), and modeled signal based on the noisy target
(thicker solid line).

From Figure 5, it becomes evident that, for the noisy sig-
nal, decay time estimation of the partials via slope fitting is
impractical. On the contrary, the FZ-ARMA modeling is ca-
pable of properly estimating the decay time of the slowest de-
caying or the most prominent partial mode. Note that we are
primarily interested in the slope of the envelope curve. The
upward bias, which is observed in the envelopes of the mod-
eled signals, occurs due to the difference in power between
the clean and the noisy version of the signal.

The frequency-zooming procedure per se accounts for
a significant improvement in the value of the SNR. For in-
stance, if the target signal is a single complex exponen-
tial immersed in white noise, the reduction in SNR due to

the zooming will be given by 10log,,(Kyom). Of course,
an even bigger SNR improvement can be achieved by FFT-
based analysis. This comes from the fact that tracking a sin-
gle frequency bin in the DFT domain (preferably refined
by parabolic interpolation) implies analysis within a much
narrower bandwidth than the frequency-zooming scheme.
However, the improvement in the SNR is not the main is-
sue here. This larger SNR improvement does not prevent the
amplitude envelope from being lower-bounded by the noise
floor level after some time.

The keypoint here is that fitting a parametric model to
the partial signals allows capturing the intrinsic temporal
structures of them, even in noise conditions. Moreover, the
resonance features are derived from the model parameters
rather than from a simple curve fitting process. As a conse-
quence, a further improvement in the SNR is achieved, cul-
minating in more reliable estimates for the decay time of the
partials. Of course, the corrupting noise tends to degrade and
bias the estimated models. Thus, any improvement in the
SNR before the modeling stage is welcome. The frequency
zooming helps in this matter as well.

4.1.5. Comparison against ESPRIT method

One could also think of applying other high-resolution spec-
tral analysis methods to the subband signals. For instance,
Laroche has used the ESPRIT method [20, 22] to analyze
modes of isolated partials of clean piano tones. Just for
comparison purposes, we repeat the experiments conducted
in Section 4.1.3 using the ESPRIT method [22, 45]. More
precisely, we employ the frequency-zooming procedure as
before, but replace the ARMA modeling with the ESPRIT
method as a means to analyze the subband signals.

In the ESPRIT method, we have to set basically three pa-
rameters: the length of the signal to be analyzed, N, the a pri-
ori estimate of the number of complex exponentials in the
signal, M, and the pencil parameter, M < Ppencit < N — M.
Analysis of noise sensitivity of the ESPRIT method has been
conducted in [45] for single complex exponentials in noise.
It revealed that setting Ppencit = N/3 or Ppencit = 2N/3 are the
best choices for the pencil parameter, in order to minimize
the effects of the noise on the exponential estimates. Further-
more, as highlighted in [20], overestimating M is harmless
and even desirable to avoid biased frequency estimates. The
ESPRIT method outputs M complex eigenvalues from which
the frequency and decay time of M exponentials can be de-
rived. As M is usually overestimated, a pruning scheme has
to be employed to select the most prominent exponentials.
In our experiments, we take only the two exponentials with
the largest decay times.

According to the results of our simulations, the perfor-
mances of the ESPRIT and ARMA methods are equivalent
for estimating the frequencies of the resonant modes. For in-
stance, as regards the frequency estimates, the maximum rel-
ative errors measured for the tone with SNR = 0dB were
0.19 and 0.11, respectively, for the ESPRIT and ARMA meth-
ods. In this particular example, FZ-ARMA(3, 3) models were
used whereas the parameter values adopted in the ESPRIT
method were N = 295, Ppencil = 98, and M = 20.
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FIGURE 6: Decay times of partial modes of synthetic noisy guitar
tones: comparison between reference values and ESPRIT estimates
(M = 20 and Ppencit = 98).

The situation is different when it comes to the decay time
estimates. It seems that the accuracy of these estimates is very
dependent on the choice of pencil parameter. For instance,
when dealing with noisy signals, setting Ppencit = M yields
underestimated values of decay time. On the contrary, in-
creasing the value of Ppencil tends to produce overestimated
values of decay times. According to the results of our experi-
ments, this is also the case if Ppencit = N/3 is chosen.

Figure 6 confronts the reference values of the decay time
against the estimates obtained through the ESPRIT method
with M = 20 and Ppencit = 98. It can be clearly seen that the
decay time estimates are substantially overestimated, even for
moderate levels of SNR. Interestingly enough, repeating the
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FIGURE 7: Decay times of partial modes of synthetic noisy guitar
tones: comparison between reference values and ESPRIT estimates
(M = 20 and Ppencit = 20).

experiments for Ppencit = M = 20 yields better results, as can
be seen in Figure 7. In this case, the estimates are much more
accurate than those obtained with Ppencit = 98. Notwith-
standing, these estimates are still worse than those drawn
from the poles of the ARMA(3, 3) fitted to the subband sig-
nals, as one can verify from Figure 4. Therefore, we stick to
the FZ-ARMA modeling in the following experiments.

4.1.6. Discussion

Carrying out systematic performance comparisons among
the addressed methods of decay time estimation is outside
the scope of this work. Including such comparisons would
demand not only covering a broader range of situations



FZ-ARMA Analysis of Noisy String Tones

963

and examples, but also precise description of the algorithms
and the calibration of their associated processing parameters.
Besides, comparisons between FFT-based schemes of spec-
tral analysis, such as the SM technique, and parametric ap-
proaches are not fair. Sticking to comparisons among para-
metric methods of spectral analysis would necessarily include
other techniques than just the ARMA and ESPRIT methods.

The comparisons shown in Section 4.1.4 are basically
meant to highlight the situations in which STFT-based meth-
ods for decay time estimation are prone to failure. A pre-
sumed goal is to motivate the need for alternative solutions
to decay time estimation in noisy conditions.

As for the performance comparisons between the ARMA
and the ESPRIT methods, they were conducted after the
frequency-zooming stage in order to keep equal conditions.
Yet, the performance results can depend significantly on the
choice of the processing parameters. This fact is clearly ver-
ified by comparing the results shown in Figures 6 and 7.
Moreover, translating the parameters of one method into
those of the other may not be straightforward. Due to the
aforementioned reasons, we restrict the comparisons to a sin-
gle case study. Rather than tabulating the attained perfor-
mances, we believe that visual assessment on Figures 4, 6, and
7 offers more effective means of drawing conclusions on the
results.

In summary, the STFT-based schemes are appropriate for
decay time estimation of the partials when the partials show
monotonic and exponential decay and when the measure-
ment noise is low. If the noise component is prominent, reli-
able decay time (and frequency) estimation of the high-order
partials will be prevented. For both the parametric methods
tested, and under the setups adopted, a reliable frequency es-
timation for the partials of noisy tones is attained. As regards
the decay time estimation in noisy conditions, the ARMA
analysis performs better in general than the ESPRIT method.

Now, we comment specifically on the analysis results of
the noisy tone with SNR = 20dB. The ESPRIT method
seems to overestimate the decay times as the value of the
pencil parameter increases. Adopting the minimum value for
the pencil parameters yielded the best results. Yet, the ES-
PRIT analysis underestimates the decay times of the low-
order partials. This is critical from the perceptual point of
view, especially if one aims at resynthesizing a new tone
based on the analyzed data. For the high-order partials, how-
ever, the ESPRIT-based decay time estimates seem to con-
verge with low variance to the decay time of the slowest res-
onance mode. In contrast, there are more outliers in the de-
cay time estimates attained via the ARMA analysis. Never-
theless, the ARMA analysis seems to do a better job in prop-
erly segregating the estimates into two distinct resonance
modes.

Finally, when it comes to choosing the most appropriate
technique, many variables should be considered. Examples of
such variables are the characteristics of the problem at hand
and the aimed objectives, the effectiveness of the available
tools in performing the targeted task, and the available com-
putational resources. The latter issue, although important,
does not fit to the profile of this paper. Therefore, discussions

on the computational complexity of the tested methods are
not included.

4.2. Experiments on recorded string instrument tones

In this section, we follow the same methodology used in Sec-
tions 4.1.2 and 4.1.3 to analyze recorded tones of real-world
string instruments. Here, we do not have a set of reference
values for the decay times of the partials. Nevertheless, based
on the results obtained for the synthetic tone, we can as-
sume that the FZ-ARMA modeling of an originally clean
tone provides correct estimates for the decay time of the par-
tial modes. Then, this set of values can be taken as a reference.

For this experiment, we selected a clean classical guitar
tone A2 (f, = 109.97 Hz, softly plucked open 5th string),
which was recorded in anechoic conditions. Three noisy ver-
sions of this tone, with SNR = 60, SNR = 40, and SNR =
20dB, respectively, were generated by adding zero-mean
white Gaussian noise to the clean tone. The noise variance
was adjusted as to produce the desired SNR during the at-
tack part of the tone (about 20 milliseconds starting from the
maximum amplitude).

The first step of the analysis procedure is to obtain an es-
timate of the fundamental frequency of the noisy tone. This
estimate is the starting point to the choices of the bandwidth
of the subbands and the modulation frequencies to be used in
the FZ-ARMA analysis. The fundamental frequency of tone
with SNR = 20dB was estimated to be f, = 110.25Hz,
which is not far from that of the clean tone. Thus, by fol-
lowing the guidelines stated in Section 3.1.2, we can proceed
toward analyzing the higher partials of both the clean and the
noisy tones. The parameters used in the FZ-ARMA analysis
were Ksoom = 600, fm = fy — fsz0om/8, and FZ-ARMA(3, 3)
models. This time, only the decay time of the slowest decay-
ing mode of each partial was extracted.

The results of this experiment are displayed in Figure 8.
The solid line curves correspond to the estimated values of
decay time based on the original clean tone. On the other
hand, the circles show the corresponding estimated values
based on the noisy tones with indicated SNRs. From Figure 8,
we observe that, even for the tone with SNR = 20 dB, the FZ-
ARMA analysis provides reliable decay time estimates, espe-
cially for the low-frequency partials.

5. APPLICATIONS IN SOUND SYNTHESIS

5.1. Digital waveguide synthesis

We have seen in Section 4 that the FZ-ARMA modeling can
be used as an analysis tool, aiming at estimating the parame-
ters associated with the resonances of the tone partials. Thus,
based on the set of frequencies and decay times estimated for
each partial, one could design a DWG model to resynthesize
the tone.

More interestingly, the FZ-ARMA modeling allows esti-
mating more than one frequency and decay time per partial.
Thus, one can consider using this information to design the
filters of a multipolarization DWG model, such as the dual-
polarization DWG model shown in Figure 2. As in source-



964

EURASIP Journal on Applied Signal Processing

Original
4 T
3 -
o
N
&
3
[a)
1 L
0 1 1 1
0 10 20 30 40
Partial index
Clean
SNR = 40dB
4 T

Decay time [s]

Partial index

Clean O Noisy

SNR = 60dB
4 T
I
£
&
2
(=)
Partial index
Clean O Noisy
SNR =20dB
4 T
3 -
F
2 2f
-y
3
[a)
1F O
(e}
OQOO
0 . Reo o ohee) "
0 10 20 30 40

Partial index

Clean

O Noisy

FIGURE 8: FZ-ARMA(3, 3) estimates of the decay time of partials of an A2 guitar tone: comparisons among estimates based on the original

clean signal and its noisy versions at different SNRs.

filter synthesis, in DWG-based synthesis, the excitation sig-
nal is in charge of controlling the initial phase and ampli-
tude of the resonance modes. In this work, however, we will
not tackle the attainment of suitable excitation signals but we
concentrate more on the calibration of the string models.
Calibrating a multipolarization DWG model based on
the estimated parameters of the partial modes is a difficult
task, especially when dealing with real-world recorded tones
immersed in noise. This is mainly due to the high variance
exhibited in the estimates of decay time of the partial modes.
In contrast to what is seen in the analysis results of the syn-
thetic tone shown in Section 4.1.2, the decay time of the par-
tial modes, estimated from a recorded tone, cannot be easily
discriminated in two or more distinct classes. Thus, deciding
which partial mode belongs to which polarization turns out

to be a difficult nonlinear optimization problem. We leave
this topic for future research and we stick to the calibration
of the one-polarization DWG model.

5.1.1. Calibration of one-polarization DWG
model from noisy tones

We start with an example in which the target signal is the cor-
rupted version (SNR = 20dB) of the recorded guitar tone
featured in Section 4.2. From the FZ-ARMA analysis of this
tone, we obtained estimates for the frequency and decay time
of the partial modes. Then, the specification for the magni-
tude of the loop filter at the partial frequencies can be ob-
tained by

|Hip(f,) | = 0™, (12)
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FIGURE 9: Specification points and attained response of the
8th-order IIR loop filter: (a) smoothed magnitude specification
(squares) versus attained response (solid line) up to the frequency of
the 40th partial; (b) measured decay times (circles) versus attained
values forged by the loop filter response (solid line).

where v is the partial index, f, are the frequencies of the par-
tials in Hz, and 7, are the corresponding decay times in sec-
onds.

As the sequence of estimated decay times, which was
based on the corrupted signal, seems to have a couple of out-
liers, it was first median filtered using a three-sample win-
dow. The values of 7, that result from the filtered sequence
are then used in (12).

The specification of the loop filter within the frequency
range above the frequency of the 40th partial is devised artifi-
cially. We fit a —6 dB per octave slope to the magnitude spec-
ification points associated with the highest 10 partials and
extrapolate the curve up to the Nyquist frequency. To design
aloop filter that approximates this extended specification, we
resort to the IIR design method proposed in [46, 47].

Figure 9 shows the results obtained by approximating the
specified (smoothed) magnitude response of the loss filter via
an 8th-order IIR lowpass filter.

We could also think of designing a dispersion filter for
the DWG model. In this case, the specification for phase re-
sponse of the allpass dispersion filter could be based on the
estimated frequencies of the partials in a similar manner to
what was done in [48, 49]. However, for the noisy tone under
study, the variance observed in these estimates prevented one
from obtaining any meaningful specification for the disper-
sion filter.

6. CONCLUSION

In this paper, a spectral analysis technique based on FZ-
ARMA modeling was applied to string instrument tones.
More specifically, the method was used to analyze the res-
onant characteristics of isolated partials of the tones. In ad-
dition, analyses performed on noisy tones demonstrated that
the FZ-ARMA modeling turns out to be a robust tool for esti-
mating the frequencies and decay times of the partial modes,
despite the presence of the corrupting noise. Comparisons
between the estimates attained by FZ-ARMA modeling and
those obtained via the ESPRIT method revealed a superior
performance of the former method when dealing with noisy
tones. Finally, the paper discussed the use of FZ-ARMA mod-
eling in sound synthesis. In particular, the calibration of a
DWG guitar synthesizer was successfully carried out based
on FZ-ARMA analysis of a recorded guitar tone, which was
artificially corrupted by zero-mean white Gaussian noise.
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